
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 84, 030401(R) (2011)

Incompressibility of polydisperse random-close-packed colloidal particles
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We use confocal microscopy to study the compressibility of a random-close-packed sample of colloidal
particles. To do this, we introduce an algorithm to estimate the size of each particle. Taking into account
their sizes, we compute the compressibility of the sample as a function of wave vector q, and find that this
compressibility vanishes linearly as q → 0, showing that the packing structure is incompressible. The particle
sizes must be considered to calculate the compressibility properly. These results also suggest that the experimental
packing is hyperuniform.
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The random packing of objects has been studied scientif-
ically for nearly a century [1,2] (see Ref. [3] for a review).
This problem is often termed random close packing (RCP)
or maximally random jammed packing [4]. Important recent
work has focused on the packing of highly polydisperse
systems [5], ellipsoids [6], and tetrahedra [7], but the simplest
packing problem is the packing of monodisperse spheres. In the
past decade, simulations studying monodisperse spheres have
generated large RCP configurations with 105−106 spheres
[8,9]. These simulations enable study of density fluctuations
at very large length scales, or equivalently, small wave
vectors q. They find that the static structure factor S(q)
approaches zero linearly as q → 0, that is, S(q) ∼ q for
small q. This finding has been termed hyperuniformity [10].
One corollary is that the sample is incompressible, as the
isothermal compressibility χ in simple liquids can be found
from ρkBT χ = S(0) where ρ, kB , and T are the mean
density, Boltzmann constant, and temperature, respectively.
These observations of close-packed samples are in contrast,
for example, with simple liquids for which S(0) > 0 [10,11].
The existence of hyperuniformity has been seen in a variety
of systems (see for example discussions in Refs. [3,12]). In
general, long wavelength density fluctuations are important
for diverse fields including critical phenomena [13] and the
shear flow of glassy materials [14]. Likewise, understanding
random-close-packed samples is relevant for understanding
liquids, glasses, biological systems, and granular materials
[1,3,15]. The key connection between these two ideas was
suggested in 2003 by Torquato and Stillinger, who conjectured
that all close-packed samples should be hyperuniform given
some reasonable ideas of what it means to be close packed [10].

In 2010 we published an experimental study of a random-
close-packed sample of colloidal particles observed with
confocal microscopy [16]. Our data set was the positions of
more than 500 000 slightly polydisperse particles [17], and
we found that S(q → 0) > 0, implying that the experimental
sample was compressible. A simulation of a binary sample
found similar results [18]. These results seem to demonstrate
random-close-packed samples that are not hyperuniform.
However, two groups have shown that in polydisperse samples,
careful consideration of the individual particle sizes recovers
hyperuniformity and incompressibility [11,12]. In particular,
Berthier et al. showed how to compute the isothermal

compressibility when the individual particle sizes are known,
and demonstrated that samples with S(0) > 0 nonetheless can
be incompressible [11]. They examined data from a two-
dimensional bidisperse granular experiment and confirmed
that χ (0) = 0. The reason S(0) > 0 in polydisperse systems
is because density fluctuations are coupled to composition
fluctuations, but such samples can still be incompressible and
hyperuniform.

In this Rapid Communication, our goal is to determine if
our experimental sample is hyperuniform and incompressible.
To do this, we first develop a method to determine each
particle size from microscopy observations of a random-close-
packed sample of colloidal particles. We use numerically
generated packings to confirm that our method accurately
determines the particle radii. Using these radii, we analyze our
experimental data using the method of Berthier et al. [11]. Our
results confirm that our experimental system is hyperuniform
and incompressible. In contrast to the experimental data of
Ref. [11] (a two-dimensional bidisperse sample), we study a
three-dimensional sample with a continuous distribution of
sizes.

As we use the analytical method introduced by Berthier
et al. [11], we briefly summarize their method here. They
consider a wave-vector-dependent isothermal compressibility
χ (q), which is related to the structure factor of a monodisperse
sample by ρkBT χ (q) = S(q). They then derive an exact
formula relating χ (q) and S(q) for a polydisperse sample,
although the formula is “conceptually and computationally
difficult” to evaluate [11]. Thus, they derive a series of
approximate formulas, of which the first-order approximation
is sufficient for samples of low polydispersity such as ours.
To start with, they define single-particle density fields ρi(q) =
exp(iq · ri ) where ri is the position of particle i. They also
define the size deviation of particle i as εi = (ai − ā)/ā, where
ai is the radius of particle i and ā is the mean radius. (Note
that

√
〈ε2

i 〉 = p defines the polydispersity p of a sample.)
These εi are the small parameters used in the approximation.
Using these variables, they define a 2 × 2 matrix S(q) with
elements Suv(q) = 1

N
〈εu(q)εv(−q)〉, with u,v ∈ 0,1, εu(q) =

�N
i=1ε

u
i ρi(q), and N is the total number of particles. The matrix

elements can be used to provide a first-order approximation
χ1(q) as ρkBT χ1(q) = S00 − [S01]2/S11. They confirm that
χ1(0) ≈ 0 in cases for which the sample polydispersity is less

030401-11539-3755/2011/84(3)/030401(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.030401


RAPID COMMUNICATIONS

REI KURITA AND ERIC R. WEEKS PHYSICAL REVIEW E 84, 030401(R) (2011)

than 10%, while S(0) 	= 0 for those cases. Their results suggest
that random-close-packed systems are hyperuniform and
incompressible even when the sample is polydisperse [11,12].
It is important to note that strictly speaking, the relationship
between structure and compressibility is a thermodynamic
one and thus it assumes the sample is equilibrium, which
a random-close-packed sample certainly violates. However,
Ref. [11] is a good demonstration that this condition is not
crucial.

In our prior work, we used colloidal particles to generate a
random-close-packed sample, and imaged this with confocal
microscopy. We reprise the key experimental points here; a
more detailed experimental discussion is in Ref. [16]. We
use sterically stabilized poly(methyl methacrylate) (PMMA)
particles with ā = 1.265 μm. Previously we reported that
these particles had a polydispersity of ∼5% [16]; below, we
determine that the true polydispersity is 6.7%. The PMMA
particles are suspended in a solvent mixture that is slightly
lower density than the particles. The sample is mixed and
then the particles are allowed to sediment until they are close
packed. We use a confocal microscope to take clear images
deep inside our dense sample [19]. Overlapping images are
taken, with total volume 492 × 514 × 28 μm3. Within this
volume, particles are identified within 0.03 μm in x and y,
and within 0.05 μm in z [19,20]. The total data set contains
543 136 particles [17].

Estimating particle radii. The average particle size ā is
obtained from the position of the first peak of the pair
correlation function [16]. It is difficult to determine subtle size
differences between individual particles from microscopy due
to diffraction. However, obtaining the positions of each particle
can be done accurately. A large particle will be slightly farther
from its neighbors as compared to a small particle, and we use
this idea as a starting point for an estimation method for each
particle size.

Given that our sample is jammed, each particle must be
in contact with several of its neighbors. In fact, a numerical
simulation of random-close-packed monodisperse particles
showed that the mean contact number is 6 [10]. When particle
i contacts with particle j , the separation between these two
particles is given by rij = ai + aj , where ai and aj are their
radii. The average of rij over all neighbors j is given by
〈rij 〉j = ai + 〈aj 〉j . Next, consider separations rjk between
particle i’s contacting neighbors j and contacting neighbors k

of those particles. Again, we take an average of rjk with respect
to particles j and k, giving 〈〈rjk〉k〉j = 〈aj 〉j + 〈〈ak〉k〉j . Then
we subtract 〈〈rjk〉k〉j from 〈rij 〉j , leading to

ai = 〈〈ak〉k〉j + 〈rij 〉j − 〈〈rjk〉k〉j . (1)

In practice, we choose the Z = 5 nearest-neighbor particles
from particle i as the particles j , and assume these are the
contacting particles. Likewise for each particle j we identify
its Z closest neighbors for the particles k. The choice Z =
5 is justified below. To compute 〈〈ak〉k〉j , we use ā as an
initial guess for the particle sizes, and then iterate five times
to get more accurate values for ai . In this way ai is found
from the particle separations, which are obtained directly from
microscopy.
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FIG. 1. (Color online) (a) Scatter plot of the calculated radius ai
c

from our method [Eq. (1)] as a function of the given radius ai
g using

data from a simulated packing with polydispersity 7%. The solid line
corresponds to ai

c = ai
g . (b) The particle size uncertainty �a found by

analyzing simulation data from packings with a given polydispersity,
both without noise (circles) and with noise added to the particle
positions (triangles). The dashed line corresponds �a = p.

To validate our method, we simulate polydisperse RCP
samples using the algorithm of Refs. [21,22]. We use 512
particles with mean radius ā = 1 and polydispersity from 0.01
to 0.12, generating five independent configurations for each
polydispersity. The particle size distribution is a Gaussian.
Using the simulated position centers, we calculate the radii
of the particles ai

c by our method. Figure 1(a) shows a scatter
plot of ai

c as a function of the given radii ai
g from a simulation

with 7% polydispersity. The calculated radii are located around
ai

c = ai
g . We define the uncertainty of the size estimation as

�a =
√

〈[(ai
c − ai

g)/ai
g]2〉i . �a is plotted as a function of

polydispersity p as circles in Fig. 1(b). We find �a ≈ p/6.
The polydispersity of ai

c matches that of ai
g .

One experimental complication is that there is an uncer-
tainty in the position of each particle. In our experiment, the
uncertainties are 0.024ā in x and y and 0.0395ā in z. We add
this positional uncertainty to the true simulated positions, and
then redetermine the particle radii. As expected, this increases
the uncertainty �a of the final radii, shown by the triangles
in Fig. 1(b). �a increases by ∼0.01 compared to the case
without positional noise. Positional noise is fatal when the
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FIG. 2. (Color online) The uncertainty of the particle radius �a

is plotted as a function of the number of contacting neighbors Z used
in the algorithm. The data are from the simulated packings with a
polydispersity p = 0.07 with positional noise. Circles correspond to
Eq. (1) using 〈〈ak〉k〉j = ā with no iteration. Squares correspond to
five iterations of Eq. (1), and triangles correspond to ten iterations.
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polydispersity is less than 0.02, but otherwise our method
results in more accurate radii even in the presence of noise.

While the mean contact number for particles at jamming
should be 6, this contact number fluctuates from particle to
particle. Thus our choice of a fixed Z = 5 introduces some
noise. Revising our method to allow Z to vary from particle
to particle decreases �a only slightly at best. At worst, this
is quite sensitive to how contacts are defined, and �a can
be larger than the case with fixed Z. We justify our choice of
Z = 5 from the data shown in Fig. 2. The square symbols show
how �a depends on Z for five iterations of Eq. (1), and the data
have a minimum at Z = 5 although it is apparent that Z = 3,4,

and 6 work almost as well. Figure 2 also demonstrates that
five iterations (squares) is essentially as good as ten iterations
(triangles).

Next, we estimate each particle size of our experimental
data with our method. Given that Eq. (1) requires information
about both a particle’s nearest neighbors and also second
nearest neighbors, only particles sufficiently far from the
edges of our images have accurate sizes. We modify our
algorithm slightly for the experimental data as follows. We
find the coordination number zi of each particle, the number of
neighboring particles within a distance 2.8a (the first minimum
of the pair correlation function) [16]. From the particles in the
interior of the sample, we find the average coordination number
z̄ ≈ 12. Then, for every particle, we estimate the number of
touching neighbors Ti = 5zi/12 where we round Ti to the
nearest integer. For particles at the edge of the imaged volume,
Ti < 5 as not all of the neighbors are imaged. Then for each
particle, when averages over contacting neighbors j are done
in Eq. (1), these averages are over the Ti nearest neighbors.
After iterating Eq. (1) to find all radii, the edge particles are
removed by cropping the data to a volume of 440 × 461 ×
14.2 μm3, containing 217 816 particles.

Based on these particles with their calculated sizes, the
volume fraction of this sample is found to be φ = 0.647 ±
0.007, where the uncertainty of φ is due to the uncertainty
in determination of each particle size. Figure 3 shows a
distribution of the estimated particle sizes. This sample has a
polydispersity of 6.7%.1 Given this measured polydispersity,
Fig. 1(b) shows that �a ≈ 0.023 (corresponding to ā�a =
0.03 μm). The experimental distribution is not a Gaussian and
this is not an artifact of our method, as a simulated Gaussian
size distribution with positional noise leads to a measured
Gaussian size distribution.

Compressibility of experimental packing. Using our esti-
mated particle sizes, we now study the wave vector dependence
of the compressibility χ0(q) and χ1(q) of our experimental
data. Given the aspect ratio of our box, which is thin in

1The measured polydispersity of our sample (6.7%) helps explain
a discrepancy we previously noted between our observations [16]
and those of Dullens et al., who also studied dense suspensions of
sedimenting particles [24]. Their particles formed crystals during the
sedimentation, while our particles pack randomly. Their samples had
a polydispersity of 5%, while the polydispersity of our sample is 6.7%.
Crystal nucleation is sensitive to polydispersity in this range [23] and
this likely explains why our sample avoids crystallization, and why
the samples of Dullens et al. crystallized.
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FIG. 3. (Color online) Probability of particle sizes in our exper-
imental sample. The average size is 1.265 μm and polydispersity is
6.7%.

the z direction, we compute the Fourier transforms using
wave vectors in the qxqy plane. Figure 4 shows ρkBT χ0(q)
and ρkBT χ1(q). Our experimental data do not obey periodic
boundary conditions, and the effect of the boundaries appears
near q = 0. We calculate χ0(q) and χ1(q) with a variety of
window functions, and the fluctuations due to these different
choices are indicated by the error bars in Fig. 4. χ0(q) and χ1(q)
are independent of the choice of Fourier window functions
for qā/π > 0.2. For qā/π > 0.5, an upward curvature is
seen as the first peak of S(k) is approached; this curvature
starting at qā/π ≈ 0.5 is also seen in simulations with
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FIG. 4. (Color online) (a) The static structure factor S(q).
(b) ρkBT χ0(q) (no approximation) and ρkBT χ1(q) (first-order
approximation of Ref. [11]), from the experimental data. Square
symbols correspond to ρkBT χ0(q), which is proportional to S(q)
at small q. Circle symbols correspond to ρkBT χ1(q). The error bars
(drawn for every fifth point) are from using different windowing
functions in the Fourier transform. The lines are linear fits to the data
for 0.2 < qā/π < 0.5.
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106 particles [8]. Thus we do a linear fit to ρkBT χ0(q)
and ρkBT χ1(q) in the region 0.2 < qā/π < 0.5, shown as
the lines in Fig. 4. Both functions have linear behavior in
this region, and this is the same region fit in Ref. [16].
We find ρkBT χ1(0) = 0.002 ± 0.004, while ρkBT χ0(0) =
0.049 ± 0.008 as reported previously [16]. The uncertainties
are due to the uncertainties of particle positions and sizes,
and the choice of the fitting range. Our observation that
χ1(q) ∼ q shows that long wavelength density fluctuations are
suppressed. This is consistent with the observations of Berthier
et al. and shows that our system is incompressible [11]. To be
clear, we are neglecting the solvent, so technically we are
demonstrating that if we place hard spheres with the estimated
sizes at the locations we measure from the colloidal sample,
the hard sphere system will be incompressible.

To summarize, we have presented a method to estimate
the sizes of individual colloidal particles from experimental
knowledge of only their positions, and relying on the fact that
the sample is close packed. Numerical simulations confirm
that our method is robust even in the presence of realistic
experimental noise. Using the positions and sizes of over
200 000 random-close-packed particles from our experiment,
we confirm that our experimental system is hyperuniform and
incompressible. Our results are consistent with prior work
[11,12] and the data can be used with other algorithms for
quantifying hyperuniformity in polydisperse samples [12].
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