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Reaction-diffusion fronts in media with spatially discrete sources
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The exact solution for a reaction-diffusion front propagating in a heterogeneous system of discrete, point-like
sources is obtained without resorting to a representation of the sources by a spatially continuous function. When
the reaction time is smaller than the characteristic diffusion time between neighboring sources, the front speed
predicted by this discrete source model differs from the continuum theory based on the spatial averaging of
the heterogeneities. Furthermore, when the sources are regularly distributed in space, discreteness introduces
a limit and propagation beyond this limit is only possible in a system with randomly distributed sources via
local fluctuations of the concentration. The discrete regime of front propagation is observed experimentally in
suspensions of iron particles burning in oxygen-xenon mixtures.

DOI: 10.1103/PhysRevE.84.027301 PACS number(s): 47.70.Pq, 82.40.Ck, 05.40.−a

Propagating diffusion fronts in reactive, heterogeneous
media consisting of two spatially separated phases are common
in many fields, such as chemical kinetics, combustion, biology,
etc. [1]. The reaction in such systems is localized within
or at the phase boundaries; thus, the source term in the
governing reaction-diffusion equation is not a continuous
spatial function, i.e., it is discrete. Often, the approach used
for modeling propagating fronts in such discrete systems is
to average (homogenize) the source term with a spatially
continuous function. However, a homogeneous representation
of the sources is justified only if the two characteristic scales of
the propagating diffusion front, the width of the reaction zone
lR = vtR , and the width of the diffusion zone lD = D/v, are
much larger than the scale of the system heterogeneity l (here
v is the front speed, tR is the characteristic time of reaction,
and D is the active component diffusivity) [2,3]. Because the
front length scales are functions of the front speed, they cannot
be estimated a priori from a solution that uses a yet unjustified
source homogenization procedure [4].

To investigate the validity of the homogenization approach
to model the diffusion front in a system with heterogeneous
sources, we will obtain in this Brief Report an exact solution
for the front speed without spatial averaging of sources and
will compare it to a known solution derived from a mean-
field theory approach. We will show that, in a system with
regularly distributed sources, discreteness results in a front
propagation speed v that is independent of the characteristic
reaction time tR . Moreover, we will show that discreteness
leads to a propagation limit with nonzero front speed in a
regular distribution of sources and that the front can propagate
beyond this limit in a system with randomly distributed sources
only through fluctuations in the local concentration. Finally, we
will show experimentally that the continuous and the discrete
regimes using the same reactive system can be achieved by
changing the diffusivity of the active component.

In our analysis, we will consider the simplest possible
discrete system where the sources of the diffusing component
are points embedded in an inert continuum. We will also
assume the source term to be a stepwise function in time:
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the source turns on when the diffusing component reaches
some prescribed threshold Ti and then releases the active
component with constant rate for a prescribed period of time
tR . In spite of its simplicity, such a discrete source model
has a physical analog: a flame in suspensions of a nonvolatile
solid fuel in a gaseous oxidizer [2], in which case the active
component released by the particles is heat. Indeed, due to the
density difference between the solid fuel and gas of more
than three orders of magnitude, the distance between fuel
particles in a combustible suspension is much larger than their
diameter, such that the particles can be approximated as point
sources. The ignition temperature Ti of particles is, in the first
approximation, independent of flame speed. Furthermore, the
reaction time tR after ignition is controlled by the O2 diffusion
toward the particle surface [5], and, as a first approximation,
the diffusivity can be assumed to be independent of the tem-
perature. Using terminology common to combustion, the three
dimensionless parameters characterizing the problem can be
identified as the ignition temperature θi = cpρTi/(QB) (Q is
the heat release per unit of fuel, B is the fuel concentration,
cp is the mixture specific heat, and ρ is the density of the
media), the front speed η = vl/D (v is flame speed, l is the
distance between sources, and D is the thermal diffusivity of
the media), and the combustion time τc = tRD/l2.

The temperature field θ is governed by the reaction-
diffusion equation with a source term

∂θ

∂t
= ∇2θ + F, (1)

where for spatially continuous sources (i.e., space-averaged
representation), the term F is defined as

F =
{

0 if x < 0 or x > ητc,

1
τc

if 0 � x � ητc,
(2)

where this source term is formulated in a reference frame
attached to a steadily propagating front with the ignition
surface located at x = 0. The expression defining η in a
continuum with a stepwise reaction rate is obtained by
matching the boundary conditions θ and dθ/dx at x = 0 [2]
and can be written using dimensionless parameters as follows:

θi = 1 − e−η2τc

η2τc

. (3)

027301-11539-3755/2011/84(2)/027301(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.027301


BRIEF REPORTS PHYSICAL REVIEW E 84, 027301 (2011)

FIG. 1. (Color online) Dependence of the front speed η on the
combustion time τc in a system with discrete heat sources and different
ignition temperatures θi . The solid line is a continuum solution in
which the sources have been homogenized with the inert media.
The dashed line is the solution for regularly spaced sources. Points
represent the average front speed measured from multiple simulations
with randomly distributed sources. The shaded area represents the
region where propagation is no longer possible in a system of regularly
distributed sources.

Equation (3) contains only one combination of dimensionless
parameters η2τc that does not depend on l because the heat
source term has been spatially homogenized. The dependence
of η on τc is plotted in Fig. 1 as thin solid lines. By linearizing
Eq. (3), it can be shown that η is proportional to 1/

√
τc. In

other words, the continuum model predicts that η tends to
infinity as τc → 0. This condition reflects the fact that, in the
continuum model, the propagation of the diffusion front is
controlled by the reaction rate of the sources.

To obtain an expression for the front speed in the same
system without invoking source averaging, the source term F

is expressed in the stationary, lab-fixed reference frame as an
explicit function of the coordinates of the kth sources xk and
its ignition time τk:

F =
{∑N

k=1 g(x,xk)δ(τ − τk) if τc = 0,∑N
k=1

1
τc

g(x,xk)�(τ − τk)�(τ − τk − τc) if τc > 0,

(4)

where � is the Heaviside function, accounting for sources
that are still burning at the moment of ignition, N is the
number of ignited sources, and the function g is equal to
1 when x = xk or 0 otherwise. We initially assume that
the distribution of sources forms a three-dimensional, cubic
lattice, that the front propagates in the x direction from
left to right, and all the sources in a z-y plane ignite
simultaneously, i.e., the front is flat. Due to linearity of
the simplified heat diffusion equation, the temperature of a
plane of sources θs just about to be ignited (m = 0) can be
found by linear superimposition of the contributions from

all reacted and still reacting sources on the left side of the
domain:

θs =
∞∑

m=1

∞∑
n=−∞

∞∑
p=−∞

	θmnp. (5)

When τc � 1, all sources on the left side of the igniting plane
are already reacted at the moment of ignition. In this case,
reacted sources can be approximated by δ functions not only
in space but also in time and 	θmnp is the Green’s function for
an individual source:

	θmnp = 1

(4πm	τ )3/2
exp

(
− (m2 + n2 + p2)

4m	τ

)
. (6)

We now assume that consequent planes of sources are ignited at
regular time intervals 	τ so the time elapsed from the ignition
of the mth row can be written as m	τ [2,6]. By combining
Eqs. (5) and (6), η can be expressed for τc = 0 as

θi = 1

(4π )3/2

∞∑
m=1

∞∑
n=−∞

∞∑
p=−∞

(
η

m

)3/2

× exp

(
− (m2 + n2 + p2)η

4m

)
. (7)

For τc � 0, Eq. (7) can be written in the general form using
the integral over time of Green’s functions:

θi = 1

(4πτc)3/2

∞∑
m=1

∞∑
n=−∞

∞∑
p=−∞∫ m

η

( m
η
−τc)�( m

η
−τc)

τ−3/2 exp

(
−m2 + n2 + p2

4τ

)
dτ,

(8)

where τ is an integration variable. Unlike the continuum
approximation given by Eq. (3), the front speed defined by
Eqs. (7) and (8) explicitly depends on the structure of the
media, i.e., on the intersource spacing l. For the limiting case of
τc = 0 given by Eq. (7), it is inversely proportional to l, but the
dependence diminishes with increasing combustion time τc.
Therefore, τc is the measure of the system’s departure from the
continuum case: the system demonstrates discrete properties
when τc � 1 and becomes a continuum when τc � 1. The
identification of the discreteness parameter τc now provides
a quantitative tool that determines when spatial averaging is
a valid procedure [2,7]. Just as spatial averaging may not be
justified in certain systems, the existence of heterogeneities
in the media through which the reactive front propagates is
not sufficient grounds to reject the use of spatial averaging.
Only by examining the discreteness parameter τc can the
appropriateness of spatial averaging be evaluated.

The front speed η predicted by Eq. (8) is plotted in Fig. 1
as a thick dashed curve. For values of τc � 1, the continuum
solution with continuous heat release [i.e., Eq. (1)] merges
with the discrete source model. For τc � 1, however, the front
speed obtained by the discrete model becomes insensitive to τc

and departs from the continuum solution. This reflects the fact
that, as τc → 0, the propagation of the front is dictated by the
diffusion of heat across the intersource spacing, a feature that
is absent in the continuum solution given by Eq. (1). Whereas
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FIG. 2. (Color online) Time-temperature histories of a source
igniting under physically (a) invalid and (b) valid conditions. The
time τ = 0 corresponds to the ignition of the source and the thin gray
line originating at τ = 0 corresponds to θ if ignition is omitted. In
(a), the first intersection between θ and θi is denoted as τi,2.

the continuum model fails when τc → 0, a finite front speed is
predicted by Eq. (8) because the discrete model accounts for
the intersource heat diffusion.

The discrete source solution with regular spacing exhibits
nonphysical behavior for θi > θi,cr, where θi,cr ≈ 0.568. Ex-
amination of the time-temperature history of a source igniting
under nonphysical conditions, as shown in Fig. 2(a), indicates
that Eqs. (7) and (8) demand that the sources ignite as
their temperature is decreasing, having previously crossed
the ignition temperature θi without igniting [3]. The time-
temperature history of a source igniting under physically valid
conditions is shown in Fig. 2(b). The nonphysical branch
of Eq. (8) is plotted in Fig. 1 as a thin dashed line for
θi = 0.6 and 0.7, where the front speed η decreases with
a decreasing combustion time τc (a result that goes against
physical intuition). Moreover, the shaded region in Fig. 1
represents the η-τc parameter space, where ignition will always
occur under nonphysical conditions. If the condition of a fixed
delay between sources is relaxed, and the sources are allowed
to ignite upon first encountering the ignition temperature, then
the sequence of ignition events is disrupted and the front
promptly quenches in this nonphysical regime. Thus, this
condition is associated with a propagation limit deriving from
the discrete nature of the media. This limit, which occurs at
finite front speed and in the absence of heat losses, is unique
in combustion theory [3,8]. The solution shown here for a
three-dimensional system of regularly spaced sources can also
be shown to apply to a one-dimensional system of equally
spaced planar sources and a two-dimensional regular array
of line sources if we note that the summation in the j and
k components in Eqs. (7) and (8) can be approximated by
integrations over planar and line sources, respectively. Thus
the propagation limit and front speed behavior found here
apply equally to systems with regularly spaced sources for any
system dimensionality.

To explore the effect of randomizing the spatial positioning
of the sources (in contrast to the solution with the regular lattice
presented previously), simulations in systems with randomly
distributed point sources were investigated by the method of
superimposing Green’s function of individual sources. Com-
puter simulations were performed in two-dimensional (2D)
square domains containing 6400 sources. While numerical

)b()a(
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FIG. 3. (Color online) Two-dimensional numerical simulations
and photographs of the flame in iron suspensions in Xe-O2 [(a) and
(c)] and He-O2 [(b) and (d)] mixtures. The upward arrows indicate
the propagation direction.

simulations were required to examine a statistically significant
number of randomly generated systems with a large number
of sources, the method of solution remained based on the
superposition of Green’s functions and no finite difference
or other numerical approximations were introduced. Periodic
boundary conditions were applied to the side boundaries by
placing images of reacting sources outside the domain, while
the front and back boundaries remained free. The initiation of
the propagating front was performed by a forced ignition of a
layer of sources. Snapshots of the resulting propagating fronts
are shown in Figs. 3(a) and 3(b) for the discrete and continuous
regimes, respectively. Significant roughening of the front can
be observed for the discrete regime of propagation. The front
speed η was obtained by linearly fitting the x positions and
the corresponding ignition times of reacting sources. The
average front speeds (plotted as points in Fig. 1) were obtained
from multiple simulations performed with identical parameters
but different random spatial distributions of the sources. The
agreement between Eq. (8) and the front speed obtained from
the simulations performed with random distributions is quite
good. The front is capable of propagating successfully through
sources randomly distributed under conditions for which
propagation with regularly spaced sources is not possible, due
to the quenching phenomenon discussed above. Propagation
beyond the limit associated with a regular distribution of
sources is only possible through the exploitation by the front
of concentration fluctuations inherent to randomly distributed
sources.

Both continuous and discrete propagation regimes were
realized experimentally in suspensions of iron dust particles
in a gaseous oxidizer. At moderate O2 concentrations, iron
particles in suspensions react completely heterogeneously
without any gaseous products matching the model assumption
of point sources. By replacing N2 in air first by He and
then by Xe, the thermal diffusivity can be drastically altered,
changing the value of the dimensionless combustion time τc

by almost an order of magnitude from 3.2 (predominantly
continuum regime, τc > 1) to 0.4 (predominantly discrete
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FIG. 4. (Color online) Ratio of flame speeds between two
different O2 concentrations in He and Xe mixtures. The inset shows
experimental measurements of the flame speed in iron suspensions in
21% and 40% O2 in He and Xe.

regime, τc < 1) without changing the reaction chemistry or
adiabatic flame temperature. These values of τc were used in
the simulations shown in Figs. 3(a) and 3(b). The experimental
procedure consisted of producing a fuel-rich suspension of

iron particulates inside a glass tube and igniting the mixture at
the open end of the tube. A laminar flame was initiated and a
high-speed camera recorded the propagation of the flame along
the tube. The experiments were performed in reduced gravity
created inside an aircraft flying a parabolic trajectory at gravity
levels below 0.05 g, which eliminated particle settling and
natural convection, allowing observation of low speed flames
(v ≈ 5 cm/s) characteristic for 25-μm iron particles in Xe-O2

mixtures. The particle-to-particle nature of the discrete regime
for iron suspensions in Xe-O2 was manifested by the rough
front structure, whereas the flame front in He-O2 mixtures
was smooth, characteristic of the continuous regime (see
Fig. 3). A similar difference in front appearance for He and Xe
mixtures was demonstrated by the numerical model, as shown
in Fig. 3.

Besides the flame appearance, the insensitivity of the flame
speed to particle combustion time corroborates the discrete
propagation regime in Xe-O2 mixtures, as shown in Fig. 4.
Flames in Xe mixtures are less sensitive to changes on the O2

concentration CO2 , or the particle reaction time (tR ∼ 1
CO2

),
suggesting that the propagation mechanism is limited by
particle-to-particle heat diffusion, characteristic of discrete
flames, whereas flames in He mixtures varied with the O2

concentration in better agreement with the continuum theory
(v ∼ 1√

tR
).
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