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Stochastic treatment of finite-N effects in mean-field systems and its application
to the lifetimes of coherent structures

W. Ettoumi1,2 and M.-C. Firpo2

1Ecole Normale Supérieure de Cachan, F-94235 Cachan, France
2Laboratoire de Physique des Plasmas CNRS-Ecole Polytechnique, F-91128 Palaiseau Cedex, France

(Received 10 May 2011; revised manuscript received 6 July 2011; published 19 September 2011)

A stochastic treatment yielding to the derivation of a general Fokker-Planck equation is presented to model the
slow convergence toward equilibrium of mean-field systems due to finite-N effects. The thermalization process
involves notably the disintegration of coherent structures that may sustain out-of-equilibrium quasistationary
states. The time evolution of the fraction of particles remaining close to a mean-field potential trough is analytically
computed. This indicator enables to estimate the lifetime of coherent structures and thermalization time scale in
mean-field systems.
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Many physical systems may be considered as isolated
assemblies of N bodies interacting via long-range pair inter-
actions. This is the case for systems ranging from charged par-
ticles interacting via Coulomb interaction to self-gravitating
massive objects such as globular clusters or stars in galaxies,
and this may even include suitably prepared Bose-Einstein
condensates [1] in a close future. The physically relevant issue
of the dynamics of those systems in the large-N limit forms
the subject of kinetic theory. Long-range systems are prone
to collective behavior that may be largely dominating before
binary collisional effects set in. This hierarchy between col-
lective and collisional behavior is responsible for the unusual
properties of the relaxation process toward equilibrium as well
as for the richness and complexity of the physics of long-range
systems. These are motivations for the present considerable
interest raised by long-range systems in various fields such
as plasma physics, astrophysics [2], statistical physics [3], or
applied mathematics.

The collective behavior of long-range systems as well as
the intricacies of the relationships between their dynamics,
kinetic theory, and equilibrium statistical properties may be
more conveniently unveiled through models that are already
of mean-field type for finite N . These are Hamiltonian models
describing, e.g., wave-particle interaction [4], which is a
ubiquitous phenomenon in hot and dilute plasmas, or the
all-to-all coupling of N bodies in long-range interactions of
the kind of gravitation in a compact space [5,6]. Despite their
relative simplicity, such models develop a rich long-range
phenomenology. This includes, in particular, the emergence
of quasistationary states (QSSs) having lifetimes diverging
with N , during which the time average of macroscopic
quantities, such as the temperature or the modulus of mean
fields, differs from their equilibrium statistical mechanics
ensemble averages. These QSSs may be connected to the
existence of coherent structures that may be viewed as
long-lived phase-space patterns related to locally insuffi-
cient mixing properties [7]. Consequently, the relaxation to
equilibrium should accompany the disintegration of coherent
structures.

The Rapid Communication is organized as follows: First,
a stochastic treatment of finite-N effects in mean-field
systems will be proposed, leading to the establishment of
a Fokker-Planck equation. In order to test this model, we

then shall consider an Hamiltonian model of N particles in
self-consistent interaction via a cosine potential. Starting from
configurations where O(N ) particles are trapped into their
self-potential well, an analytic expression giving the fraction
of the particles that remain trapped as a function of time will
be successfully tested against numerical results. The relevance
of this indicator to the thermalization issue will be discussed
shortly.

Consider N particles evolving in the phase space SN
L × RN

under the dynamics deriving from the Hamiltonian

H =
N∑

i=1

pi
2

2
+ 1

2N

s∑
n=1

N∑
i,j=1

Vn cos[kn(qj − qi)], (1)

where qi ∈ SL is the position of particle i on the circle SL ≡
R/L, pi its conjugate momentum, and where only the first s

long-range components with wave numbers kn = 2πn/L, for
1 � n � s, are retained in the potential term. When Vn ∝ n−2,
model (1) amounts to the long-range truncation of the one-
dimensional Newtonian potential with space-periodic bound-
ary conditions, which describes Coulomb or gravitational
interaction depending on the potential sign. Various systems
covered by (1) have been discussed in Ref. [8]. An extension
to a spatial dimension d > 1 should not be a conceptual
problem. Introducing the set of collective observables {Mn}
through

Mn = 1

N

N∑
j=1

(cos(knqj ), sin(knqj )) = Mn(cos φn, sin φn)

(2)

yields the equation of motion of any particle i as

q̈i +
s∑

n=1

knVnMn sin(knqi − φn) = 0. (3)

Therefore, the collective variables Mn behave as mean fields
that, as well as the phases φn, depend on time through the
self-consistency relations (2).

For smooth potentials as in (1), the convergence of the
finite-N dynamics to Vlasov equation is rigorously proved
on arbitrary finite-time intervals [9]. Vlasov equation being
time reversible, its solution f (p,q,t) cannot approach an

030103-11539-3755/2011/84(3)/030103(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.030103


RAPID COMMUNICATIONS

W. ETTOUMI AND M.-C. FIRPO PHYSICAL REVIEW E 84, 030103(R) (2011)

FIG. 1. (Color online) (Left-hand side) Comparison between the
numerically computed fluctuations of M1, M2, and M3 around their
local average 〈Mn〉 with a Gaussian fit, for system (1) with s = 3 and
Vn = n starting from an arbitrary initial condition. The inset shows
the evolution of M1, M2, and M3 with respect to time. (Right-hand
side) Autocorrelation of M1 after subtracting its local average.

equilibrium [10], yet macroscopic quantities, involving phase-
space integrals of f , such as the mean fields, can converge to
stationary values associated to QSSs. In the realistic finite-N
Hamiltonian framework, finite-N effects will in the long
term induce the thermalization process and disintegration of
coherent structures, possibly sustaining those QSSs.

Modeling this process, we assume that the system (1) is
trapped in a QSS, such that one can write the mean fields
as Mn(t) = M0

n(t) + δMn(t) with |δMn| � M0
n , where δMn

varies on a time scale which is very much smaller than the
characteristic time scale of M0

n , the latter being comparable to
a local average. We now make the hypothesis that, during the
QSS regime, the fluctuations around the local mean value have
a variance decreasing as N−1. The central idea behind this is
to replace the deterministic but yet very chaotic fluctuations
of δMn by stochastic processes, whose variances are suitably
chosen. Numerical observations support this modeling. For
instance, as shown in Fig. 1 for some special case, the mean
fields clearly exhibit two different time scales, in agreement
with the decomposition suggested earlier. Moreover, both
histograms and the autocorrelation function shown in Fig. 1
suggest that one can model the fluctuations δMn by a Gaussian
(white) noise.

Replacing δMn by the noise ξn such that 〈ξn〉 = 0,
and 〈ξn(t)ξn(t ′)〉 ∝ N−1δ(t − t ′), the Fokker-Planck equation
(FPE) associated with the Langevin equations coming from
the stochastic version of the equations of motion (3) reads

∂f

∂t
+ ∂

∂q
(pf ) −

s∑
n=1

knVnM
0
n sin(knq − φn)

∂f

∂p

=
s∑

n=1

kn
2Vn

2

2

〈
ξn

2〉 sin2(knq − φn)
∂2f

∂p2
. (4)

This equation may be interpreted as a Vlasov equation
supplemented with a right-hand side of order N−1, consistently
with the argument presented in Ref. [3], coming here not from
binary collisions but from the fluctuations of the mean fields.
This differs from other FPEs derived in mean-field systems
in other places [11,12]. Moreover, this equation was derived
without any need to invoke dissipation (see, e.g., Ref. [13]).

In what follows, we shall consider the case of a single
resonance (s = 1) in which coherent structures may survive
for long times close to the potential trough (see, e.g., Fig. 2).

FIG. 2. (Color online) (Upper panel) Phase-space snapshots at
increasing times (from left to right, t = 6, t = 100, and t = 2000) for
an initial cold-beam condition of energy U = 0.5. The simulation was
performed using N = 104 particles. The bold curves encompassing
the structures correspond to the instantaneous separatrix. (Lower
panel) Time evolution of the magnetization M and fraction n�/N

for N = 103 (green), 2 × 103 (red), 5 × 103 (black), and 104 (blue)
particles.

The FPE (4) may be further simplified by looking for
solutions in separate variables q and p writing f (p,q,t) =
g(q,t)f̃ (p,t). Assuming that g is even in the wave frame and
that

∫ L

0 g(q,t)dq is constant, one obtains a simple diffusion
equation

∂f̃

∂t
= D(t)

∂2f̃

∂p2
, (5)

with a diffusion coefficient

D(t) = k2V 2

2
〈ξ 2〉sin2(kq − φ), (6)

and sin2(kq − φ) ≡ ∫ L

0 sin2(kq − φ)g(q,t)dq/
∫ L

0 g(q,t)dq.
Numerical evidence [3] supports the fact that p and q may
be treated as separate variables and that q may be considered
as a fast variable compared to p, meaning that the distribution
function in q approaches much more quickly its Boltzmann-
Gibbs shape than the p one, which is consistent with basic
dimensional arguments [13]. The forthcoming numerical tests
will show that the average of sin2(kq − φ) may be effectively
replaced by its ensemble average.

From now on, in order to simplify expressions, we shall put
V = 1 and L = 2π , which gives k = 1. This amounts to the
well-known Hamiltonian mean-field model [3]. Figure 2 shows
numerical results obtained starting from a monokinetic beam
[6]. The upper panel shows the one-particle phase-space plots
at three different stages of the evolution. Deep inside the mean-
field potential trough, particles move almost regularly, forming
a clear coherent structure pattern that progressively dissipates.
It is interesting to note the similarity of these figures with
the phase-space plots for the one-dimensional finite-N cold
dark matter simulations of Ref. [14]. The lower panel shows
the evolution of the mean field for four different numbers of
particles, ranging from N = 103 to N = 104. The dashed line
marks its equilibrium ensemble average. It is clear from the
figure that the convergence toward equilibrium slows down as
N increases. Also displayed is the evolution of n�/N , which is
the fraction of particles initially trapped within the separatrices
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and which remain inside them up to time t . During a short
transient regime (not shown), ∼20% of the particles escape
the mean-field resonance. It is only after this lapse of time that
the regime becomes diffusive. Most importantly, Fig. 2 gives
evidence that the cancellation time of n�/N may be used as
a marker of thermalization as it qualitatively coincides with
the time where the mean field begins to fluctuate around its
equilibrium value in a stable way. This is not surprising since,
at the time when n�/N vanishes, the coherent structure has
been completely disintegrated. The dependence of M on N

becomes much clearer when increasing N to values of the
order of 105, but the numerical cost was too important for
us to perform a full simulation leading to a vanishing n�/N .
However, the early-time behavior of n�/N was still correctly
described by our model.

The equations of the separatrices are given by pS(t) =
±2

√
M(t) cos(q/2). Let us put λ = 2

√
M0 and consider it

to be almost constant. Figure 2 is a motivation to answer the
following question: What is the number of particles n�(t),
having initially momenta comprised between −λ and λ, that
remains in this domain up to time t ? Among such particles
are the particles forming the core of coherent structures that
slow down the mixing process. However, because of the
parametric resonance induced by the mean-field fluctuations,
these particles will eventually escape, and we shall now
estimate the characteristic time needed by the system to
evacuate a fraction 1 − δ of the N0 particles initially contained
in the band of momenta [−λ; λ]. Using the linearity of the
diffusion equation (5), one can focus on the contribution of
particles whose momenta remain up to time t within the band
[−λ; λ] and solve (5) by imposing the cancellation of f at
p = ±λ. Finally, integrating over p yields the solution

n�(t)

N0
=

∞∑
n=0

2(−1)n+1cn

(2n+1)π
exp

[
− (2n + 1)2π2

4λ2
Dt

]
, (7)

with D given by Eq. (6) and

cn =
∫ λ

−λ
f̃ (p,t = 0) cos

( (2n+1)pπ

2λ

)
dp∫ λ

−λ
f̃ (p,t = 0)dp

. (8)

As confirmed by the numerical simulations shown in Fig. 3,
the dynamics arising from Eq. (5) proves to correctly depict
the escape process through the validation of Eqs. (7) and (8). In
these numerical simulations, particles were initially distributed
according to a so-called waterbag distribution

f0(p,q) = 	(
p − |p|)	(
q − |q|)/(4
p
q), (9)

where 	 stands for the Heaviside step function. It is inter-
esting to note that when starting from these initial waterbag
conditions, the phase-space distribution eventually exhibits a
core-halo structure, which has been recently investigated in
Ref. [15].

Once again, it is visible on Fig. 3 that, at the time
when all the particles that where initially in the momentum
band [−λ; λ] have at least once escaped this domain, the
system has seemingly reached its thermal equilibrium. In
order to test the escape model given by Eqs. (7) and (8),
one needs to know the diffusion coefficient D given by
Eq. (6). As already discussed, sin2(q) may be estimated from

FIG. 3. (Color online) (Left-hand side) Snapshot of the one-
particle phase space at t = 12 for N = 5000 particles initially
distributed in a waterbag configuration (9) with 
p = 0.848 and

q = 2.16 (which corresponds to an energy U = 0.55). (Right-hand
side) Time evolution of the mean-field M (thin curve) and of nl/N

(bold curve). The dashed curve is the analytic expression for n�/N

as deduced from Eqs. (7) and (8). The initial time has been chosen at
time t = 10 and N0 = 0.95N .

〈sin2 q〉c = I1(β〈M〉c)/[β〈M〉cI0(β〈M〉c)]. A priori, 〈ξ 2〉 has
to be determined from numerical simulations since the system
is not at equilibrium. However, in the cases that were con-
sidered, the numerically computed variance 〈ξ 2〉 was almost
indistinguishable from its canonical value given by

〈δ2M〉c= 2

N

∂

∂β
log

[
v∗

β

√
2πN

∂2
vψ |v∗

e−Nψ(v∗)

]
−v∗2

β2
, (10)

where ψ(v) = v2/(2β) − log I0(v) and v∗ = β〈M〉c satisfies
the self-consistency equation ∂vψ |v∗ = 0. Numerically, this
gives 〈ξ 2〉 ≈ 0.43/N , which is consistent with the fit obtained
from numerical simulations. As shown in Fig. 3, the agreement
between the numerically computed time evolution of n�/N and
its analytic modeling (7) and (8) is quite satisfactory.

Let us finally estimate the time needed to destroy the inner
coherent structure by the means of Eq. (7). Considering that
N0 = O(N ) and D = O(N−1), a rough estimate of the time
τδ(N ) needed for n�/N to reach down a sufficiently small
fraction δ gives

τδ(N ) ∝ −N log δ. (11)

When D depends on time, Eq. (11) follows from the mean
value theorem. This first result recovers the linear N scaling
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FIG. 4. (Color online) (Left-hand side) Plot of τδ(N ) in log-log
scale with respect to N . As predicted by Eq. (11), the slope of the
dashed line is equal to 1. (Right-hand side) Plot of the numerically
measured τδ with respect to log δ. The behavior is linear over a wide
range of δ. As expected, the measured times for very low threshold
values are lower than the logarithmic prediction of Eq. (11), since the
latter is obtained in the continuous limit.
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found in the abundant literature of long-range interacting
systems [5,16,17], where the numerical evidence is extracted
from thresholds equivalent to the δ criterion imposed here.
One does not expect the continuum approach behind Eq. (7)
to remain valid for vanishingly small values of δ. However,
going up to the limit of validity of this model, one may
infer that the sweeping of phase space is sufficient to reach a
complete thermalization at a time τQSS when n� = O(1). Then
Eq. (11) would give the maximal scaling τQSS ∝ N log N . This
corresponds to the scaling recently suggested in Ref. [18] for
the s = 1 case.

Equation (11) predicts a linear behavior with respect to N ,
which we found to be correct over the whole range of values
of N studied here, independently from the chosen threshold
δ. We also checked the scaling with the latter parameter.
Figure 4 shows a very good agreement between Eq. (11) and
the numerical simulations.

These scalings contrast with the numerically obtained
N1.7 scaling for the QSS lifetime starting from two special

initial conditions [19,20]. These cases are, however, not in
contradiction with the results presented here since, even as
this is less obvious for Ref. [19], they both correspond to
QSS about a vanishing mean field, a case that is excluded
from the present framework since the phase would be no
longer defined. In the intermediate cases, where the QSS
magnetization is clearly above zero, but yet far from the equi-
librium expectation, this method provides a good estimation
of the time needed to destroy the coherent structures, but
fails to predict the QSS lifetime, since the effective model
does not capture the average growth of the separatrix with
time.

The present framework and results are expected to be
easily transposable to wave-particle models in which finite-N
effects eventually drive the system toward equilibrium in
contradiction with the Vlasov approach [21]. This discreteness
effect may be more than a numerical concern for simulations
since some physical effects [22] cannot be explained in the
Vlasov limit.
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