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Turbulent viscosity variability in self-preserving far wake with zero net momentum
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The profile of the self-preserving far wake with zero net momentum depends on the effective turbulent viscosity
coefficient. The current model is based on the assumption of uniform viscosity in the wake cross section. It predicts
the self-similar shape of the wake where the width W depends on the distance z from the body as W ∝ z1/5 for the
axisymmetric case (or z1/4 for the plane case). The observed wake width, however, demonstrates the dependence
W ∝ zα (where α � 1/5). We generalize the model of a self-preserving far wake for the case of the turbulent
viscosity coefficient depending on the radius. Additional integrals of motion allow a new family of self-similar
profiles with α � 1/5.
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The existence of long-lived self-similar turbulent wakes
behind moving (or streamlined) bodies at high Reynolds
numbers �105 has been well known since the 1950s [1].
Such wakes are produced behind most artificial self-propelled
bodies moving in the atmosphere and ocean (planes, ships,
submarines). This feature has been used for, e.g., finding ships
according to their wakes when another connection was lost. It
was found that the wake width of self-propelled bodies has a
power-law behavior [2], where the width of wake W depends
on the distance z from the body as W ∝ zα . This dependence
has been studied in laboratory experiments [3,4], where the
velocity profiles behind the body also was measured. Field
observations by radar measurements and by measurements of
surface tension [5–8] have also revealed the power-law self-
similar broadening of the wake with the distance. If there is a
nonzero net momentum flux across the wake, the conservation
of momentum uniquely determines the power index α = 1/3
(see, e.g., Ref. [9]). In the case of a self-propelled body the
momentum flux is zero and the wake shape is determined by the
properties of the turbulence, which are conveniently described
in terms of the effective viscosity. So far the only model
developed is the one in which the turbulent viscosity coefficient
is uniform across the wake, which results in α = 1/5 [9]. Yet
a number of studies where accurate measurements of the wake
spatial expansion rate have been performed have shown that
typically α < 1/5 [5,7,10]. Radar measurements [6,7] have
revealed α = 1/5 is an approximation that may be valid for
a part of the pattern but does not describe properly the far
ship wake. The uniform viscosity approximation implies quite
specific profiles of the velocity behind the body. Laboratory
studies of self-propelled bodies revealed velocity profiles that
are inconsistent with this assumption [3,4]. Thus, it is desirable
to analyze the wake behavior in a more general way, without
invoking the uniform viscosity approximation.

In the present paper, we investigate the properties of a
self-similar turbulent far wake behind a self-propelled body,
like a ship. The wake is a mean velocity field that is produced
as a result of the turbulence generated by the moving ship.
The mean velocity field can be measured directly only inside
the fluid, under the surface, which has been done so far
only in laboratory studies [3,4]. Radar measurements provide

information about the turbulent motions at the water surface
and, thus, should be treated as indirect observations of the
wake features [7,8]. Since the turbulent and the mean velocity
distributions are closely interrelated, radar measurement do
provide valuable information about the wake structure. In
our approach we treat the turbulence features as given and
derive the mean velocity profile as well as the wake expansion
rate. Generation of the turbulence by the engine or surface
waves [7,8] is not important for our analysis and is beyond the
scope of the present paper.

In what follows we study the effect of the nonuniform
viscosity and derive a new class of self-similar wake (profiles)
solutions. We consider the axisymmetric wake with direct
application to ships, although the results can be generalized
on a plane wake (behind a long cylinder, for example).

The depth of the turbulence source is negligible relative
to the width of the ship wake at noticeable distances where
the wake can be expected to be self-similar. The mean flow is
described by the velocities Uz(z,r) and Ur (z,r) for 0 � ϕ � π .
There is no dependence on ϕ within this region. Since Uϕ ≡ 0
the normal component of the mean velocity at the water-air
boundary vanishes as required. Let ui be the components of the
turbulent velocity and qij = 〈uiuj 〉 be the ensemble averaged
moments. The assumption of axisymmetry means that qij =
qij (z,r). It is worth noting that the presence of the water-
air boundary does not impose additional constraints on the
turbulent moments.

The equation for the mean flow takes the form

(
Ur

∂

∂r
+ Uz

∂

∂z

)
Uz = −1

r

∂

∂r
rqrz − ∂

∂z
qzz − 1

ρ

∂

∂z
P, (1)

where qrz = 〈uruz〉, qzz = 〈u2
z〉, and P is the mean pressure.

Observations of the turbulent wakes show that the turbulent
flow extends to large distances but only weakly expands. This
means [9] that |Ur | � Uz. Let L be the typical spatial scale of
inhomogeneity in the direction of the wake (z direction) while
l be the typical spatial scale of inhomogeneity in the transverse
direction (r), so that ∂/∂z ∼ 1/L and ∂/∂r ∼ 1/l. As noted
above, we are interested in the case where l � L. Let U0 be
the mean flow velocity in the z direction and V = Uz − U0
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FIG. 1. The far wake scheme.

(see Fig. 1). We expect that V � U0 far from the ship, so that
in the far wake Uz = O(U0). With all this taken into account,

U0
∂Uz

∂z
= O(U0V/L). (2)

For the turbulent velocities we cannot expect that any of the
components dominate, so that qrr , qzz, and qrz are expected to
be of the same order.

The continuity for the slow varying velocity allows to
estimate

Ur

l
∼ ∂Uz

∂z
∼ V

L
, (3)

so that

Ur = O

(
V l

L

)
� V � U0, (4)

in accordance with the initial assumption, and

Ur

∂

∂r
Uz = O(V 2/L). (5)

The amplitude of the turbulent motion, on the other hand,
can be comparable with the amplitude of the cross-stream
variations of Ur , that is, all qij = O(V 2). As a result, the
pressure gradient in the r direction

1

ρ

∂

∂r
P = O(V 2/l), (6)

while

1

ρ

∂

∂z
P = O(V 2/L) (7)

Similarly,

∂

∂z
qzz = O(V 2/L). (8)

With all of the above taken into account, the equation for the
momentum transfer in the direction of the flow can be truncated
to the following:

U0
∂

∂z
V = −1

r

∂

∂r
(rqrz). (9)

We shall seek solutions of the type

V = Usf (ξ ), Us = Azβ, ξ = r/zα, (10)

qrz = −U 2
s g(ξ ). (11)

Substitution in (1) gives β = α − 1 and

s(α − 1)f − sαξf ′ = 1

ξ

d

dξ
(ξg), (12)

where s = (U0/A). Functions f and g are still to be found.
It is widely accepted that one express the turbulent stress

in terms of the turbulent viscosity, which is defined by the
relation

−qrz = νt

∂V

∂r
; (13)

then the equation of motion takes the form

U0
∂V

∂z
= 1

r

∂

∂r

(
rνt

∂V

∂r

)
, (14)

where νt = Bz2α−1(g/f ′), and the prime denotes ξ derivative.
The integral I0 = ∫ ∞

0 V r dr is proportional to the to-
tal momentum across the wake and is conserved. In-
deed, (d/dz)[

∫ ∞
0 U0V r dr] = − ∫ ∞

0 [∂(rqrz)/∂z] dr = 0. If
I0 
= 0, the conservation of momentum, together with
the assumption that V ∝ zf (ξ ), immediately gives I0 ∝
z3α−1

∫ ∞
0 f (ξ )ξ dξ = const , and therefore we obtain a well-

known value α = 1/3.
For the self-propelled body far wake, when uL/U0l ∼ 1,

one has I0 = 0 so that the momentum conservation does not
provide additional constraint, because the source and dissi-
pation are in balance [11]. Let us consider a higher moment
Im = ∫ ∞

0 U0V rm+1 dr . Assuming convergence, one has

d

dz
Im = −

∫ ∞

0
rm ∂(rqrz)

∂r
dr

=
∫ ∞

0
rm ∂

∂r

(
rνt

∂V

∂r

)
dr

= m

∫ ∞

0
V

∂

∂r

(
rmνt

)
dr, (15)

where we have taken into account that V → 0, ∂V/∂r → 0
as r → ∞, and qrz is finite. If [∂(rmνt )/∂r] ∝ r , then∫ ∞

0 V [∂(rmνt )/∂r] dr ∝ I0 = 0 and Im is conserved. The
viscosity coefficient was assumed constant in Ref. [9].
However, it may depend on coordinates. In general, in the
axisymmetric self-similar case it should have the form

νt = K(z)ξ 2−m, (16)

where K(z) is some function on z. Such behavior of the
turbulent viscosity was reported in Ref. [12]. Conservation
of Im gives for the self-similar solution α = 1/(m + 3),
K(z) = Bz2α−1, and g = ξ 2−mf ′, where B = const. It should
be noted that similar results can be obtained for the plane
flow. In this case we obtain α = 1

m+2 .
It is usually assumed that νt does not depend on ξ , which

means m = 2 in (16) and α = 1/5. However, this assumption is
not well justified. For m > 2 the turbulent viscosity νt diverges
as r → 0. However, once ∂V/∂r vanishes sufficiently rapidly
so that qrz remain well defined, this divergence is formal
only.
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Substituting now the expression for g into (12) one arrives
at the following equation:

f ′′ +
[

3 − m

ξ
+ s

m + 3
ξm−1

]
f ′ + s(m + 2)

m + 3
ξm−2f = 0

(17)

with the constraint
∫ ∞

0 f ξ dξ = 0. For arbitrary m � 2 and
taking into account the self-similarity and boundary condi-
tions, we obtain the general solution of Eq. (17):

f = C1F1

(
1 + 2

m
,

2

m
,

smξm

3m2 + m3

)
, (18)

where C is a constant and 1F1(a,b,z) is a confluent hyper-
geometric function. For integer values of m the solution of
Eq. (17) takes the form

f = (a/s + ξm) exp(−sξm/b), (19)

where a and b are some constants. For example, the observed
α = 1/7 would correspond to m = 4. In this case the equation
takes the form

f ′′ +
[
−1

ξ
+ s

7
ξ 3

]
f ′ + 6s

7
ξ 2f = 0 (20)

with the solution

f (ξ ) = (C1 + C2aξ 4) exp(−aξ 4), a = s/28. (21)

The solution of Eq. (17) for certain values of m (and s = 1)
is shown in Fig. 2.

As one can see, the velocity profile is significantly sensitive
to the behavior of turbulent viscosity (Reynolds stresses).
On the other hand, as follows from the definition (10) of
parameter s, it specifies the initial amplitude and width (l)
of the velocity profile; i.e., it is associated with the properties
of the engine. The influence of the parameter s on the velocity
profile is shown Fig. 3 for m = 4. As one can see, the overall
shape of the curve (number of extrema and zeros) does not
change, while the initial amplitude and width decrease with
increasing s.

FIG. 2. Wake profiles for certain parameters m. m = 2 corre-
sponds to νt = const.

FIG. 3. Wake profiles for certain parameters s and m = 4.

Comparison of the obtained profiles with the experimental
data [4] is shown in Fig. 4. The experimental data presented
in the Fig. 4 were normalized on the amplitude of the
profile at the distance z/D = 46. Only the data points
corresponding to the far wake are shown. The experimentally
measured profiles behind a self-propelled body are well
fitted by the analytically derived profiles of the wake with
s = 2 and m = 3 at the distances z/D = 20 − 30 and m = 2
at z/D = 46.

The width of the core of the flow (central part; see Fig. 2)
decreases with increasing m. Simultaneously, the effective
width of the wake also decreases. It is worth noting that the
measured velocity profile is expanding slower (smaller α or
larger m) near the body while starting to expand faster farther
from it. In the far wake the profile approaches that of the
uniform viscosity one, m = 2. On the other hand, the ship
wake observations [5,7] show that at relatively short distances,
the wake has a shape corresponding to uniform viscosity, while
the far wake shape indicates that the viscosity depends on
the radius (α < 1/5). It is not clear what is the reason for
the different behavior of the wakes in laboratory experiments
and in the sea. The difference may arise from the different
generation of turbulence and mixing in the wake. Under natural

FIG. 4. Comparison of model and experimental data [4].
Experimental data normalized on the amplitude of the profile at
distance z/D = 46.
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conditions (e.g., in the sea) turbulence is created near the ship
by its propeller. Mixing is efficient, and the turbulence becomes
homogeneous at relatively small distances. In the laboratory
experiments there is no propeller and a wake is formed in
the flow behind bluff body (with or without rotation), which
leads to the formation of an M-shaped wake (see, for example,
Ref. [13] and references therein). Mixing is slower, and,
respectively, turbulent becomes homogeneous father away
from the body. Similar behavior would be observed behind
a wind-propelled yacht if the velocity could be comparable to
that of the laboratory experiments.

It should be noted that the condition Uϕ = 0 can be omitted
for the flooded wake, which does not affect the results obtained
in this work.

To summarize, we have derived a family of self-similar
solutions for the axisymmetric turbulent wake by relaxing
the assumption of the uniform turbulent viscosity for a
self-propelled body wake and considering a power-law de-
pendence νT ∝ r2−m. The latter allowed us to construct a
new integral of motion, Im = ∫ ∞

0 rmV r dr, instead of the
vanishing momentum flux I0 = ∫ ∞

0 V r dr = 0. Each of these
integrals corresponds to a flow profile width W (z) ∝ z1/(m+3).
The velocity profiles are derived for different m. These
profiles are compared directly with existing measurements and
may be further verified in future experiments. The profiles
and exponents have certain implications for the statistical
properties of turbulence and may be used for studies on drag
reduction (see, for example, Refs. [14,15]).
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