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We study the growth of perturbations in a uniformly collapsing cloud of self-gravitating Brownian particles.
This problem shares analogies with the formation of large-scale structures in a universe experiencing a “big-
crunch” or with the formation of stars in a molecular cloud experiencing gravitational collapse. Starting from
the barotropic Smoluchowski-Poisson system, we derive a new equation describing the evolution of the density
contrast in the comoving (collapsing) frame. This equation can serve as a prototype to study the process of
self-organization in complex media with structureless initial conditions. We solve this equation analytically in
the linear regime and compare the results with those obtained by using the “Jeans swindle” in a static medium.
The stability criteria, as well as the laws for the time evolution of the perturbations, differ. The Jeans criterion is
expressed in terms of a critical wavelength λJ while our criterion is expressed in terms of a critical polytropic
index γ4/3. In a static background, the system is stable for λ < λJ and unstable for λ > λJ . In a collapsing cloud,
the system is stable for γ > γ4/3 and unstable for γ < γ4/3. If γ = γ4/3, it is stable for λ < λJ and unstable
for λ > λJ . We also study the fragmentation process in the nonlinear regime. We determine the growth of
the skewness, the long-wavelength tail of the power spectrum and find a self-similar solution to the nonlinear
equations valid for large times. Finally, we consider dissipative self-gravitating Bose-Einstein condensates with
short-range interactions and show that, in a strong friction limit, the dissipative Gross-Pitaevskii-Poisson system
is equivalent to the quantum barotropic Smoluchowski-Poisson system. This yields new types of nonlinear
mean-field Fokker-Planck equations, including quantum effects.
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I. INTRODUCTION

This paper continues our theoretical investigations (see
Ref. [1] for a short review) of the barotropic Smoluchowski-
Poisson (BSP) system [Eqs. (1) and (2)]. For an isothermal
equation of state p = ρkBT /m, these equations describe the
mean-field dynamics of a dissipative gas of self-gravitating
Brownian particles in the overdamped limit ξ → +∞ where
inertial effects are neglected. For the sake of generality,
we shall consider an arbitrary barotropic equation of state
p = p(ρ) to take into account anomalous diffusion or short-
range interactions. This type of equations appears in different
contexts (with different interpretations) such as planetary
formation in the solar nebula [2], chemotaxis of biological
populations [3], colloids at a fluid interface driven by attractive
capillary interactions [4], and nanoscience [5,6]. They also
provide a simplified model of gravitational dynamics that
displays many features common with ordinary self-gravitating
systems such as collapse and evaporation [1]. An interest of
this model is that many analytical results can be derived since
the inertia of the particles is neglected. For these reasons,
the theoretical study of the BSP system is of considerable
importance.

When studying equations of that type, it is natural to
investigate first the dynamical stability of a spatially ho-
mogeneous distribution. However, in the gravitational case,
we are rapidly confronted to the well-known problem that a
spatially homogeneous distribution is not a steady state of
these equations. To circumvent this difficulty, one possibility
is to advocate the “Jeans swindle” as in similar problems of
astrophysics based on the barotropic Euler-Poisson system
[7–9]. This procedure allows one to perform the stability

analysis in a simple manner. Although this first-step study
certainly sheds light on the problem, it is, however, not
satisfactory and must be improved. Another possibility is
to study the dynamical stability of spatially inhomogeneous
steady states. This has been done in Refs. [10,11] for
isothermal spheres, in Refs. [12,13] for polytropic spheres,
and in Ref. [14] for an arbitrary equation of state by extending
the methods developed in astrophysics [15–30]. Finally, a third
possibility is to construct time-dependent solutions of the BSP
system. Solutions describing the collapse, the postcollapse,
and the evaporation of the system have been constructed in
Refs. [10–14,31–37] by looking for self-similar, or close to
self-similar, solutions. A fully analytical solution of the BSP
system has been obtained in Ref. [38] in the cold case where
the pressure can be neglected. [Similar studies have been
previously done in astrophysics based on the barotropic Euler-
Poisson system [39–45]. However, the results differ because
the barotropic Euler-Poisson system takes into account the
inertia of the particles but neglects dissipation while the BSP
system is obtained in a strong friction limit in which the inertia
of the particles can be neglected. The barotropic Euler-Poisson
system and the BSP system correspond therefore to opposite
limits (weak and strong dissipation).]

Among these solutions, there is a very simple one, namely
the collapse of a homogeneous sphere. It is found [38] that
the sphere undergoes a finite time singularity, resulting in a
vanishing radius and an infinite density in a finite time. The
question that naturally emerges is whether this time-dependent
solution is stable with respect to small perturbations and, if
not, how the perturbations grow. This amounts to considering
the development of density fluctuations in a time-dependent
collapsing cloud. In a sense, this is the right formulation of the
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Jeans problem without “swindle.” We may note the analogy
with the formation of stars in astrophysics through the collapse
and the fragmentation of a molecular cloud [39,46,47]. While
the cloud collapses under its own gravity, it also develops
numbers of irregularities that grow and finally form stars. We
may also note the analogy with the formation of large-scale
structures in cosmology [48] except that the universe is
expanding1 while, in our problem, the cloud is contracting.
In a sense, this corresponds to a universe experiencing a “big-
crunch.” To perform our study, we shall use many methods
introduced in cosmology [49,50]. There will be, however,
two main differences: (i) our system is contracting instead
of expanding and (ii) inertial effects are neglected in our
model. The second point is a huge simplification with respect
to cosmology that allows us to solve the linear stability problem
fully analytically. We can, therefore, easily follow the growth
of perturbations in the linear regime for an arbitrary equation
of state. Furthermore, we derive an exact system of nonlinear
equations [see Eqs. (34) and (35)] describing the formation
of clusters on longer times. These equations are simpler than
those considered in cosmology and could serve as a prototype
to study the process of self-organization in complex media
with structureless initial conditions.

The paper is organized as follows. In the first part of the
paper (Secs. II–IV), we consider the classical BSP system
[Eqs. (1) and (2)]. In Sec. II, we study the dynamical stability
of an infinite homogeneous distribution in a static frame by
invoking the “Jeans swindle.” We find that the system is stable
if and only if the wavelength of the perturbation is smaller than
the Jeans length λJ . The perturbations decay exponentially
rapidly if λ < λJ and grow exponentially rapidly if λ > λJ . In
Sec. III, we derive a new set of equations [see Eqs. (34), (35),
and (22)] describing the evolution of the density contrast in
a homogeneous collapsing cloud. We study the development
of perturbations in the linear regime and obtain an analytical
solution for the time evolution of the Fourier modes of the
density contrast. For a polytropic equation of state, we find
that the evolution depends on the value of the polytropic index
γ . There exists a critical index γ4/3 ≡ 2(d − 1)/d, already
encountered in our previous studies [12–14] and well known in
astrophysics [15,21], such that the system is stable for γ > γ4/3

and unstable for γ < γ4/3. The effect of the Jeans length λJ (t),
which is a function of time, manifests itself only in the initial
stage and disappears as time goes on. In the unstable case,
the perturbation is always growing when λ > λJ (0) while
it starts decaying, before finally growing, when λ < λJ (0).
We find that the perturbation grows algebraically for large
times. This is in sharp contrast with the exponential growth
predicted by the “naive‘” Jeans analysis in a static medium.
In the stable case, the perturbation is always decaying if
λ < λJ (0) while it starts growing, before finally decaying,
when λ > λJ (0). For γ = γ4/3, the Jeans length is constant.
The perturbation grows for λ > λJ and decays for λ < λJ .
This is similar to the result of the Jeans analysis except that
the evolution is algebraic instead of exponential. In Sec. IV,
we study the nonlinear regime and derive several analytical

1Of course, there also exist contracting solutions of the Friedmann
equations in cosmology corresponding to a closed universe [49].

results. In particular, we determine the growth of the skewness
and the long-wavelength tail of the power spectrum. We also
find an exact self-similar solution to the nonlinear equations
valid for large times. In the second part of the paper (Sec. V),
we include quantum effects in our model. Specifically, we
consider a self-gravitating Bose-Einstein condensate (BEC)
in the presence of dissipative effects. Self-gravitating BECs
have been proposed recently as a model of dark matter
in cosmology [51]. Starting from a dissipative form of the
Gross-Pitaevskii-Poisson system and using the Madelung
transformation, we derive the quantum damped barotropic
Euler-Poisson system. Considering a strong friction limit, we
obtain the quantum barotropic Smoluchowski-Poisson system
[Eqs. (120) and (121)]. This corresponds to the classical
barotropic Smoluchowski-Poisson system [Eqs. (1) and (2)]
with an additional term called the Bohm quantum potential. We
generalize our previous analysis in this more general context.

II. SMOLUCHOWSKI-POISSON SYSTEM
IN A STATIC FRAME

A. Barotropic Smoluchowski-Poisson system

We consider the barotropic Smoluchowski-Poisson (BSP)
system

ξ
∂ρ

∂t
= ∇ · (∇p + ρ∇�), (1)

�� = SdGρ, (2)

where ρ(r,t) is the spatial density of the particles, �(r,t)
is the gravitational potential, p(r,t) is the pressure, ξ is the
friction coefficient, and Sd is the surface of a unit sphere in d

dimensions. Basically, this equation describes the competition
between pressure effects and gravity. To close the system, we
assume that the pressure is related to the density by an arbitrary
barotropic equation of state p = p(ρ). The case of (ordinary)
Brownian particles corresponds to an isothermal equation of
state

p = ρ
kBT

m
, (3)

where the constant T is the temperature of the bath and m the
mass of the particles (kB is the Boltzmann constant). Another
very useful, and popular, equation of state is the polytropic
equation of state

p = Kργ , γ = 1 + 1

n
, (4)

where K is the polytropic constant and γ , or n, is the polytropic
index. The isothermal case is recovered for γ = 1, i.e., n →
∞, and K = kBT /m. The velocity of sound cs is defined by
the relation c2

s = p′(ρ). For an isothermal equation of state
c2
s = kBT /m is constant and for a polytropic equation of state

c2
s = Kγργ−1 depends on the density.

The Smoluchowski-Poisson system with an isothermal
equation of state (3), corresponding to self-gravitating Brow-
nian particles, has been derived in Ref. [52]. It is valid in
a mean-field approximation that becomes exact in a proper
thermodynamic limit N → +∞ such that the normalized
temperature η = βGMm/Rd−2 is unity (R denotes the size
of the system and β = 1/kBT the inverse temperature). The
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barotropic Smolchowski-Poisson system with an arbitrary
equation of state p(ρ) has been derived in Refs. [53,54] from
a notion of generalized thermodynamics and in Ref. [55] from
the dynamic density functional theory (DDFT). In the two
approaches, the nonlinear pressure arises from short-range
interactions between the particles but the physical arguments
leading to Eq. (1) differ.

B. Jeans-type instability

A steady state of the BSP system [Eqs. (1) and (2)] satisfies
the relation

∇p + ρ∇� = 0, (5)

which can be viewed as a condition of hydrostatic balance.
Since p = p(ρ), this relation can be integrated to yield ρ =
ρ(�). Using the Poisson equation (2), we obtain the differential
equation

�� = SdGρ(�), (6)

which has to be solved with appropriate boundary conditions.
We note that self-gravitating Brownian particles described
by the barotropic Smoluchowski-Poisson system have the
same equilibrium states as barotropic stars described by
the barotropic Euler-Poisson system [9,16]. However, their
dynamics differ since the motion of Brownian particles is
overdamped. The barotropic Smoluchowski equation (1) can
be written

ξ
∂ρ

∂t
= ∇ ·

(
ρ∇ δF

δρ

)
, (7)

where F is the free energy functional

F = 1

2

∫
ρ�dr +

∫
ρ

∫ ρ p(ρ1)

ρ2
1

dρ1 dr. (8)

The BSP system satisfies the H theorem

Ḟ =
∫

δF

δρ

∂ρ

∂t
dr = −1

ξ

∫
ρ

(
∇ δF

δρ

)2

dr � 0. (9)

Therefore, the BSP system relaxes toward the state that
minimizes the free energy at fixed mass. This corresponds
to the condition of hydrostatic equilibrium (5). In this sense,
the BSP system is consistent with the statistical equilibrium
state in the canonical ensemble. By contrast, the functional (8)
is conserved by the barotropic Euler-Poisson system so there
is no relaxation toward equilibrium in that case [9].

A natural problem concerns the dynamical stability of a
steady state of the BSP system. We shall restrict ourselves to
linear dynamical stability. To that purpose, we consider a small
perturbation δρ(r,t) around a steady state ρ(r) of Eqs. (1) and
(2) and study its dynamical evolution. In the general case, the
linearized BSP system is

ξ
∂δρ

∂t
= ∇ · [∇(

c2
s (ρ)δρ

) + δρ∇� + ρ∇δ�
]
, (10)

�δ� = SdGδρ. (11)

The dynamical stability of box-confined isothermal and poly-
tropic configurations2 has been studied in Refs. [10–13]. For
example, for the isothermal equation of state in d = 3, it is
found that the system is stable if η ≡ βGMm/R < ηc � 2.52
and if the density contrast R ≡ ρ(0)/ρ(R) < Rc � 32.1; it
is unstable if one of these two conditions is not met [28].
Similarly, for a polytropic equation of state in d = 3, it is
found that incomplete polytropes with γ < 6/5 (n > 5) are
stable if and only if their inverse polytropic temperature η ≡
M[4πG/K(n + 1)]n/(n−1)/4πR(n−3)/(n−1) and their density
contrast R ≡ ρ(0)/ρ(R) are sufficiently small [the exact
values of ηc(n) and Rc(n) depend on the index n] [29]. The
dynamical stability of a general equation of state p(ρ) for
self-confined configurations has been studied in Ref. [14] by
adapting the methods of astrophysics [15,21]. For a polytropic
equation of state in d dimensions, it is found that a spatially
inhomogeneous self-confined configuration is stable if and
only if γ � γ4/3 ≡ 2(d − 1)/d. When the steady state is
unstable, it usually collapses or evaporates depending whether
diffusion (pressure) or attraction (gravity) prevails [1].

Let us now consider the case of a spatially homogeneous
distribution. In that case, Eqs. (10) and (11) reduce to

ξ
∂δρ

∂t
= c2

s �δρ + SdGρδρ, (12)

where c2
s = c2

s (ρ) is constant. Considering for simplicity an
infinite system3 and decomposing the perturbations in plane
waves of the form ei(k·r−ωt), we obtain the dispersion relation

iξω = c2
s k

2 − SdGρ. (13)

This relation, like the original Smoluchowski equation (1),
clearly shows the competition between the attractive gravi-
tational force and the repulsive pressure (assuming c2

s > 0).
There exists a critical wave number

kJ =
(

SdGρ

c2
s

)1/2

, (14)

corresponding to the Jeans wave number in astrophysics
[7–9]. However, contrary to the astrophysical problem based
on the barotropic Euler-Poisson system, the evolution of
the perturbations differs in our case. This is because the
Smoluchowski-Poisson system is an overdamped model where
inertial effects are neglected. Here, the perturbations evolve
like eγ t with an exponential rate γ = (SdGρ − c2

s k
2)/ξ . For

k < kJ , the system is unstable and the perturbations grow
with a growth rate γ > 0; for k > kJ the system is stable
and the perturbations decay with a damping rate γ < 0. Note
that the growth rate is maximum for k = 0 (corresponding
to an infinite wavelength λ = 2π/k → +∞) and its value is

2When d > 2, isothermal distributions and polytropic distributions
with γ < γ6/5 ≡ 2d/(d + 2) must be confined within a “box”
otherwise they have infinite mass. In the context of chemotaxis, the
box has a clear physical meaning since it represents the container in
which the biological entities live.

3This is not necessary and Eq. (12) could be solved in a box by
decomposing the perturbations on the eigenmodes of the Laplacian
[56].
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γmax = SdGρ/ξ . In conclusion, Jeans’ stability criterion is
k > kJ (i.e., λ < λJ ).

Although this stability analysis, like the original Jeans
study in astrophysics [7,8], is simple and sheds light on the
problem, it, however, encounters a serious problem. Indeed,
if ρ is uniform (in a finite or infinite domain), the pressure
gradient in Eq. (5) vanishes, implying that the gravitational
field must also vanish (∇� = 0). The Poisson equation
(6) then cannot be satisfied for ρ > 0. This implies that
there is no steady state of Eqs. (5) and (6) with uniform
density. Therefore, when using the perturbation equation (12),
we make what is traditionally called the “Jeans swindle”
[9]. There are different ways to circumvent this difficulty.
(i) The first is to restrict ourselves to spatially inhomogeneous
steady states that are solution of Eqs. (5) and (6). (ii) The
second is to consider a uniformly rotating system. In that
case, if we introduce an effective gravitational potential
�eff = � − (� × r)2/2 in the rotating frame, the Poisson
equation is replaced by ��eff = 4πGρ − 2�2, and there
exists spatially homogeneous distributions with ρ = �2/2πG.
(iii) The third possibility is to modify the Poisson equation.
This is justified for some physical systems. For example, in
the context of chemotaxis [3], the Poisson equation is replaced
by a generalized field equation of the form χ∂t� = �� −
k2
R� − SdGρ, where k−1

R is a screening length. This leads to
the general Keller-Segel model. In that case, a spatially homo-
geneous distribution is a steady state of the equations with
� = −SdGρ/k2

R . In some approximations, the generalized
field equation χ∂t� = �� − k2

R� − SdGρ is replaced by
the screened Poisson equation �� − k2

R� = SdGρ or by the
modified Poisson equation �� = SdG(ρ − ρ), where ρ is the
average density. Again, a spatially homogeneous distribution
satisfying � = −SdGρ/k2

R or ρ = ρ, respectively, is a steady
state of these equations. Therefore, there is no “Jeans swindle”
in the chemotactic problem [56–58]. In gravity models, we
could introduce a cosmological constant � and replace the
Poisson equation by �� = SdGρ − �. In that case, the
particular homogeneous density distribution ρ = �/SdG is
a steady state of the equations.4 However, this justification
does not apply to a uniform mass of gas of different density.
Furthermore, this homogeneous distribution is unstable as
shown in Appendix B. (iv) Kiessling [61] has provided a
vindication of the Jeans swindle. He argues that, when con-
sidering an infinite and homogeneous distribution of matter,
the Poisson equation must be modified to correctly define
the gravitational force. He proposes using a regularization

4As is well known, Einstein [59] introduced a cosmological constant
in the equations of general relativity in order to obtain a static
homogeneous and isotropic universe. As a preamble of his paper,
he considered a modification of the classical Poisson equation in
the form �� − k2

R� = 4πGρ. He incorrectly believed that, in the
Newtonian world model, the cosmological constant is equivalent to
a screening length. The fact that the cosmological constant leads to
a Poisson equation of the form �� = 4πGρ − � was understood
later by Lemaı̂tre and Eddington (see Refs. [56,60,61] for historical
details). On the other hand, it was realized that the Einstein universe
is strongly unstable [62,63] so the idea of a dynamical (expanding)
universe finally emerged.

of the form �� − k2
R� = 4πGρ, where kR is an inverse

screening length that ultimately tends to zero (kR → 0) or
a regularization of the form �� = 4πG(ρ − ρ), where ρ is
the mean density. In his point of view, the modification of
the Poisson equation is not a swindle but just the right way
to make the problem mathematically rigorous and correctly
define the gravitational force. However, this argument applies
only to an infinite system. For a finite system, a spatially
homogeneous distribution is not a steady state of the BSP
equations.

Remark 1: A form of Jeans criterion can be recovered
for box-confined configurations. For example, for finite
isothermal spheres in d = 3, introducing the mean density
ρ = 3M/4πR3, the stability criterion η = βGMm/R � ηc �
2.52 [28] can be rewritten R < RJ ≡ (3ηc/4πGρmβ)1/2,
where RJ is similar to the Jeans length λJ =
2π (kBT /4πGρm)1/2 corresponding to Eq. (14). Similarly, for
finite polytropic spheres with n > 5, the stability criterion η ≡
M[4πG/K(n + 1)]n/(n−1)/4πR(n−3)/(n−1) < ηc(n) [29] can be
rewritten R < RJ ≡ [K(n + 1)φ(n)/4πGnρ(n−1)/n]1/2 with
φ(n) = n[3ηc(n)](n−1)/n, where RJ is similar to the Jeans
length λJ = 2π [K(n + 1)/4πGnρ(n−1)/n]1/2 corresponding
to Eq. (14).

C. Homogeneous collapsing cloud

It is clear that a finite spatially homogeneous solution
of the BSP system will collapse under its own gravity.
Similarly, a finite spatially homogeneous solution of the
Euler-Poisson system is not steady and will evolve in time.
However, since the Euler-Poisson system is an inertial model,
depending on its energy, the system will either expand
(positive energy) or collapse (negative energy). This is at the
basis of the Newtonian cosmological models of McCrea and
Milne [64] where the universe is viewed as a homogeneous
self-gravitating sphere of radius a(t).5 In cosmology, we can
have open (always expanding) or closed (expanding then
contracting) models of the universe with an intermediate case
provided by the Einstein-de Sitter (EdS) universe [49,65]. In
our problem, since the velocity of the particles is directly
proportional to the gravitational force (overdamped limit), a
homogeneous cloud can only collapse under its own gravity.
In the analogy with cosmology, this corresponds to a “big-
crunch.” This is also similar to the gravitational collapse
of a molecular cloud in relation to the process of stars
formation [39,46,47].

It is easy to construct a time-dependent spatially homoge-
neous solution of the BSP system. For a spatially homogeneous
distribution of the form

ρ(r,t) = ρb(t), (15)

5It turns out that the equations of Newtonian cosmology are identical
with the Friedmann equations derived from the theory of general
relativity, provided the pressure is negligible in comparison with the
energy density ρc2 where c is the speed of light. It is surprising
to realize that Newtonian cosmology was developed after, and was
influenced by, the theory of general relativity while it could have been
introduced much earlier.
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the BSP system [Eqs. (1) and (2)] reduces to

dρb

dt
= SdG

ξ
ρ2

b . (16)

The pressure p does not appear in the theory of the ho-
mogeneous model since it enters Eq. (1) only through its
gradient. Therefore, we recover the equation of a cold system
(p = 0) considered in Ref. [38]. If we consider the spherically
symmetric collapse of a uniform sphere of radius a(t), the
conservation of mass imposes

M = 1

d
Sdρba

d . (17)

Solving Eq. (16) and using Eq. (17), we find that the density
and the radius of a collapsing homogeneous sphere evolve
according to

ρb(t) = ρb(0)

1 − t
t∗

, (18)

a(t) = a(0)

(
1 − t

t∗

)1/d

, (19)

where

t∗ = ξ

SdGρb(0)
= ξa(0)d

dGM
. (20)

This solution leads to a finite time collapse. At t = t∗, all the
mass is in a Dirac peak at r = 0 (big crunch). This solution is
the counterpart of the homogeneous solution found by Hunter
[39], Mestel [40], and Penston [41] in the inertial case.

We can also obtain these equations from the Lagrangian
motion of a fluid particle as in Ref. [38] by using the fact
that the Smoluchowski equation (1) with ∇p = 0 can be
interpreted as a continuity equation with a velocity field

u ≡ dr
dt

= −1

ξ
∇�. (21)

Applying this equation at the border of the sphere, and using
the Gauss theorem, we obtain

ξ
da

dt
= − GM

ad−1
= − 1

d
SdGρba, (22)

which, after integration, returns Eq. (19). In the analogy with
cosmology, Eqs. (17) and (22) are the counterparts of the
Friedmann equations when pressure effects are neglected. We
note, however, that the Friedmann equations are second order
in time while Eq. (22) is first order.

III. SMOLUCHOWSKI-POISSON SYSTEM IN A
COLLAPSING FRAME

A. The fundamental equations

We shall now study the instability of the collapsing
homogeneous sphere and the development of irregularities.
This process of fragmentation, driven by gravity, ultimately
leads to the formation of localized dense clusters similar to
galaxies in the universe or stars in a molecular cloud. Like in
cosmology, we shall work in the comoving frame (here the
collapsing frame). To that purpose, we set

r = a(t)x, (23)

where a(t) is the scale factor (in our problem it corresponds
to the radius of the sphere). Let us first write the Poisson
equation (2) in the collapsing frame. For the background
distribution (15), the Gauss theorem reads

d�b

dr
= GM(r)

rd−1
= 1

d
SdGρbr = −ξ

ȧ

a
r, (24)

where M(r) is the mass enclosed within the sphere of radius
r and we have used Eq. (22) to obtain the last equality. The
background gravitational potential is therefore

�b = −1

2
ξ
ȧ

a
r2 = −1

2
ξ ȧax2. (25)

In terms of the new potential φ = � − �b, i.e.,

φ = � + 1

2
ξ ȧax2, (26)

the Poisson equation (2) becomes

�φ = SdGa2(ρ − ρb). (27)

In this expression, the Laplacian is defined with respect to the
variable x and we have used Eq. (22) to obtain the second term
on the right-hand side.

We now write the barotropic Smoluchowski equation in the
collapsing frame. We first note that(

∂

∂t

)
r

ρ(r/a(t),t) = ∂ρ

∂t
− ȧ

a
x · ∇ρ. (28)

Therefore, the barotropic Smoluchowski equation (1) becomes

∂ρ

∂t
− ȧ

a
x · ∇ρ = 1

ξa2
∇ · (∇p + ρ∇�), (29)

where the derivatives are taken with respect to x. Introducing
the new potential (26), we obtain after simplification

∂ρ

∂t
+ d

ȧ

a
ρ = 1

ξa2
∇ · (∇p + ρ∇φ). (30)

Like in cosmology, it is convenient to write the density in the
form

ρ = ρb(t)[1 + δ(x,t)], (31)

where ρb ∝ 1/ad according to Eq. (17) and δ(x,t) is the density
contrast [49]. Substituting Eq. (31) in Eq. (30), we obtain the
barotropic Smoluchowski equation in the collapsing frame

ρb

∂δ

∂t
= 1

ξa2
∇ · (∇p + ρb(1 + δ)∇φ). (32)

Since p = p(ρ), this can be written

∂δ

∂t
= 1

ξa2
∇ · (

c2
s ∇δ + (1 + δ)∇φ

)
, (33)

where c2
s = p′(ρ) = p′(ρb(1 + δ)) is the square of the velocity

of sound in the evolving system. It generically depends
on position and time (it is constant only for an isothermal
equation of state). Finally, substituting Eq. (31) in the Poisson
equation (27), we obtain our final system of equations

ξ
∂δ

∂t
= 1

a2
∇ · (

c2
s ∇δ + (1 + δ)∇φ

)
, (34)

�φ = SdGρbδa
2, (35)
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where ρb(t) and a(t) are given by Eqs. (18) and (19). If we
measure the evolution in terms of a instead of t , we can rewrite
Eq. (34) in the form

∂δ

∂a
= − d

SdGρba3
∇ · (

c2
s ∇δ + (1 + δ)∇φ

)
, (36)

where we have used Eq. (22). For an isothermal equation of
state, Eq. (34) becomes

ξ
∂δ

∂t
= 1

a2

[
kBT

m
�δ + SdGρbδ(1 + δ)a2 + ∇δ · ∇φ

]
, (37)

where we have used the Poisson equation (35) to get the second
term on the right-hand side. For a cold system cs = 0, we get

ξ
∂δ

∂t
= SdGρbδ(1 + δ) + 1

a2
∇δ · ∇φ. (38)

Equations (34) and (35) could form a prototypical model to
study the formation and the growth of structures in complex
media with structureless initial condition. As we shall see,
they lead to a process of fragmentation and self-organization.
Furthermore, they are simpler to study than the equations used
in cosmology [49] since there is no inertia in our model. Indeed,
Eqs. (34) and (35) are parabolic while the equations used
in cosmology are hyperbolic. We therefore expect to obtain
simpler, hopefully analytical, results like in the study of the
BSP system [Eqs. (1) and (2)].

B. Linearized equations

Of course, δ = φ = 0 is a particular solution of Eqs. (34)
and (35) corresponding to the pure background flow (15). We
shall now study the dynamical stability of this solution. If we
consider small perturbations δ 
 1, φ 
 1 around that state,
we obtain the linearized equation

ξ
∂δ

∂t
= c2

s

a2
�δ + SdGρbδ, (39)

where c2
s = p′(ρb) is the square of the velocity of sound in

the background flow. It depends only on time. Equation (39)
is the counterpart of the equation derived by Bonnor [48] in
cosmology. Expanding the solutions of Eq. (39) in Fourier
modes of the form δ(x,t) = δk(t)eik·x, we find that

ξ δ̇ +
(

c2
s k

2

a2
− SdGρb

)
δ = 0, (40)

where, for convenience, we have noted δ for δk. From this
equation, we can define a time-dependent Jeans wave number
in the comoving frame

kJ =
(

SdGρba
2

c2
s

)1/2

. (41)

Note that the proper wave number obtained by writing δ ∝
eik∗·r is k∗

J = (SdGρb/c
2
s )1/2. The evolution of kJ (t) depends

on the equation of state. For an isothermal equation of state
for which c2

s = kBT /m, we can write kJ = κJ a−(d−2)/2 where
κJ = (SdGρba

dm/kBT )1/2 is a constant according to Eq. (17).
The Jeans length λJ = 2π/kJ behaves like a(d−2)/2. For d > 2
(respectively, d < 2), it decreases (increases) with time so the
system becomes unstable at smaller and smaller (larger and
larger) scales as the cloud collapses. For d = 2, the Jeans

length is constant: kJ = κJ . For a polytropic equation of state
for which c2

s = Kγρ
γ−1
b , we can write kJ = κJ a(dγ−2(d−1))/2,

where κJ = [SdG(ρba
d )2−γ /Kγ ]1/2 is constant according to

Eq. (17). The Jeans length behaves like λJ ∝ a(2(d−1)−dγ )/2.
For γ < γ4/3 ≡ 2(d − 1)/d, the Jeans length decreases with
time and, for γ > γ4/3, it increases with time. For γ = γ4/3, the
Jeans length is constant: kJ = κJ . The evolution of the proper
Jeans length λ∗

J differs but the evolution of the comoving Jeans
length λJ is better suited to our problem.

Remark 2: Our analysis exhibits a critical index γ4/3 ≡
2(d − 1)/d, the same as the one determining the dynamical
stability of spatially inhomogeneous polytropic spheres [12–
14] (see also Refs. [15,21] in astrophysics). It is interesting
to note that this critical index does not appear when the Jeans
problem is (incorrectly) formulated in a static homogeneous
background (see Sec. II B)6 while it appears when the Jeans
problem is properly formulated in a collapsing background.
This will have important consequences in the stability problem
(see below).

C. Solution of the equation for the density contrast

The evolution of the perturbations is more complicated to
analyze in a collapsing homogeneous medium than in a static
homogeneous medium (and turns out to differ substantially).
An interest of the present model is that the Eq. (40) for the
density contrast in the linear regime can be solved analytically
for any equation of state while the corresponding equation in
cosmology can be solved analytically only in particular cases
(this is because it is a second-order differential equation in
time while Eq. (40) is a first-order differential equation) [49].
Measuring the evolution in terms of a instead of t and using
Eq. (22), we can rewrite Eq. (40) in the form

dδ

da
− d

a

(
c2
s k

2

SdGρba2
− 1

)
δ = 0. (42)

Its general solution is

δ(a) ∝ 1

ad
e

dk2

Sd G

∫ a c2
s (a′ )

ρb (a′ )a′2 da′
. (43)

For a cold gas cs = 0 in which the pressure is zero, Eq. (42)
reduces to

dδ

da
+ d

a
δ = 0, (44)

and its solution is

δ ∝ a−d ∝ (1 − t/t∗)−1. (45)

In that case, the homogeneous cloud is unstable at all scales and
we can write in full generality δ(x,a) = D(x)/ad or δ(x,t) =
δ(x,0)(1 − t/t∗)−1. We note that the growth of the perturbation
is algebraic while the static Jeans study predicts an exponential
growth with a rate γ = SdGρ/ξ (see Sec. II B). This is a very
important difference. Assuming now a polytropic equation of

6The index γ4/3 ≡ 2(d − 1)/d only appears when we introduce
the Jeans mass MJ ∝ ρλd

J ∝ ρ[dγ−2(d−1)]/2, but it does not play any
particular role in the stability analysis of the homogeneous fluid.
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state and introducing the notations of Sec. III B, we can rewrite
Eq. (42) in the form

dδ

da
− d

a

[
k2

κ2
J adγ−2(d−1)

− 1

]
δ = 0. (46)

If γ �= γ4/3 (i.e., n �= n3), the solution of this equation is

δ(a) ∝ 1

ad
e

dk2a2(d−1)−dγ

κ2
J

(2(d−1)−dγ ) . (47)

This includes the isothermal equation of state (γ = 1) with
d �= 2 as a particular case

δ(a) ∝ 1

ad
e

dk2ad−2

(d−2)κ2
J . (48)

For short times, writing a = a0(1 − ε) with ε 
 1, we obtain

δ(a)

δ(a0)
� 1 + d

(
1 − k2

kJ (0)2

)
ε. (49)

This equation clearly shows the initial effect of the Jeans
wavelength. Indeed, the perturbation starts to grow when
k < kJ (0) and starts to decay when k > kJ (0). This result,
which is independent on the value of γ , is similar to the
one obtained from the static Jeans study (see Sec. II B).
Indeed, for short times, the system does not “see” that the
background is contracting. By contrast, for large times, the
effect of the Jeans scale disappears and the evolution of
the system is only controlled by the value of γ . For γ >

γ4/3, δ(a) → 0 very rapidly as a → 0. The system becomes
asymptotically stable to all wavelengths. For γ < γ4/3, δ(a) ∝
a−d → +∞ as a → 0. The system becomes asymptotically
unstable to all wavelengths and behaves like in a cold gas.
Therefore, the system is asymptotically stable for γ > γ4/3 and
asymptotically unstable for γ < γ4/3. This stability criterion
differs from the Jeans stability criterion in a static background
(see Sec. II B) where the value of the index γ does not play
any crucial role. It is, on the other hand, compatible with the
stability criterion of self-confined inhomogeneous polytropic
spheres [14].

If γ = γ4/3 (i.e., n = n3), the solution of Eq. (46) is

δ(a) ∝ ad(k2/κ2
J −1). (50)

This includes the isothermal equation of state (γ = 1) with
d = 2 as a particular case. We see that the Jeans scale
kJ = κJ now plays a crucial role at all times. For k < κJ , the
perturbation increases in time and the system is unstable (for
k 
 κJ , the perturbation grows like in a cold gas). For k > κJ ,
the perturbation decreases in time and the system is stable.
These results are similar to those obtained in the static Jeans
study except that the growth of the perturbation is algebraic
instead of being exponential. For the critical index γ = γ4/3,
the system is stable for k > kJ and unstable for k < kJ . Some
curves representing the evolution of the density contrast δ(a) in
the different cases described above are represented in Figs. 1–3
for illustration.

Remark 3: For γ > γ4/3, the system is asymptotically
stable. However, for k < kJ (0), the perturbations start growing
before decaying. It can happen that their growth generates
nonlinear effects that may trigger new instabilities. Therefore,
their full stability is not granted. It is likely that the nonlinear

0 1 2 3 4
1/a

0

0.2

0.4

0.6

0.8

1

1.2

1.4

δ(
a)

k < k
J
(0)

k = k
J
(0)

k > k
J
(0)

γ > 4/3
d = 3

FIG. 1. Evolution of the perturbation δ(a) for γ > 4/3 (d = 3,
a0 = 1, and δ0 = 1). We have taken γ = 2 which corresponds to
a BEC with quartic self-interactions in the TF approximation (see
Sec. V C). The system is asymptotically stable. For k < kJ (0), the
perturbation grows before decaying. The maximum occurs at a =
(k/kJ )2/(3γ−4) and its value δmax ∝ k−6/(3γ−4) is maximum for small k

(large wavelengths).

evolution leads to a process of fragmentation marked by the
formation of dense localized clusters in hydrostatic equilib-
rium (virialized structures). These structures correspond to
complete polytropic spheres that are dynamically stable since
γ > γ4/3 (see Sec. II B).

Remark 4: It can be relevant to also treat the case where c2
s <

0 (corresponding to κ2
J < 0). In certain cases, an imaginary

velocity of sound arises from a negative pressure due to
attractive short-range interactions (see Sec. V C). In that case,
we find that the perturbations δ(a) always grow. Therefore, a
negative value of c2

s can enhance the gravitational instability
and make the system very unstable.

0 2 4 6 8 10
1/a

1

10

100

δ(
a)

k < k
J
(0)

k = k
J
(0)

k > k
J
(0)

γ < 4/3
d = 3

FIG. 2. Evolution of the perturbation δ(a) for γ < 4/3 (d = 3,
a0 = 1, and δ0 = 1). We have taken γ = 1 which corresponds to a
classical self-gravitating Brownian gas (isothermal distribution). The
system is asymptotically unstable. For k > kJ (0), the perturbation de-
cays before growing. The minimum occurs at a = (k/kJ )−2/(4−3γ ) and
its value δmin ∝ k6/(4−3γ ) is minimum for large k (small wavelengths).
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FIG. 3. Evolution of the perturbation δ(a) for γ = 4/3. The
system is stable for k > kJ and unstable for k < kJ . We have taken
a0 = δ0 = 1.

IV. NONLINEAR GRAVITATIONAL CLUSTERING

In this section, using an analogy with cosmology, we
provide analytical results valid in the nonlinear regime.

A. Second-order perturbation theory for δρ/ρb: skewness

At T = 0, it is easy to compute δρ/ρb = δ(x,t) in second-
order perturbation theory and determine the growth of the
skewness due to nonlinear gravitational clustering. This is a
classical calculation in cosmology [49] that we shall adapt to
the present situation. For a cold overdamped gas, the equations
of the problem are

ξ
∂δ

∂t
= SdGρbδ(1 + δ) + 1

a2
∇δ · ∇φ, (51)

�φ = SdGρbδa
2. (52)

It is convenient to measure the evolution in terms of a instead
of t . Using Eq. (22), we obtain

−a

d

∂δ

∂a
= δ + δ2 + ∇δ · ∇χ, (53)

�χ = δ, χ = φ

SdGρba2
. (54)

In the linear approximation, the density contrast and the
gravitational potential are given by

δ0(x,a) = D(x)

ad
, χ0(x,a) = C(x)

ad
, (55)

with �C = D. To estimate the deviation to the linear regime,
we write

δ(x,a) = δ0(x,a)[1 + ε(x,a)], (56)

with δ0 
 1 and ε 
 1. Substituting Eq. (56) in Eq. (53), we
obtain at leading order

−a

d

∂ε

∂a
= δ0 + ∇δ0

δ0
· ∇χ0. (57)

Using the expressions of δ0 and χ0 given in Eq. (55), the
foregoing equation can be rewritten

∂ε

∂a
= − d

ad+1

(
D + ∇D

D
· ∇C

)
. (58)

Integrating over a, we obtain

ε = 1

ad

(
D + ∇D

D
· ∇C

)
= δ0 + ∇δ0

δ0
· ∇χ0. (59)

Therefore, the expression of the density contrast in second-
order perturbation theory is

δ = δ0 + δ2
0 + ∇δ0 · ∇χ0. (60)

This equation shows that, at this order, the behavior of the
system is nonlocal since the density contrast in x depends on
the values of δ0 in x′ through the function χ0 that is solution
of the Poisson equation �χ0 = δ0.

An interesting application of the previous result concerns
the growth of the skewness of the distribution δ(x,t). We
assume that the initial distribution δi(x) is a random Gaussian
process with zero mean and autocorrelation function ξ (x).
Therefore 〈δi〉 = 0 and 〈δ2

i 〉 = ξ (0). In the linear regime, the
process remains Gaussian and the autocorrelation increases
like ξ (x,a) ∝ 1/a2d . In the nonlinear regime, the relation
〈δ〉 = 0 must be preserved because of mass conservation.
This can be checked explicitly at second order from Eq. (60).
Indeed,

〈δ〉 = 〈δ0〉 + 〈
δ2

0

〉 + 〈∇δ0 · ∇χ0〉 = 〈
δ2

0

〉 − 〈
δ2

0

〉 = 0, (61)

where we have used an integration by parts, and the Poisson
equation (54), to get the second equality. The interesting
moment is the skewness 〈δ3〉 since the initial distribution
(Gaussian) has zero skewness. From Eqs. (56) and (59), we
obtain at lowest order

〈δ3〉 = 〈
δ3

0(1 + 3ε)
〉 = 3

〈
δ3

0ε
〉 = 3

〈
δ4

0

〉 + 3
〈
δ2

0∇δ0 · ∇χ0
〉
.

(62)

This expression can be simplified as follows:〈
δ3〉 = 3

〈
δ4

0

〉 + 〈∇δ3
0 · ∇χ0

〉 = 3
〈
δ4

0

〉 − 〈
δ4

0

〉 = 2
〈
δ4

0

〉
. (63)

For a Gaussian distribution, the Kurtosis is equal to 3,
i.e., 〈δ4

0〉 = 3ξ (0)2. Therefore, the skewness of the density
fluctuations is

〈δ3〉 = 6ξ (0)2, (64)

where, to lowest order, the variance is 〈δ2〉 = ξ (0). This leads
to our final result

〈δ3〉
〈δ2〉2

= 6. (65)

B. An exact integral equation in Fourier space

It is somewhat easier to analyze the nonlinear evolution
of the system in Fourier space rather than in direct space. We
shall therefore rewrite the exact equations (34) and (35) for the
density contrast in Fourier space. We follow a method similar
to the one developed in cosmology [49,50].

031101-8



INSTABILITY OF A UNIFORMLY COLLAPSING CLOUD . . . PHYSICAL REVIEW E 84, 031101 (2011)

If we restrict ourselves to ideal self-gravitating Brownian
particles described by an isothermal equation of state (3), the
fundamental equations of the problem are

ξ
∂δ

∂t
= 1

a2
∇ ·

[
kBT

m
∇δ + (1 + δ)∇φ

]
, (66)

�φ = SdGρbδa
2. (67)

Let us decompose the density contrast and the gravitational
potential in Fourier modes

δ(x,t) =
∫

δk(t)eik·x dk
(2π )d

, (68)

φ(x,t) =
∫

φk(t)eik·x dk
(2π )d

. (69)

The Poisson equation (67) implies

δk = − k2φk

SdGρba2
= −k2ad−2φk

SdGρbad
, (70)

where we recall that ρba
d = dM/Sd is constant. On the other

hand, substituting Eqs. (68) and (69) in Eq. (66), and using
Eq. (70), we obtain after simple calculations

ξ δ̇k = −kBT

ma2
k2δk + SdGρbδk

+ SdGρb

∫
δk′δk−k′

k · k′

k′2
dk′

(2π )d
. (71)

Symmetrizing the last term, we finally get

ξ δ̇k = −kBT

ma2
k2δk + SdGρbδk

+ SdGρb

2

∫
δk′δk−k′

[
k · k′

k′2 + k · (k − k′)
|k − k′|2

]
dk′

(2π )d
.

(72)

Using Eq. (70), we can obtain an equation for the Fourier com-
ponents of the gravitational potential. After simple calculations
and rearrangement of terms, it can be written

ξ φ̇k + 2(d − 1)ξ
ȧ

a
φk

= −kBT

ma2
k2φk − 1

2a2

∫
φ 1

2 k+pφ 1
2 k−p

×
[(

k

2

)2

+ p2 − 2

(
k · p
k

)2
]

dp
(2π )d

, (73)

where we have defined p = k′ − k/2. Measuring the evolution
in terms of a instead of t , and using Eq. (22), we obtain the
equivalent equations

a

d

dδk

da
=

(
kBT k2

SdGρbma2
− 1

)
δk

− 1

2

∫
δk′δk−k′

[
k · k′

k′2 + k · (k − k′)
|k − k′|2

]
dk′

(2π )d
,

(74)

and

a
dφk

da
+ 2(d − 1)φk

= kBT ad−2

GMm
k2φk + ad−2

2GM

∫
φ 1

2 k+pφ 1
2 k−p

×
[(

k

2

)2

+ p2 − 2

(
k · p
k

)2
]

dp
(2π )d

. (75)

We stress that these equations are exact and closed while the
equivalent equations in cosmology [49,50] are not closed.
These equations, however, like the original Smoluchowski-
Poisson system [Eqs. (1) and (2)], rely on a mean-field
approximation. More exact (but less useful) equations, which
do not make the mean-field approximation, are derived in
Appendix C for T = 0.

Like in cosmology, it is possible to derive interesting
results from these integral equations in Fourier space. We shall
mention in particular the k4 tail and the self-similar solution.

1. Inverse cascade: The k4 tail

We consider the case of a cold overdamped gas (T = 0).
In the linear regime, the density contrast and the gravitational
potential are given by

δ(L)(x,a) = D(x)

ad
, φ(L)(x,a) = SdGρba

dQ(x)

a2(d−1)
, (76)

where Q is solution of the Poisson equation

�Q = D, Qk = −Dk

k2
. (77)

Let us suppose that the initial power spectrum for the density
has very little power at large scales so Pδ(k) ∝ kn with n > 4
for small k. In the linear regime, the power spectrum evolves
like Pδ(k) ∝ kn/a2d so its shape in k space is not modified and
is always subdominant to k4. However, when nonlinear effects
come into play, a “k4 tail” develops for k → 0 (see below) and
the contribution of the large-scale structures finally dominate
the power spectrum. This result was first found in cosmology
[49,50] and can be interpreted as a sort of “inverse cascade”
like in two-dimensional turbulence. In 2D turbulence, the
inverse cascade is associated with the formation of large-scale
vortices. Similarly, in the present problem, it is associated
with the formation of virialized clusters (in cosmology, these
clusters correspond to galaxies and dark matter halos). It
may be noted that the equations of 2D turbulence for the
coarse-grained vorticity field [66,67] are relatively similar to
the Smoluchowski-Poisson system. This remark can reinforce
the analogy between self-gravitating (Brownian) systems and
two-dimensional turbulence [68].

To see the emergence of the k4 tail in nonlinear gravitational
clustering, we write δ = δ(L) + δ(2) + . . . , where δ(1) = δ(L) is
the density contrast in the linear theory and δ(2) is the next
order correction. To second order, we get from Eq. (74) with
T = 0 the equation

a

d

dδ
(2)
k

da
+ δ

(2)
k = −1

2

∫
δ

(L)
k′ δ

(L)
k−k′

×
[

k · k′

k′2 + k · (k − k′)
|k − k′|2

]
dk′

(2π )d
. (78)
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Using Eq. (76), it can be rewritten

a

d

dδ
(2)
k

da
+ δ

(2)
k = − 1

2a2d

∫
Dk′Dk−k′

×
[

k · k′

k′2 + k · (k − k′)
|k − k′|2

]
dk′

(2π )d
. (79)

The solution to this equation is the sum of the solution of the
homogeneous part (which increases like 1/ad ) and a particular
solution (which increases like 1/a2d ). We shall only keep
the particular solution that dominates for large times. Writing
δk = Ck/a

2d , determining the constant Ck from Eq. (79), and
reintroducing the original variables, we obtain the solution

δ
(2)
k = 1

2

∫
δ

(L)
k′ δ

(L)
k−k′

[
k · k′

k′2 + k · (k − k′)
|k − k′|2

]
dk′

(2π )d
. (80)

For k → 0, we get

δ
(2)
k�0 ∼ 1

2
k2

∫ ∣∣δ(L)
k′

∣∣2

k′2
dk′

(2π )d
∝ k2

a2d
. (81)

This implies that the power spectrum for the density behaves
like Pδ(k) ∝ k4/a4d for k → 0.

Of course, the same result can be obtained from Eq. (75).
Writing φ = φ(L) + φ(2) + . . . and using Eq. (76), we obtain

a
dφ

(2)
k

da
+ 2(d − 1)φ(2)

k

= ad−2

2GM

∫
φ

(L)
1
2 k+p

φ
(L)
1
2 k−p

G(k,p)
dp

(2π )d

= (SdGρba
d )2

2GMa3d−2

∫
Q 1

2 k+pQ 1
2 k−pG(k,p)

dp
(2π )d

. (82)

Proceeding as before, the solution to this equation is

φ
(2)
k = − ad−2

2dGM

∫
φ

(L)
1
2 k+p

φ
(L)
1
2 k−p

G(k,p)
dp

(2π )d
. (83)

For k → 0, we get

φ
(2)
k�0 � − ad−2

2dGM

∫ ∣∣φ(L)
p

∣∣2
p2 dp

(2π )d
∝ 1

a3d−2
, (84)

which is independent on k. Using Eqs. (70) and (84),
the power spectrum for the density behaves like Pδ(k) ∼
k4a2(d−2)Pφ(k) ∝ k4/a4d for k → 0.

2. Self-similar solution in the fully nonlinear regime

At T = 0, Eq. (74) admits self-similar solutions of the form
δk(a) = δ(a)Dk. This self-similar solution is expected to be
reached for sufficiently large times when the initial condition
becomes irrelevant. This implies that nonlinear gravitational
clustering leads to a universal power spectrum at late times.
Again, this result is similar to the one obtained in cosmology
[50]. However, in the present case, the self-similar solution
is exact while in cosmology it is approximate (although very
accurate) since the Zeldovich approximation must be used to
close the integral equation for the density contrast.

Substituting the ansatz δk(a) = δ(a)Dk in Eq. (74), we
obtain the separate equations

a

d

dδ

da
+ δ = μδ2, (85)

μDk = −1

2

∫
Dk′Dk−k′

[
k · k′

k′2 + k · (k − k′)
|k − k′|2

]
dk′

(2π )d
,

(86)

where μ is an arbitrary constant. Equation (85) can be easily
solved, yielding

δ(a) = 1

μ − (
a
a0

)d
[μ − 1

δ(a0) ]
. (87)

We note that δ(a) → 1/μ for large times (a → 0) showing that
nonlinear effects finally stabilize the system. Equations (86)
and (87) provide an exact solution of the nonlinear problem.
For k → 0, Eq. (86) reduces to

μDk�0 ∼ −1

2
k2

∫ |Dk′ |2
k′2

dk′

(2π )d
, (88)

implying that the power spectrum for the density behaves like
Pδ(k) ∝ δ(a)2k4 for k → 0.

Of course, we can do the same analysis from Eq. (75).
Substituting φk(a) = F (a)SdGρba

dQk in Eq. (75), we get the
separate equations

a
dF

da
+ 2(d − 1)F = dμad−2F 2, (89)

μQk = 1

2

∫
Q 1

2 k+pQ 1
2 k−pG(k,p)

dp
(2π )d

, (90)

with G(k,p) = (k/2)2 + p2 − 2(k · p/k)2. This is consistent
with the preceding formulas if we set δ(a) = F (a)ad−2 and
Dk = −k2Qk. For k → 0, Eq. (90) reduces to

μQk�0 = 1

2

∫
|Qp|2p2 dp

(2π )d
, (91)

implying that the power spectrum for the density behaves like
Pδ(k) ∼ k4a2(d−2)Pφ(k) ∝ F (a)2a2(d−2)k4 for k → 0.

Remark 5: In Appendix D, we show that the self-similar
solution can be directly obtained in physical space (instead of
Fourier space).

C. Spherical approximation

In the nonlinear regime, it is not possible to analytically
solve Eqs. (34) and (35) in full generality. We can, how-
ever, obtain a particular solution if we assume that, locally,
the density is homogeneous. Therefore, we shall describe
the evolution of a constant overdensity compared with the
background. This is the equivalent of the spherical top hat
in cosmology [49,50]. If we assume δ(x,t) = δ(t), Eq. (34)
becomes

ξ
dδ

dt
= SdGρbδ(1 + δ). (92)
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Let us assume that this equation describes the evolution of a
spherical region of mass M and radius R(t). In that case, the
density contrast can be written

1 + δ = ρ

ρb

= M
M

(
a

R

)d

. (93)

Substituting Eq. (93) in Eq. (92) and using Eq. (22), we obtain

ξ
dR

dt
= −GM

Rd−1
or ξ

dρ

dt
= SdGρ2. (94)

This corresponds to the collapse of a uniform sphere described
by the BSP system [Eqs. (1) and (2)].

This observation leads to the following scenario. If we start
from a uniform sphere of mass M and radius a0, this sphere
is unstable and collapses under its own gravity. The mean
flow develops a finite time singularity: the average density
ρb(t) becomes infinite in a finite time t∗ while the radius
a(t) of the sphere tends to zero. However, this sphere is
unstable to small perturbations and a process of fragmentation
follows. The details on this process depend on the equation
of state, e.g., on the polytropic index. If γ > γ4/3, the system
is asymptotically stable. However, the perturbations whose
wavelengths λ are larger than the initial Jeans wavelength
λJ (0) grow (see Sec. III C). This initial growth can trigger
nonlinear effects and result in the formation of overdense
regions. At first, these regions experience a cold collapse and
intensify. Then, when pressure effects become important at
high densities and small scales, localized clusters in virial
equilibrium form. These individual clusters, which correspond
to complete polytropic spheres, are stable since γ > γ4/3.
If γ < γ4/3, the collapsing sphere of radius a(t) is unstable
to small perturbations whatever their wavelength. In the
linear regime, the density contrast is small (δ 
 1) and the
perturbations grow as described in Sec. III C. In the nonlinear
regime, the density contrast becomes large (δ � 1) and the
system forms overdense regions. They correspond to localized
clusters. However, these individual clusters are unstable since
γ < γ4/3 and they experience gravitational collapse. They can
collapse as uniforms spheres and fragmentate into smaller
pieces as described in this paper. This leads to a process of hier-
archical clustering in which clusters fragmentate into smaller
clusters that themselves fragmentate into smaller clusters and
so on. Alternatively, the clusters can undergo a self-similar
spherically symmetric collapse up to a Dirac peak as described
in Refs. [10–14,34]. In that case, there is no fragmentation.
The dynamics of these clusters is also interesting since they
interact with each other. At large scales, their internal structure
can be neglected and the problem is reduced to the dynamical
evolution of a system of N clusters in interaction. When two
clusters come into contact, they merge so their mass M(t)
increases while their number N (t) decreases. Ultimately, only
one cluster remains: a Dirac peak containing all the mass
(statistical equilibrium state in the canonical ensemble). This
is reminiscent of a coarsening process in statistical mechanics
[69]. This also shares analogies with the process of decaying
two-dimensional turbulence [70]. Starting from an incoherent
initial condition, large-scale vortices spontaneously emerge in
a 2D incompressible flow and rapidly dominate the dynamics.
These vortices evolve under the effect of their mutual advection
(due to long-range interactions) punctuated by merging events.

Their number decreases as a power law N (t) ∼ t−ξ with an
exponent ξ � 0.6 − 1 [71]. It would be interesting to further
develop the analogy between 2D decaying turbulence and
self-gravitating Brownian particles.

V. QUANTUM SMOLUCHOWSKI-POISSON SYSTEM

We now introduce and study a more general Smoluchowski
equation taking quantum effects into account. To that purpose,
we consider a dissipative gas of self-gravitating Bose-Einstein
condensates. Using the Madelung transformation, we show
that the dissipative Gross-Pitaevskii equation is equivalent
to the damped barotropic Euler equations with an additional
quantum potential. In a strong friction limit, this yields the
quantum barotropic Smoluchowski equation. We extend our
previous analysis to this more general equation.

A. Dissipative Gross-Pitaevskii-Poisson system

We consider an interacting gas of Bose-Einstein con-
densates at T = 0 described by the dissipative mean-field
Gross-Pitaevskii (GP) equation [72,73]:

ih̄
∂ψ

∂t
(r,t) = − h̄2

2m
�ψ(r,t) + m�tot(r,t)ψ(r,t)

+ ξh̄

2i
ln

(
ψ

ψ∗

)
ψ, (95)

�tot(r,t) =
∫

ρ(r′,t)u(|r − r′|) dr′, (96)

ρ(r,t) = Nm|ψ(r,t)|2, (97)∫
|ψ(r,t)|2 dr = 1. (98)

Equation (98) is the normalization condition, Eq. (97) gives the
density of the BEC, Eq. (96) determines the associated poten-
tial, and Eq. (95) determines the wave function. We assume that
the potential of interaction can be written as u = uLR + uSR

where uLR refers to the long-range gravitational interaction and
uSR to the short-range interaction. We assume that the short-
range interaction corresponds to binary collisions that can be
modeled by the effective potential uSR(r − r′) = gδ(r − r′),
where the coupling constant (or pseudopotential) g is related
to the s-wave scattering length as through g = 4πash̄

2/m3

(in d = 3) [74]. For the sake of generality, we allow as to
be positive or negative (as > 0 corresponds to short-range
repulsions and as < 0 corresponds to short-range attractions).
Under these conditions, the total potential can be written
�tot = � + h(ρ), where � is the gravitational potential and

h(ρ) = gρ = gNm|ψ |2 (99)

is an effective potential modeling short-range interactions. For
the sake of generality, we will consider an arbitrary function
h(ρ). We shall also assume that the particles are subjected to an
external potential �ext(r). For illustration, we may consider a
harmonic potential �ext = ω2

0r
2/2 which can play the role of

a trap (ω2
0 > 0) or a rotation (ω2

0 = −�2 < 0). Regrouping
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these results, we obtain the dissipative Gross-Pitaevskii-
Poisson (GPP) system

ih̄
∂ψ

∂t
(r,t) = − h̄2

2m
�ψ(r,t) + m[�(r,t) + h(ρ)

+ �ext(r)]ψ(r,t) + ξh̄

2i
ln

(
ψ

ψ∗

)
ψ, (100)

�� = SdGρ = SdGNm|ψ |2. (101)

Instead of the gravitational potential, we could consider an
arbitrary binary potential with long-range interactions of the
form uLR(|r − r′|) in which case the Poisson equation would
be replaced by � = uLR ∗ ρ where ∗ denotes the product of
convolution.

We have introduced a source of dissipation in the Gross-
Pitaevskii equation measured by the coefficient ξ (the ordinary
Gross-Pitaevskii equation is recovered for ξ = 0). Initially, we
“guessed” the form of this dissipation term in order to obtain,
after making the Madelung transformation, the damped Euler
equations [as we shall see, the parameter ξ can be interpreted
as a friction coefficient in the Euler equation (111)]. Then,
we found some confidence in the fact that the same term
was previously derived by Kostin [75] from the Heisenberg-
Langevin equation describing a Brownian particle interacting
with a thermal bath environment.7 We can therefore consider
that Eqs. (100) and (101) have some physical foundation.
Recently, some authors [51] have proposed that dark matter
in the universe could be a self-gravitating Bose-Einstein
condensate described by the GPP system [Eqs. (100) and
(101)] with ξ = 0 (see Ref. [76] for a short history). Here,
we consider a more general model where damping effects are
taken into account. In addition to cosmology, this model can
probably find applications in other domains of physics.

B. Madelung transformation

Let use the Madelung [77] transformation to rewrite
the dissipative GPP system in the form of hydrodynamic
equations. We write the wave function in the form

ψ(r,t) = A(r,t)eiS(r,t)/h̄, (102)

where A(r,t) and S(r,t) are real functions. We clearly have

A =
√

|ψ |2, S = h̄

2i
ln

(
ψ

ψ∗

)
. (103)

Note that the dissipative term in the GP equation (100) can be
written ξSψ . Substituting Eq. (102) in Eq. (100) and separating
real and imaginary parts, we obtain

∂S

∂t
+ 1

2m
(∇S)2 + m�tot − h̄2

2m

�A

A
+ ξS = 0, (104)

∂A2

∂t
+ ∇

(
A2∇S

m

)
= 0. (105)

7In Kostin’s approach, the Gross-Pitaevskii equation also contains
a random potential. In our approach, this stochastic term is neglected
since we assumed T = 0.

Following Madelung, we introduce the density and the velocity
fields

ρ = NmA2 = Nm|ψ |2, u = 1

m
∇S. (106)

We first note that the flow is irrotational since ∇ × u = 0. With
these variables, Eqs. (104) and (105) can be rewritten

∂ρ

∂t
+ ∇ · (ρu) = 0, (107)

∂S

∂t
+ 1

2m
(∇S)2 + m(� + h(ρ) + �ext) + Q + ξS = 0,

(108)

where

Q = − h̄2

2m

�
√

ρ√
ρ

= − h̄2

4m

[
�ρ

ρ
− 1

2

(∇ρ)2

ρ2

]
(109)

is the quantum potential. The first equation is similar to the
equation of continuity in hydrodynamics. The second equation
has a form similar to the classical Hamilton-Jacobi equation
with an additional quantum term and a source of dissipation. It
can also be interpreted as a generalized Bernouilli equation for
a potential flow. Taking the gradient of Eq. (108), and using the
well-known identity (u · ∇)u = ∇(u2/2) − u × (∇ × u) that
reduces to (u · ∇)u = ∇(u2/2) for an irrotational flow, we
obtain an equation similar to the damped Euler equation with
an additional quantum potential

∂u
∂t

+ (u · ∇)u = −∇h − ∇� − ∇�ext − 1

m
∇Q − ξu.

(110)

This equation shows that the effective potential h appearing
in the GP equation can be interpreted as an enthalpy in the
hydrodynamic equations. We can rewrite Eq. (110) in the form

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇p − ∇� − ∇�ext − 1

m
∇Q − ξu,

(111)

where p(r,t) is a pressure. Since h(r,t) = h[ρ(r,t)], the
pressure p(r,t) = p[ρ(r,t)] is a function of the density (the
flow is barotropic). The equation of state p(ρ) is determined
by the potential h(ρ) through the relation

h′(ρ) = p′(ρ)

ρ
. (112)

This yields p(ρ) = ρh(ρ) − H (ρ), where H is a primitive of
h. In conclusion, the dissipative GPP system is equivalent to
the hydrodynamic equations

∂ρ

∂t
+ ∇ · (ρu) = 0, (113)

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇p − ∇� − ∇�ext − 1

m
∇Q − ξu,

(114)

�� = SdGρ. (115)
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For a harmonic potential, ∇�ext = ω2
0r. We shall refer to these

equations as the quantum damped barotropic Euler-Poisson
system. We note the identity

− 1

m
∇Q ≡ − 1

ρ
∂jPij , (116)

where Pij is the quantum stress (or pressure) tensor

Pij = − h̄2

4m2
ρ ∂i∂j ln ρ (117)

or

Pij = h̄2

4m2

(
1

ρ
∂iρ∂jρ − δij�ρ

)
. (118)

This shows that the quantum potential is equivalent to an
anisotropic pressure. In the classical limit h̄ → 0, the quantum
potential disappears and we recover the ordinary damped
barotropic Euler-Poisson system.

In the strong friction limit ξ → +∞, we can formally
neglect the inertia of the particles in Eq. (114) and obtain

ξu � − 1

ρ
∇p − ∇� − ∇�ext − 1

m
∇Q. (119)

Substituting this relation in the continuity equation (113),
we finally arrive at the quantum barotropic Smoluchowski-
Poisson system

ξ
∂ρ

∂t
= ∇ ·

(
∇p + ρ∇� + ρ∇�ext + ρ

m
∇Q

)
, (120)

�� = SdGρ. (121)

In the classical limit h̄ → 0, the quantum potential disappears
and we recover the classical barotropic Smoluchowski-Poisson
system [Eqs. (1) and (2)]. We note that, due to the complex
nature of the wave function, it is not possible to take the strong
friction limit directly in the dissipative GP equation (100).
We must necessarily split this equation into its real and
imaginary parts, which is achieved by means of the Madelung
transformation, and take the limit ξ → +∞ in the Euler
equation (114) corresponding to the real part of the GP
equation.

Remark 6: A system of classical Brownian particles with
long- and short-range interactions [55] is described by the
generalized Smoluchowski equation

ξ
∂ρ

∂t
= ∇ ·

(
kBT

m
∇ρ + ∇pex + ρ∇� + ρ∇�ext

)
, (122)

where pid = ρkBT /m is the ideal kinetic pressure and pex

is the excess pressure taking into account short-range inter-
actions. The total pressure is p = pid + pex. In the present
case, T = 0, so the pressure in Eq. (120) corresponds to pex.
Contrary to the kinetic pressure pid, the pressure pex arising
from short-range interactions can be positive or negative
(see Sec. V C). In the DDFT, this pressure is related to the
excess free energy Fex[ρ] by ∇pex = ρ∇δFex/δρ [55]. In the
present case, according to Eq. (112), we have ∇pex = ρ∇h.
Therefore, the excess free energy is Fex = ∫

H (ρ) dr, where
H is a primitive of h. Similarly, the quantum pressure in
Eq. (120) can be obtained from the quantum excess free
energy FQ

ex = (1/m)
∫

ρQ dr via (ρ/m)∇Q = ρ∇δFQ
ex /δρ

(see Appendix E).

C. Equation of state

The effective potential h(ρ), which takes into account short-
range interactions (collisions) between particles, determines a
barotropic equation of state p(ρ) through the relation (112).
Inversely, specifying an equation of state p = p(ρ), we can
obtain the corresponding function h(ρ). Let us give specific
examples.

The isothermal equation of state p = ρkBTeff/m leads to
an effective potential of the form

h(ρ) = kBTeff

m
ln ρ. (123)

The corresponding GP equation can be written

ih̄
∂ψ

∂t
= − h̄2

2m
�ψ + (m� + 2kBTeff ln |ψ |)ψ. (124)

Interestingly, we note that a nonlinear Schrödinger equation
with a logarithmic potential similar to Eq. (124) has been
introduced long ago by Bialynicki and Mycielski [78] as
a possible generalization of the Schrödinger equation in
quantum mechanics.

The polytropic equation of state p = Kργ with γ = 1 +
1/n leads to an effective potential of the form

h(ρ) = Kγ

γ − 1
ργ−1. (125)

The corresponding GP equation can be written

ih̄
∂ψ

∂t
= − h̄2

2m
�ψ + m(� + κ|ψ |2/n)ψ, (126)

where κ = K(n + 1)(Nm)1/n. This is the usual general form
of the GP equation considered in the literature [79]. We may
recall that classical and ultrarelativistic fermion stars at T = 0
are equivalent to polytropes with index n = n3/2 ≡ d/2 and
n = n′

3 ≡ d, respectively [80]. The GPP system [Eqs. (126)
and (101)] with n = 3/2 in d = 3, describing self-gravitating
fermions beyond the Thomas-Fermi approximation (i.e., with
the quantum potential retained), has been studied by Bilic
et al. [81] in relation with the formation of white dwarf stars
by gravitational collapse.

The original Gross-Pitaevskii equation corresponds to a
potential of the form

h(ρ) = gρ = 4πash̄
2

m3
ρ, (127)

where as is the s-scattering length (in d = 3). This leads to an
equation of state

p = 1

2
gρ2 = 2πash̄

2

m3
ρ2. (128)

This is a polyropic equation of state of the form (4) with
n = 1, γ = 2, and K = g/2 = 2πash̄

2/m3. The GPP system
[Eqs. (126) and (101)] with n = 1 has been studied by Böhmer
and Harko [51] and Chavanis [76,82,83] in the context of dark
matter.

Remark 7: As we have previously indicated, for a Bose-
Einstein condensate, the pressure can be negative. This is the
case, in particular, for a BEC with quartic self-interaction (p ∝
ρ2 ∝ |ψ |4) described by the equation of state (128) when the
scattering length as is negative. In terrestrial BEC experiments,
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some atoms like 7Li have a negative scattering length [74,84].
Similarly, the constant Teff appearing in Eq. (123) is just
an “effective” temperature since it arises from a particular
form of self-interaction and has nothing to do with the
thermodynamical temperature (which here is T = 0). This
effective temperature can be positive or negative.

D. Time-independent dissipative GP equation

If we consider a wave function of the form

ψ(r,t) = A(r)e−i E
ξh̄

(1−e−ξ t )
, (129)

we obtain the time-independent dissipative GP equation

− h̄2

2m
�ψ(r) + m(�(r) + h(ρ) + �ext(r))ψ(r) = Eψ(r),

(130)

where ψ(r) ≡ A(r) is real and ρ(r) = Nmψ2(r). Dividing
Eq. (130) by ψ(r), we get

m� + mh(ρ) + m�ext(r) − h̄2

2m

�
√

ρ√
ρ

= E, (131)

or, equivalently,

m� + mh(ρ) + m�ext + Q = E. (132)

This relation can also be derived from the dissipative quantum
Hamilton-Jacobi equation (108) by setting S = −(E/ξ )(1 −
e−ξ t ). Alternatively, it can be deduced from the quantum
barotropic Euler equation (111) that is equivalent to the GP
equation. The steady state of the quantum barotropic Euler
equation (111), obtained by taking ∂t = 0 and u = 0, satisfies

∇p + ρ∇� + ρ∇�ext − h̄2ρ

2m2
∇

(
�

√
ρ√

ρ

)
= 0. (133)

This generalizes the usual condition of hydrostatic equi-
librium by incorporating the contribution of the quantum
potential. Equation (133) describes the balance between the
gravitational attraction, the repulsion due to the quantum
potential (Heisenberg uncertainty principle), and the repulsion
(for as > 0) or the attraction (for as < 0) due to the short-
range interactions (scattering). This equation is equivalent to
Eq. (131). Indeed, integrating Eq. (133) using Eq. (112), we
obtain Eq. (131) where the eigenenergy E appears as a constant
of integration. On the other hand, combining Eq. (133) with the
Poisson equation (101), we obtain the fundamental equation
of hydrostatic equilibrium with quantum effects

−∇ ·
(∇p

ρ

)
+ h̄2

2m2
�

(
�

√
ρ√

ρ

)
= SdGρ + ��ext. (134)

For a harmonic potential, ��ext = dω2
0. When quantum

effects are ignored (classical limit or Thomas-Fermi approx-
imation), we recover the classical fundamental equation of
hydrostatic equilibrium

−∇ ·
(∇p

ρ

)
= SdGρ + ��ext. (135)

Finally, for an equation of state of the form (128), Eq. (134)
becomes

−g�ρ + h̄2

2m2
�

(
�

√
ρ√

ρ

)
= SdGρ + ��ext. (136)

This equation has been studied in Refs. [76,82] in d = 3 when
�ext = 0. There are two important limits: (i) the noninteracting
limit corresponding to g = as = 0 (or more generally p = 0)
and (ii) the Thomas-Fermi (TF) limit obtained by neglecting
the quantum potential Q.

E. Equation for the evolution of the density contrast

We can now generalize the results of the first part of the
paper to the quantum BSP system [Eqs. (120) and (121)].
In this paper, we assume �ext = 0. The background flow
(collapsing uniform sphere) studied in Sec. II C is not modified
since the quantum potential enters (120) only through its
gradient. Then, working in the comoving frame and extending
the calculations of Sec. III, we find that Eqs. (34) and (35) are
replaced by

ξ
∂δ

∂t
= 1

a2
∇ ·

[
c2
s ∇δ + (1 + δ)∇φ

− h̄2(1 + δ)

2m2a2
∇

(
�

√
1 + δ√

1 + δ

)]
, (137)

�φ = SdGρbδa
2, (138)

where c2
s = p′(ρ) = p′(ρb(1 + δ)). If we consider small per-

turbations δ 
 1, φ 
 1 around the homogeneous flow δ =
φ = 0, we obtain the linearized equation

ξ
∂δ

∂t
= c2

s

a2
�δ + SdGρbδ − h̄2

4m2a4
�2δ, (139)

where c2
s = p′(ρb). Expanding the solution in Fourier modes

of the form δ(x,t) = δk(t)eik·x, we obtain the equation

ξ δ̇ +
(

h̄2k4

4m2a4
+ c2

s k
2

a2
− SdGρb

)
δ = 0, (140)

for the evolution of the density contrast in the linear regime.

F. Jeans type analysis in a static frame

Let us first make the Jeans swindle and assume that the
above equation is valid in a static frame a = 1. In that case,
the solution of Eq. (140) is δ ∝ e−iωt leading to the dispersion
relation

iξω = h̄2k4

4m2
+ c2

s k
2 − SdGρ. (141)

The perturbation evolves like eγ t with an exponential rate γ =
−iω. This relation, like the original quantum Smoluchowski
equation (120), clearly shows the competition among the
attractive gravitational force, the (repulsive or attractive) pres-
sure arising from short-range interactions, and the repulsive
quantum pressure arising from the Heisenberg uncertainty
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principle. For the equation of state (128), the square of the
velocity of sound is

c2
s = gρ = 4πash̄

2ρ

m3
, (142)

and the dispersion relation can be rewritten

iξω = h̄2k4

4m2
+ gρk2 − SdGρ. (143)

In the noninteracting case g = as = 0, the pressure is zero
(p = 0). The particles interact via gravity and they experience
the effect of the quantum potential. The dispersion relation
reduces to

iξω = h̄2k4

4m2
− SdGρ, (144)

leading to the quantum Jeans wave number

kQ =
(

4SdGρm2

h̄2

)1/4

. (145)

This characteristic wave number arises due to the interplay
between gravity and quantum effects (Heisenberg’s uncer-
tainty principle). For k < kQ, the system is unstable and the
perturbations grow with a growth rate γ > 0; for k > kQ the
system is stable and the perturbations decay with a damping
rate γ < 0. Note that the growth rate is maximum for k = 0
(corresponding to an infinite wavelength λ = 2π/k → +∞)
and its value is γmax = SdGρ/ξ .

In the Thomas-Fermi approximation in which the quantum
potential can be neglected, the particles interact via gravity
and they experience a pressure due to short-range interactions.
The dispersion relation reduces to

iξω = gρk2 − SdGρ (146)

This is the classical Jeans dispersion relation of Sec. II B. For
g < 0, the system is always unstable. For g > 0, the Jeans
wave number is

kJ =
(

SdGρ

c2
s

)1/2

=
(

SdG

g

)1/2

. (147)

This characteristic wave number arises due to the interplay
between gravity and repulsive scattering. We note that the
Jeans wave number is independent on the density (in d = 3, it
can be written kJ = (Gm3/ash̄

2)1/2). For k < kJ , the system is
unstable and the perturbation grows with a growth rate γ > 0;
for k > kJ the system is stable and the perturbation decays with
a damping rate γ < 0. The maximum growth rate corresponds
to k = 0 leading to γmax = SdGρ/ξ .

In the nongravitational case (G = 0), the dispersion relation
reduces to

iξω = h̄2k4

4m2
+ gρk2. (148)

For g > 0, the system is always stable and the perturbation
decays with a damping rate γ < 0. For g < 0, the critical
wave number is

k0 =
(

4m2
∣∣c2

s

∣∣
h̄2

)1/2

=
(

4m2|g|ρ
h̄2

)1/2

. (149)

This characteristic wave number arises due to the interplay
between quantum pressure and attractive scattering (in d = 3,
k0 = (16π |as |ρ/m)1/2). For k < k0, the system is unstable
and the perturbation grows with a growth rate γ > 0; for
k > k0 the system is stable and the perturbation decays
with a damping rate γ < 0. The growth rate is maxi-
mum for k∗ = (2|c2

s |m2/h̄2)1/2 = (2|g|ρm2/h̄2)1/2 = k0/
√

2
and its value is γ∗ = c4

s m
2/ξh̄2 = g2ρ2m2/ξh̄2 (in d = 3,

k∗ = (8π |as |ρ/m)1/2 and γ∗ = 16π2a2
s h̄

2ρ2/ξm4).
We now consider the general case. With the previous

relations, the dispersion relation (141) can be rewritten

iξω

SdGρ
= k4

k4
Q

+ k2

k2
J

− 1. (150)

The pulsation vanishes at the critical Jeans wave number

k2
c = k4

Q

2k2
J

(
±

√
1 + 4k4

J

k4
Q

− 1

)
, (151)

with + when c2
s � 0 and − when c2

s < 0. The previous results
can be recovered as particular cases of this general relation. For
k < kc, the system is unstable and the perturbation grows with
a growth rate γ > 0; for k > kc the system is stable and the
perturbation decays with a damping rate γ < 0. For c2

s � 0,
γ decreases monotonically with k. Accordingly, the growth
rate is maximum for k = 0 (infinite wavelength) leading to
γmax = SdGρ/ξ . For c2

s < 0, γ achieves a maximum value

γ∗ = SdGρ

ξ

(
1 + k4

Q

4k4
J

)
= SdGρ

ξ
+ m2c4

s

ξh̄2 , (152)

at

k∗ =
(

k4
Q

2|k2
J |

)1/2

=
(

2
∣∣c2

s

∣∣m2

h̄2

)1/2

. (153)

The exponential rate γ = −iω is plotted as a function of the
wave number k in Fig. 4 for repulsive (g > 0) and attractive
(g < 0) self-interactions.

Remark 8: If we perform the Jeans stability analysis
on the quantum damped barotropic Euler-Poisson system
[Eqs. (113)–(115)], we find that the dispersion relation is
given by Eq. (141), where iξω is replaced by ω(ω + iξ ). The
discussion is then similar to the one given in Ref. [58].

G. Jeans type analysis in a collapsing frame

We now return to Eq. (140) and study the growth of
perturbations in the collapsing frame. Taking cs = 0 in
Eq. (140), we can define a quantum time-dependent Jeans
wave number

kQ =
(

4SdGρbm
2a4

h̄2

)1/4

. (154)

Recalling Eq. (17), we can write kQ = κQa(4−d)/4 with κQ =
(4SdGρba

dm2/h̄2)1/4. The quantum Jeans length λQ = 2π/kJ

behaves like a−(4−d)/4. For d > 4 (respectively, d < 4), it
decreases (increases) with time so the system becomes
unstable at smaller and smaller (larger and larger) scales as
the cloud collapses. For d = 4, the quantum Jeans length is
constant: kJ = κJ .
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FIG. 4. Dimensionless dispersion relation −ξ� = κ4 + 2ακ2 −
1 with � = γ /γ0, κ = k/k0 and α = g/g0, where γ0 = SdGρ,
k0 = (4SdGρm2/h̄2)1/4 and g0 = (SdGh̄2/ρm2)1/2. The Jeans wave
number is κ2

J = −α + √
α2 + 1. For g < 0, the maximum growth

rate is ξ�∗ = 1 + α2 reached for κ2
∗ = −α. The TF limit corresponds

to κ2 
 |α|, the nongravitational limit to κ2 � 1/|α| and the
noninteracting limit to |α| 
 1.

Measuring the evolution in terms of a instead of t and using
Eq. (22), we can rewrite Eq. (140) in the form

dδ

da
− d

a

(
h̄2k4

4SdGρbm2a4
+ c2

s k
2

SdGρba2
− 1

)
δ = 0. (155)

For short times, writing a = a0(1 − ε) with ε 
 1, we obtain

δ(a)

δ(a0)
� 1 − d

(
k4

kQ(0)4
+ k2

kJ (0)2
− 1

)
ε, (156)

where kQ(0) and kJ (0) are the quantum and classical Jeans
wave numbers (154) and (41) at t = 0. For short times, the
perturbations start to grow if k < kc(0) and start to decay if
k > kc(0), where kc is defined by Eq. (151). This result is
valid for any equation of state. To describe larger times, it is
necessary to specify the equation of state. Assuming that p(ρ)
is given by a polytropic equation of state and introducing the
notations defined previously, Eq. (155) becomes

dδ

da
− d

a

[
k4

κ4
Qa4−d

+ k2

κ2
J adγ−2(d−1)

− 1

]
δ = 0. (157)

Let us first consider the noninteracting case cs = 0. Equa-
tion (157) reduces to

dδ

da
− d

a

(
k4

κ4
Qa4−d

− 1

)
δ = 0. (158)

If d �= 4, the solution of this equation is

δ(a) ∝ 1

ad
e
− dk4

κ4
Q

(4−d)a4−d

. (159)

For short times, we recover Eq. (156). This equation clearly
shows the initial effect of the Jeans wavelength. Indeed, the
perturbation starts to grow if k < kQ(0) and starts to decay
if k > kQ(0). This result is independent on the value of the
dimension d. On the other hand, for large times, the effect

of the quantum Jeans scale disappears and the evolution
of the system is controlled only by the value of d. For
d < 4, we find that δ(a) → 0 very rapidly as a → 0. The
system becomes asymptotically stable to all wavelengths.
For d > 4, we find that δ(a) ∝ a−d → +∞ as a → 0. The
system becomes asymptotically unstable to all wavelengths
and behaves as in a cold classical gas. We note that quantum
mechanics has a stabilizing role with respect to gravitational
collapse when d < 4. However, it is not able to prevent
gravitational collapse when d > 4. Therefore, the dimension
d = 4 is critical. We have already reached this conclusion
in Ref. [80,85] for fermion stars. For d = 4, the solution of
Eq. (158) is

δ(a) ∝ a4(k4/κ4
Q−1). (160)

For k < κQ, the perturbation increases in time and the system
is unstable (for k 
 κQ, the perturbation grows like in a cold
classical gas). For k > κQ, the perturbation decreases in time
and the system is stable.

Comparing Eqs. (158) and (46), we note that the depen-
dence in a is the same in the two equations when γ = γ5/3 ≡
(d + 2)/d, i.e., n = n3/2 ≡ d/2. This is the index of a classical
fermionic gas [80,85]. Concerning the dependence in a, a
cold bosonic gas behaves similarly to a cold fermionic gas.
However, the dependence in k differs (k2 instead of k) as
well as the expression of the Jeans length (kQ instead of kJ ).
We also note that γ5/3 = γ4/3 = 3/2 for d = 4, which is the
critical dimension of a self-gravitating quantum gas [80,85].
For γ = γ5/3, Eq. (157) reduces to

dδ

da
− d

a

(
k4

κ4
Qa4−d

+ k2

κ2
J a4−d

− 1

)
δ = 0. (161)

If d �= 4, the solution of this equation is

δ(a) ∝ 1

ad
e
− d(k4/κ4

Q
+k2/κ2

J
)

(4−d)a4−d . (162)

For short times, we recover Eq. (156). The perturbation starts
to grow if k < kc(0) and starts to decay if k > kc(0). For
large times, the system is asymptotically stable for d < 4 and
asymptotically unstable for d > 4. For d = 4, the solution of
Eq. (161) is

δ(a) ∝ a
4
(

k4

κ4
Q

+ k2

κ2
J

−1
)
. (163)

The system is stable for k > kc and unstable for k < kc.
Let us finally treat the general case. We first assume d �= 4.

For γ �= γ4/3, we get

δ(a) ∝ 1

ad
e
− dk4

κ4
Q

(4−d)a4−d

e
dk2a2(d−1)−dγ

κ2
J

(2(d−1)−dγ ) , (164)

and, for γ = γ4/3, we obtain

δ(a) ∝ 1

ad
e
− dk4

κ4
Q

(4−d)a4−d

ad(k2/κ2
J −1). (165)

We now assume d = 4. For γ �= γ4/3 = 3/2, we get

δ(a) ∝ a4(k4/κ4
Q−1)e

4k2a6−4γ

κ2
J

(6−4γ ) , (166)

and, for γ = γ4/3 = 3/2, we obtain Eq. (163).
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The short time evolution (a → a0) is given by Eq. (156).
The perturbation starts to grow if k < kc(0) and starts to decay
if k > kc(0). To analyze the evolution for large time (a → 0),
it is convenient to start directly from the differential Eq. (157).
(i) Let us first assume d < 4. For γ > γ5/3, δ(a) → 0 like in
Eq. (47) and for γ < γ5/3, δ(a) → 0 like in Eq. (159). For
γ = γ5/3, δ(a) → 0 like in Eq. (162). In all cases, we find that
δ → 0 very rapidly so the system is always asymptotically
stable. The stabilization is due to the polytropic pressure
for γ > γ5/3, to the quantum pressure for γ < γ5/3, and to
both for γ = γ5/3. (ii) Let us consider d > 4. In that case,
the quantum effects become asymptotically negligible and
we are led back to the study of Sec. III C. For γ �= γ4/3,
the asymptotic evolution of the density contrast is given by
Eq. (47). For γ > γ4/3, δ(a) → 0 very rapidly and the system
is stable; for γ < γ4/3, δ(a) ∝ a−d → +∞ and the system is
unstable. For γ = γ4/3, the evolution of the density contrast
is given by Eq. (50). The system is stable for k > kJ and
unstable for k < kJ . (iii) Let us finally assume d = 4. For
γ > 3/2, we find that δ(a) → 0 like in Eq. (47) so the system
is stable. The quantum pressure is asymptotically negligible
so the stabilization is due to the polytropic pressure. For
γ < 3/2, the polytropic pressure is asymptotically negligible.
We find that δ(a) behaves like in Eq. (160) so the system is
stable for k > kQ and unstable for k < kQ. The stabilization
is due to the quantum pressure. Finally, for γ = 3/2, the
density contrast behaves like in Eq. (163) so the system
is stable for k > kc and unstable for k < kc. The stabiliza-
tion is due to the quantum pressure and to the polytropic
pressure.

Remark 9: A standard self-gravitating BEC with γ = 2 is
always stable since 2 > γ4/3 in any dimension of space. In that
case, κJ = (SdG/g)1/2.

Remark 10: The previous discussion assumes that c2
s > 0.

If the self-interaction is attractive (c2
s < 0, κ2

J < 0), the system
becomes unstable in the following cases: (i) if d < 4 and
γ > γ5/3; (ii) if d < 4 and γ = γ5/3 and k < (κ4

Q/|κ2
J |)1/2;

(iii) if d > 4; (iv) if d = 4 and γ > 3/2. The other results are
unchanged.

VI. CONCLUSION

In this paper, we have studied the dynamical evolution of
a collapsing cloud of classical and quantum self-gravitating
Brownian particles. A spatially homogeneous sphere is un-
stable and collapses under its own gravity. This leads to a
finite-time singularity in which the system has a vanishing
radius and an infinite density. However, the collapsing sphere
(background flow) may be unstable to small perturbations
and a process of fragmentation takes place. This leads to
the formation of dense localized clusters. We have derived
an exact set of equations [Eqs. (34) and (35)] describing
the evolution of the density contrast in the comoving frame.
In the linear regime, the evolution of the perturbations
can be described analytically for any equation of state.
Specific attention has been given to the polytropic equation
of state for the sake of illustration. If γ > γ4/3, the system
is asymptotically stable. However, the perturbations initially
grow if their wavelength λ is larger than the Jeans scale λJ (0).
This initial growth can trigger nonlinear effects and result,

first, in a cold collapse and then in the formation of dense
localized clusters in virial equilibrium when pressure effects
become important. They correspond to stable steady states
of the BSP system [Eqs. (1) and (2)] in which gravitational
forces are balanced by pressure forces. If γ < γ4/3, the
system is unstable. Small perturbations grow in the linear
regime whatever their wavelength. In the nonlinear regime,
these perturbations amplify and form dense localized clusters.
Their structure and evolution can be described by the BSP
system [Eqs. (1) and (2)], neglecting locally the contraction
of the background flow. These clusters are unstable and they
experience gravitational collapse. They can break into smaller
fragments that themselves break into smaller fragments in
a hierarchical manner. Alternatively, they can undergo a
spherically symmetric self-similar collapse up to a Dirac peak.
At large scales, we can ignore their internal structure and
we are led to a reduced dynamical system of N clusters
in interaction. The clusters merge when they come into
contact and collapse on each other. Therefore, their mass
increases while their number decreases. This is reminiscent of
a coarsening process in statistical mechanics or in 2D decaying
turbulence. We have given preliminary analytical results valid
in the nonlinear regime. A more detailed description of
the nonlinear regime requires numerical simulations. This
is a problem left for future works. Throughout our study,
we have found interesting analogies with cosmology (in a
universe experiencing a “big-crunch”) [49,50] and with stellar
formation (in a collapsing molecular cloud) [39,46,47]. We
have shown that the methods initially devised in astrophysics
(Euler-Poisson) could be extended to a different context
(Smoluchowski-Poisson), leading to interesting new results
and applications. We have also stressed the specificities of our
approach and the differences with the astrophysical studies.
Since the Eqs. (34) and (35) that we have derived for self-
gravitating Brownian particles are simpler than those used
in cosmology and astrophysics (because inertial effects are
neglected in our model), these equations could be used as a
valuable prototype to test the theories that have been developed
in other domains to study the process of self-organization in
complex media. We hope to develop these issues in future
works.

APPENDIX A: REPULSIVE INTERACTIONS

It can be of interest to consider the case of Brownian
particles with repulsive interactions (see Ref. [38] for further
discussions and applications). The basic equations of the paper
remain valid provided that G is replaced by −G. Considering
a spatially homogeneous solution of the BSP system, as in
Sec. II C, we now find that the sphere expands, instead of
contracting, as described in Ref. [38]. From the results of
Sec. III B properly adapted to this new situation (i.e., making
the substitution G → −G), we then find that the homogeneous
solution is always stable since δ̇ < 0 according to Eq. (40).
This is consistent with the observation made in Ref. [38]
that the homogeneous expanding sphere is an “attractor” of
the T = 0 dynamics for large times. Indeed, it is found in
Appendix E of Ref. [38] that the inhomogeneous density
profiles ρ(r,t) converge toward the homogeneous expanding
sphere for t → +∞.
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APPENDIX B: COSMOLOGICAL CONSTANT

If we introduce a “cosmological constant” � in the Poisson
equation (this terminology is abusive here since we are not
dealing with cosmology) and write �� = SdGρ − �, the
Eq. (22) for the scale factor a(t) becomes

ξ
da

dt
= − GM

ad−1
+ 1

d
�a. (B1)

A static uniform sphere of density ρb = �/SdG and radius
a = (dGM/�)1/d is a particular solution of the equations.
To investigate its stability, we set a(t) = a + δa(t), where
δa(t) is a small perturbation. Substituting this decomposition
in Eq. (B1) and keeping only terms that are linear in δa(t), we
get

ξ
dδa

dt
= �δa, (B2)

so the perturbation grows as δa ∝ e�t/ξ . Therefore, the static
solution is strongly unstable similarly to the Einstein static
universe in cosmology.

APPENDIX C: FOURIER TRANSFORM OF THE
EQUATIONS OF MOTION

In this Appendix, we derive an exact equation for the Fourier
transform of the discrete density contrast δ

(d)
k (t) directly from

the equations of motion of the overdamped Brownian particles
at T = 0. This derivation closely follows the derivation given
by Peebles [49] and Padmanabhan [50] in cosmology for
particles with inertia. At T = 0, the equations of motion are

ξ
dri

dt
= −∇i�d, ��d = 4πGρd, (C1)

where ρd (r,t) = m
∑

i δD[r − ri(t)] is the discrete density
field expressed as a sum of Dirac distributions and �d (r,t) is
the corresponding gravitational potential. Making the changes
of variables (23) and (26), we find that the equations of motion
in the comoving frame are

ξ
dxi

dt
= − 1

a2
∇iφd, �φd = SdGρba

2δd . (C2)

The discrete density field can be written

1 + δd (x,t) ≡ ρd (x,t)

ρb

= V

N

∑
i

δD[x − xi(t)]

=
∫

δD[x − xT (t,q)] dq, (C3)

where xT (t,q) is the (Lagrangian) position at time t of the
particle initially located at x = q (the subscript T stands for
“trajectory”). Using Eq. (C3), the Fourier transform of the
density contrast is given by

δ
(d)
k (t) =

∫
e−ik·xT (t,q) dq − (2π )dδD(k). (C4)

Taking the time derivative of this expression and using
Eqs. (C2) and (70), we find that the equation satisfied by δ

(d)
k (t)

is

ξ δ̇
(d)
k = SdGρbδ

(d)
k + SdGρb

2

∫
δ

(d)
k′ δ

(d)
k−k′

×
[

k · k′

k′2 + k · (k − k′)
|k − k′|2

]
dk′

(2π )d
. (C5)

This equation has the same form as Eq. (72) with T = 0.
However, its interpretation differs because, in the present
derivation, we have not made the mean-field approximation.
Therefore, Eq. (C5) is exact and contains the same information
as Eq. (C2). It is valid for the Fourier transform of the
discrete density contrast δd (x,t) expressed in terms of Dirac
distributions while Eq. (72) is valid for the Fourier transform of
the smooth (locally averaged) density contrast δ(x,t). Although
exact, Eq. (C5) is not very useful in practice since it is difficult
to deal with Dirac distributions. Indeed, it is easier to directly
integrate the equations of motion (C2) that are equivalent
to Eq. (C5). By contrast, Eq. (72) relies on a mean-field
approximation but it applies to a smooth density field that
is more physically relevant.

The discrete density ρd (r,t) and the discrete density contrast
δd (x,t) satisfy equations similar to Eqs. (1) and (34) with T =
0 constructed with the discrete gravitational potentials �d (r,t)
and φd (x,t). Although these equations are formally similar,
their interpretation differs as explained previously. This is the
same distinction as between the Klimontovich (exact) and the
Vlasov (mean-field) equations in plasma physics and stellar
dynamics. More details can be found in Ref. [86].

Finally, it is possible to include stochastic forces (when T �=
0) in the equations of motion. In the inertial frame, Eq. (C1) is
replaced by

dri

dt
= −1

ξ
∇i�d +

√
2kBT

ξm
Ri(t), (C6)

where Ri(t) is a white noise satisfying 〈Ri(t)〉 = 0 and
〈Rα

i (t)Rβ

j (t ′)〉 = δij δαβδ(t − t ′). In the comoving frame,
Eq. (C2) is replaced by

dxi

dt
= − 1

ξa2
∇iφd +

√
2kBT

ξma2
Ri(t). (C7)

Following Ref. [86], it is possible to derive exact equations
satisfied by the discrete density field and by the discrete density
contrast. When a mean-field approximation is implemented,
we find that the average density field and the average density
contrast satisfy Eqs. (1) and (2) and then (34) and (35) derived
in the main text (in the isothermal case).

APPENDIX D: SELF-SIMILAR SOLUTION
IN PHYSICAL SPACE

At T = 0, the equation for the density contrast is

ξ
∂δ

∂t
= SdGρbδ(1 + δ) + 1

a2
∇δ · ∇φ, (D1)

�φ = SdGρbδa
2. (D2)
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Measuring the evolution in terms of a rather than in terms of
t , and using Eq. (22), we can rewrite Eq. (D1) as

a

d

∂δ

∂a
+ δ + δ2 = − 1

SdGρba2
∇δ · ∇φ. (D3)

We consider a solution of the form

δ(x,a) = δ(a)D(x), φ(x,a) = F (a)SdGρba
dQ(x),

(D4)

with

F (a) = a2−dδ(a), �Q = D(x). (D5)

Substituting this ansatz in Eq. (D3), we obtain the separate
equations

a

d

dδ

da
+ δ(a) = μδ2(a), (D6)

μD(x) = −D2(x) − ∇D · ∇Q. (D7)

These equations are equivalent to Eqs. (85) and (86). The
equation for δ(a) can be solved as in Sec. IV B 2. On the other
hand, combining Eq. (D7) with the Poisson equation (D5)-b,
we find that D(x) satisfies the nonlinear differential equation

2∇ ·
( ∇D

� ln D

)
+ D = 0. (D8)

APPENDIX E: H THEOREM

The free energy associated with the dissipative GPP system
[Eqs. (100) and (101)], or, equivalently, with the dissipative
quantum barotropic Euler-Poisson system [Eqs. (113)–(115)],
can be written

F = �c + �Q + U + W + Wext. (E1)

The first two terms correspond to the total kinetic energy

� = Nh̄2

2m

∫
|∇ψ |2 dr. (E2)

Using the Madelung transformation, it can be decomposed into
the “classical” kinetic energy

�c =
∫

ρ
u2

2
dr, (E3)

and the “quantum” kinetic energy

�Q = 1

m

∫
ρQ dr. (E4)

Substituting Eq. (109) in Eq. (E4), we obtain the equivalent
expressions

�Q = − h̄2

2m2

∫ √
ρ�

√
ρ dr

= h̄2

2m2

∫
(∇√

ρ )2 dr = h̄2

8m2

∫
(∇ρ)2

ρ
dr. (E5)

The third term is the internal energy

U =
∫

ρ

∫ ρ p(ρ1)

ρ2
1

dρ1 dr

=
∫

[ρh(ρ) − p(ρ)] dr =
∫

H (ρ) dr, (E6)

where we have used Eq. (112) and integrated by parts to obtain
the second equality. For a polytropic equation of state p =
Kργ , it takes the form

U = K

γ − 1

∫
ργ dr = 1

γ − 1

∫
p dr. (E7)

In particular, for the potential (127), using Eq. (128), we
get

U = 1

2
g

∫
ρ2 dr = 2πash̄

2

m3

∫
ρ2 dr. (E8)

The fourth term is the gravitational potential energy

W = 1

2

∫
ρ�dr. (E9)

The fifth term is the external potential energy

Wext =
∫

ρ�ext dr. (E10)

For a harmonic potential, Wext = (1/2)ω2
0I , where I is the

moment of inertia (F1). It is easy to establish [76] that δ�c =∫
(u2/2)δρ dr + ∫

ρu · δu dr, δ�Q = (1/m)
∫

Qδρ dr, δU =∫
h(ρ)δρ dr, δW = ∫

�δρ dr, and δWext = ∫
�extδρ dr. Tak-

ing the time derivative of F , using the previous relations and
the hydrodynamic Eq. (113)–(115), we easily obtain the H

theorem

Ḟ = −ξ

∫
ρu2 dr � 0. (E11)

This result remains valid if u is not a potential flow since u ·
(u × (∇ × u)) = 0. For a steady state, Ḟ = 0. Equation (E11)
implies u = 0 and we recover the condition of hydrostatic
equilibrium (133).

The free energy associated with the quantum BSP system
[Eqs. (120) and (121)] is

F = �Q + U + W + Wext. (E12)

Taking the time derivative of F and using the previous
relations, we easily obtain the H theorem

Ḟ = −
∫

1

ξρ

(∇p + ρ∇� + ρ∇�ext + ρ

m
∇Q

)2
dr � 0.

(E13)

It can also be obtained from Eq. (E11), using Eq. (119). For
a steady state, Ḟ = 0. Equation (E13) implies that the term
in parenthesis vanishes leading to the condition of hydrostatic
equilibrium (133).

These results indicate that the system will converge toward
a steady state of the dynamical equations that is a (local)
minimum of free energy at fixed mass (the mass M = ∫

ρ dr is
a conserved quantity). Maxima or saddle points of free energy
are unstable. If several local minima of free energy exist, the
selection will depend on a notion of basin of attraction. We are
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therefore led to considering the minimization problem

min
ρ,u

{F [ρ,u]|M} . (E14)

An extremum of free energy at fixed mass is given by the
variational principle δF − αδM = 0, where α is a Lagrange
multiplier taking into account the mass constraint. This gives
u = 0 and the condition

m� + m�ext + mh(ρ) − h̄2

2m

�
√

ρ√
ρ

= mα. (E15)

This equation is equivalent to the steady-state equation (131)
provided that we make the identification

α = E/m. (E16)

This shows that the Lagrange multiplier (chemical potential) in
the constrained minimization problem associated with (E14)
is equal to the eigenenergy E by unit of mass. On the other
hand, considering the second-order variations of free energy,
we find that the steady state is stable if and only if

δ2F ≡ 1

2

∫
h′(ρ)(δρ)2 dr + 1

2

∫
δρδ�dr

+ h̄2

8m2

∫ [
∇

(
δρ√
ρ

)]2

dr

+ h̄2

8m2

∫
�

√
ρ

ρ3/2
(δρ)2 dr > 0, (E17)

for all perturbations that conserve mass:
∫

δρ dr = 0.
Remark 11: for ξ = 0, the functional F becomes the total

energy Etot. According to Eq. (E11), the total energy Etot is
conserved by the GPP (or quantum barotropic Euler-Poisson)
system. In that context, the minimization problem (E14)
provides a condition of nonlinear dynamical stability for a
steady state of the GPP (or quantum barotropic Euler-Poisson)
system [76].

APPENDIX F: VIRIAL THEOREM

In this Appendix, we establish the time-dependent virial
theorem associated with the dissipative quantum barotropic
Euler-Poisson system [Eqs. (113)–(115)]. The moment of
inertia is

I =
∫

ρr2 dr. (F1)

Taking its time derivative and using the continuity equa-
tion (113), we obtain

İ = 2
∫

ρr · u dr. (F2)

With the aid of the continuity equation, the quantum barotropic

Euler equation (114) can be rewritten

∂

∂t
(ρu) + ∇(ρu ⊗ u) = −∇p − ρ∇� − ρ∇�ext

− ρ

m
∇Q − ξρu. (F3)

Taking the time derivative of Eq. (F2), substituting Eq. (F3),
and using integrations by parts, we obtain the time-dependent
virial theorem

1

2
Ï + 1

2
ξ İ = 2(�c + �Q) + d

∫
p dr + Wii + Vext. (F4)

For a polytropic equation of state p = Kργ , using Eq. (E7),
we have

∫
p dr = (γ − 1)U . To obtain Eq. (F4), we have

used the following identities. First, it can be established after a
few manipulations (using essentially integrations by part [76])
that

−
∫

ρ

m
r · ∇Qdr = 2�Q. (F5)

On the other hand, we have introduced the virial of the
gravitational force

Wii = −
∫

ρr · ∇�dr. (F6)

It can be shown that Wii = (d − 2)W if d �= 2 and Wii =
−GM2/2 if d = 2 [14]. Finally, we have introduced the virial
of the external force

Vext = −
∫

ρr · ∇�ext dr. (F7)

For a harmonic potential, Vext = −ω2
0I = −2Wext.

In the strong friction limit ξ → +∞ in which u = O(1/ξ ),
the time-dependent virial theorem takes the form

1

2
ξ İ = 2�Q + d

∫
p dr + Wii + Vext. (F8)

It can be directly obtained from the quantum BSP system
[Eqs. (120) and (121)].

For a steady state, İ = Ï = 0 and u = 0, we obtain the
equilibrium virial theorem

2�Q + d

∫
p dr + Wii + Vext = 0. (F9)

On the other hand, the free energy reduces to F = �Q + U +
W + Wext. Finally, multiplying the steady-state equation (132)
by ρ/m and integrating over the whole configuration, we
obtain the general identity

2W +
∫

ρh(ρ) dr + Wext + �Q = NE. (F10)

For a polytropic equation of state, using Eqs. (125) and (E7),
we find that

∫
ρh(ρ) dr = γU .
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[51] C. G. Böhmer and T. Harko, J. Cosmol. Astropart. Phys. 06, 025
(2007).

[52] P. H. Chavanis, Physica A 361, 81 (2006).
[53] P. H. Chavanis, Phys. Rev. E 68, 036108 (2003).
[54] P. H. Chavanis, Eur. Phys. J. B 62, 179 (2008).
[55] P. H. Chavanis, Physica A 390, 1546 (2011).
[56] P. H. Chavanis and L. Delfini, Phys. Rev. E 81, 051103

(2010).
[57] P. H. Chavanis, Eur. Phys. J. B 52, 433 (2006).
[58] P. H. Chavanis and C. Sire, Physica A 387, 4033 (2008).
[59] A. Einstein, Sitzungsber. Preuss. Akad. Wiss. 1, 142 (1917).
[60] E. A. Spiegel, in Gravitational Screening, edited by A. Harvey

(Springer-Verlag, Heidelberg, 1998).
[61] M. Kiessling, Adv. Appl. Math. 31, 132 (2003).
[62] A. S. Eddington, Mon. Not. R. Astron. Soc. 90, 668 (1930).
[63] E. R. Harrison, Rev. Mod. Phys. 39, 862 (1967).
[64] W. H. McCrea and E. A. Milne, Quarterly J. Math. 5, 73 (1934).
[65] S. Weinberg, Gravitation and Cosmology (John Wiley & Sons,

New York, 1972).
[66] R. Robert and J. Sommeria, Phys. Rev. Lett. 69, 2776 (1992).
[67] P. H. Chavanis, J. Sommeria, and R. Robert, Astrophys. J. 471,

385 (1996).
[68] P. H. Chavanis, in Dynamics and Thermodynamics of Systems

with Long-Range Interactions, Lectures Notes in Physics,
Vol. 602, edited by T. Dauxois, S. Ruffo, E. Arimondo, and
M. Wilkens (Springer, Berlin, 2002).

[69] A. Bray, Adv. Phys. 43, 357 (1995).
[70] G. F. Carnevale, J. C. McWilliams, Y. Pomeau, J. B. Weiss, and

W. R. Young, Phys. Rev. Lett. 66, 2735 (1991).
[71] C. Sire and P. H. Chavanis, Phys. Rev. E 61, 6644 (2000).
[72] E. P. Gross, Ann. Phys. 4, 57 (1958); Nuovo Cimento 20, 454

(1961); J. Math. Phys. 4, 195 (1963).
[73] L. P. Pitaevskii, Sov. Phys. JETP 9, 830 (1959); 13, 451 (1961).
[74] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev.

Mod. Phys. 71, 463 (1999).
[75] M. D. Kostin, J. Chem. Phys. 57, 3589 (1972).
[76] P. H. Chavanis, e-print arXiv:1103.2050.
[77] E. Madelung, Zeit. F. Phys. 40, 322 (1927).
[78] I. Bialynicki-Birula and J. Mycielski, Ann. Phys. 100, 62 (1976).
[79] C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation

(Springer, Berlin, 1999).
[80] P. H. Chavanis, Phys. Rev. D 76, 023004 (2007).
[81] N. Bilic, R. J. Lindebaum, G. B. Tupper, and R. D. Viollier,

Phys. Lett. B 515, 105 (2001).
[82] P. H. Chavanis and L. Delfini, e-print arXiv:1103.2054.
[83] P. H. Chavanis, e-print arXiv:1103.2698.
[84] P. O. Fedichev, Yu. Kagan, G. V. Shlyapnikov, and J. T. M.

Walraven, Phys. Rev. Lett. 77, 2913 (1996).
[85] P. H. Chavanis, Phys. Rev. E 69, 066126 (2004).
[86] P. H. Chavanis, Physica A 387, 5716 (2008).

031101-21

http://dx.doi.org/10.1103/PhysRevLett.76.1094
http://dx.doi.org/10.1103/PhysRevLett.76.1094
http://dx.doi.org/10.1103/PhysRevLett.95.226106
http://dx.doi.org/10.1103/PhysRevLett.95.226106
http://dx.doi.org/10.1098/rsta.1902.0012
http://dx.doi.org/10.1103/PhysRevE.66.036105
http://dx.doi.org/10.1103/PhysRevE.66.036105
http://dx.doi.org/10.1103/PhysRevE.66.046133
http://dx.doi.org/10.1103/PhysRevE.69.016116
http://dx.doi.org/10.1103/PhysRevE.78.061111
http://dx.doi.org/10.1103/PhysRevE.73.066103
http://dx.doi.org/10.1016/0370-1573(90)90051-3
http://dx.doi.org/10.1051/0004-6361:20011438
http://dx.doi.org/10.1051/0004-6361:20020306
http://dx.doi.org/10.1051/0004-6361:20021779
http://dx.doi.org/10.1016/0025-5564(81)90055-9
http://dx.doi.org/10.1007/s002850050049
http://dx.doi.org/10.1007/s002850050049
http://dx.doi.org/10.1088/0951-7715/12/4/320
http://dx.doi.org/10.1103/PhysRevE.69.066109
http://dx.doi.org/10.1209/epl/i2005-10450-2
http://dx.doi.org/10.1137/080722229
http://dx.doi.org/10.1137/080722229
http://dx.doi.org/10.1016/j.physleta.2010.01.068
http://dx.doi.org/10.1103/PhysRevE.83.031131
http://dx.doi.org/10.1086/147410
http://dx.doi.org/10.1086/162070
http://dx.doi.org/10.1086/191028
http://dx.doi.org/10.1086/145780
http://dx.doi.org/10.1086/147786
http://dx.doi.org/10.1088/1475-7516/2007/06/025
http://dx.doi.org/10.1088/1475-7516/2007/06/025
http://dx.doi.org/10.1016/j.physa.2005.06.088
http://dx.doi.org/10.1103/PhysRevE.68.036108
http://dx.doi.org/10.1140/epjb/e2008-00142-9
http://dx.doi.org/10.1016/j.physa.2010.12.018
http://dx.doi.org/10.1103/PhysRevE.81.051103
http://dx.doi.org/10.1103/PhysRevE.81.051103
http://dx.doi.org/10.1140/epjb/e2006-00310-y
http://dx.doi.org/10.1016/j.physa.2008.02.025
http://dx.doi.org/10.1016/S0196-8858(02)00556-0
http://dx.doi.org/10.1103/RevModPhys.39.862
http://dx.doi.org/10.1093/qmath/os-5.1.73
http://dx.doi.org/10.1103/PhysRevLett.69.2776
http://dx.doi.org/10.1086/177977
http://dx.doi.org/10.1086/177977
http://dx.doi.org/10.1080/00018739400101505
http://dx.doi.org/10.1103/PhysRevLett.66.2735
http://dx.doi.org/10.1103/PhysRevE.61.6644
http://dx.doi.org/10.1016/0003-4916(58)90037-X
http://dx.doi.org/10.1007/BF02731494
http://dx.doi.org/10.1007/BF02731494
http://dx.doi.org/10.1063/1.1703944
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1063/1.1678812
http://arXiv.org/abs/arXiv:1103.2050
http://dx.doi.org/10.1007/BF01400372
http://dx.doi.org/10.1016/0003-4916(76)90057-9
http://dx.doi.org/10.1103/PhysRevD.76.023004
http://dx.doi.org/10.1016/S0370-2693(01)00836-X
http://arXiv.org/abs/arXiv:1103.2054
http://arXiv.org/abs/arXiv:1103.2698
http://dx.doi.org/10.1103/PhysRevLett.77.2913
http://dx.doi.org/10.1103/PhysRevE.69.066126
http://dx.doi.org/10.1016/j.physa.2008.06.016

