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We consider the diffusion of Brownian particles in one-dimensional periodic potentials as a test bench
for the recently proposed stochastic path integral hyperdynamics (PIHD) scheme [Chen and Horing,
J. Chem. Phys. 126, 224103 (2007)]. First, we consider the case where PIHD is used to enhance the transition rate
of activated rare events. To this end, we study the diffusion of a single Brownian particle moving in a spatially
periodic potential in the high-friction limit at low temperature. We demonstrate that the boost factor as compared
to straight molecular dynamics (MD) has nontrivial behavior as a function of the bias force. Instead of growing
monotonically with the bias, the boost attains an optimal maximum value due to increased error in the finite path
sampling induced by the bias. We also observe that the PIHD method can be sensitive to the choice of numerical
integration algorithm. As the second case, we consider parallel resampling of multiple bias force values in the
case of a Brownian particle in a periodic potential subject to an external ac driving force. We confirm that there is
no stochastic resonance in this system. However, while the PIHD method allows one to obtain data for multiple
values of the ac bias, the boost with respect to MD remains modest due to the simplicity of the equation of motion
in this case.
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I. INTRODUCTION

The study of particles performing Brownian motion in a
periodic potential constitutes a hallmark example of stochastic
particle dynamics with important applications in various
branches of science and technology. Perhaps the most common
application of periodic Brownian motion is the diffusive
dynamics of atoms and molecules on crystal surfaces [1].
Surface diffusion is among the most important mechanisms
that control processes such as island nucleation and subsequent
surface growth. It has been shown that controlling the mobility
of particles on the surface by external means, such as an ac
or dc electric field, allows morphological control over the
growing surfaces [1]. It is thus of great interest to model
periodic Brownian motion with static and time-dependent
external fields.

To this end, there have been several studies reporting
the diffusion of a single Brownian particle in a periodic
potential with external ac bias applied [2–5]. Most of the
studies reporting the behavior of Brownian particles discuss
the influence of an oscillating bias on transport coefficients.
The central issue here is the existence of a stochastic resonance
(SR), which can greatly enhance the diffusion coefficient D in
two dimensions [3]. However, it has been shown in the case
of one-dimensional (1D) periodic potentials that although the
local jump rate of particles can be enhanced, there is no true
SR in the hydrodynamic limit [2,5].

An interesting limit of the periodic Brownian motion is
where the energy barrier V0 is much larger than the thermal
energy (i.e., βV0 � 1 [1], where β = 1/kBT , kB is the
Boltzmann constant, and T the absolute temperature). Since
Brownian motion is activated by thermal fluctuations, the
diffusion rate is proportional to exp(−βV0), which becomes
very small at low temperatures. To overcome this rare event

problem in molecular dynamics (MD) simulations, Voter [6]
has proposed the so-called hyperdynamics (HD) scheme,
which involves accelerating the dynamics by adding proper
bias potential, which effectively lowers the barrier height.
The dynamics is then corrected based on the approximate
transition state theory (TST). There exist various approaches
to the choice of the bias potential, and some examples can be
found in Refs. [7–10].

However, a scheme has been proposed that is based on
the mapping of the stochastic Langevin equation to a path
integral form [11]. Unlike the standard HD scheme, this so-
called stochastic path integral hyperdynamics (PIHD) method
allows an exact correction of the dynamics by resampling the
simulated paths. In other words, this method is not restricted
to the TST approximation. Further, it is not restricted to
static energy barriers; both entropic barriers and even time-
dependent bias can be employed. This allows an efficient way
to overcome the large barrier problem, as demonstrated in
Ref. [11]. However, a systematic study of the efficiency of the
PIHD method is needed. In this work, we perform numerical
studies of monomer diffusion in a one-dimensional (1D)
periodic potential in the low-temperature and high-friction
regime, where the analytical solution of the barrier crossing
rate is known. We study the computational efficiency of the
PIHD method with two different types of bias potential,
revealing nonmonotonic behavior of the boost factor. We
also develop a simple mathematical model that explains the
observed behavior. Furthermore, the PIHD method is not
limited to the case of high barriers. Since in principle any
external bias force can be used, it should be possible to obtain
results for many different bias values from running Langevin
dynamics (LD) simulations with a single value of the bias
force, or even without such a force if need be. To demonstrate
this parallel resampling, we employ the PIHD method to study
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the diffusion of a single Brownian particle in a 1D periodic
potential with ac forcing and, show how the PIHD method can
be employed to obtain the transport coefficients for a range of
different external forcing terms from a single simulation run.
However, in this case the boost obtained remains modest due
to the simplicity of the equations of motion to be integrated.

II. PATH INTEGRAL HYPERDYNAMICS

Brownian motion of a single particle can be represented by
the Langevin equation

mr̈(t) + mγ ṙ(t) − F = ξ (t), (1)

where r(t) denotes the position of the particle of mass m

at time t , moving under the influence of external force F .
The random force ξ (t) satisfies 〈ξ (t)〉 = 0 and

〈
ξi(t)ξj (t ′)

〉 =
2kBT mγ δi,j δ(t − t ′), where γ denotes the friction coefficient,
kB is the Boltzmann constant and T is the absolute temperature.
The probability density of finding the particle at rf at t given
the initial position r0 at t0 is

P (r0,t0|rf ,t) = C

∫
[Dr] exp{−βI[r(t)]}, (2)

where C is a normalization constant, [Dr] represents the path
integral over all possible trajectories r(t), and the effective
action is given by

I [r(t)] = 1

4mγ

∫ t

t0

dt ′[mr̈(t ′) + mγ ṙ(t ′) − F ]2. (3)

In a system with an energy barrier much larger than the
thermal energy kBT , the probability of the particle crossing
the barrier is very small. To make such transition events more
frequent, a bias force Fb(r,t) is added to the external force
F . In this boosted system, the particle obeys the Langevin
equation

mr̈(t) + mγ ṙ(t) − F = ξ (t) + Fb(r,t). (4)

Obviously, this leads to dynamics and transition probabilities
that are different from those given by Eqs. (1) and (2).
However, as demonstrated in Refs. [11–13], it is possible to
exactly recover the original probability density of Eq. (2) from
the biased dynamics by writing

P (r0,t0|rf ,t) = C

∫
[Dr] exp{−βIb[r(t)]} exp{−βIξ [r(t)]},

(5)

where the effective action can now be written in two parts: the
action in the boosted system (Ib) and the correction

Iξ (t) = 1

4mγ

∫ t

t0

dt ′Fb[r(t ′),t ′]{Fb[r(t ′),t ′] + 2ξ (t ′)}. (6)

In the end-point (Ito) discretization scheme this integral
reduces to the discrete sum

Iξ (t) = 1

4mγ

∑
i

Fb(r,ti) [Fb(r,ti) + 2ξ (ti)] �t. (7)

To recover true dynamics in the absence of Fb(r,t), one has
to estimate the PIHD statistical weight factor exp(−βIξ ) and
simply use it to reweight every sampled trajectory. Here, the

trajectories are sampled over all dynamical paths r(t) starting
from a pretransition state A (xA < xc) at time t0 to state B

located at xB > xc at time t , where xc represents a certain
transition state. The transition probability p(t) from state A to
state B is given by the relation

p(t) =
∫

xf �xc

drf

∫
x0�xc

dr0P (r0)P (r0,t0|rf ,t). (8)

Here, the integrals are calculated over all accessible post-
transition and all pretransition states given by the initial
quasiequilibrium distribution P (r0) of the particle in the
unbiased system.

III. DIFFUSION IN PERIODIC POTENTIAL

The fundamental quantity associated with Brownian dy-
namics is the single-particle (tracer) diffusion coefficient [1],
which in one dimension can be defined through the mean
square displacement (MSD) of the tracer particle as

D = lim
t→∞

1

2t
〈[r(t) − r(0)]2〉. (9)

When studying particle diffusion the mean square displace-
ment at zero bias (true dynamics) can be obtained by running
PIHD with a bias force, calculating Iξ (t) along every sampled
trajectory and reweighting as〈

[r(t) − r(0)]2
MD

〉 = 〈
[r(t) − r(0)]2

PIHD e−βIξ
〉
, (10)

where the subscripts MD and PIHD correspond to the
quantities with zero bias (true dynamics) and finite bias,
respectively.

When considering diffusion in an external, periodic
potential the definition Eq. (9) of the diffusion coeffi-
cient is convenient in the regime of intermediate to low
friction γ , where the particle often makes continuous jumps
across multiple saddle points. In this case, it is in principle
possible, but not practical, to define all the post-transition states
and transition probabilities. Instead, the PIHD method can be
easily applied in this regime by using Eq. (10) for the MSD.
On the other hand, in the low-temperature and high-friction
regime, virtually all jumps are to the nearest-neighbor minima,
which naturally define the post-transition state B. In this limit,
it is advantageous to define the diffusion coefficient as (see,
e.g., Ref. [1]):

D = 1
2�λ2, (11)

where � is the overall jump rate, and λ is the corresponding
jump length. The theoretical rate in the intermediate- to high-
friction regime is given by the Kramers rate [14,15]

� = ω0

π

[(
γ 2

4ω2
0

+ 1

) 1
2

− γ

2ω0

]
e−βV0 , (12)

where the frequency ω0 = 2π
√

V0/2λ2m. With PIHD, the
jump rate can be numerically evaluated by reweighting the
barrier crossing probability as

p(t) = 1

N

∑
ξ

c(ξ )e−βIξ (t), (13)
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where N is the number of trajectories and c(ξ ) = 1 for t > tcross

for crossing trajectories with crossing time tcross, and zero
otherwise. The rate constant is then obtained as � = dp(t)/dt

in the linear region of p(t).

IV. MODELS AND RESULTS

A. Brownian particle in periodic potential at low temperatures

Jump rate

Although the application of PIHD to speeding up barrier
crossing has been demonstrated in Refs. [11,12], the quantita-
tive efficiency of the method as compared to straight Langevin
dynamics needs to be studied. The most natural way to use
PIHD is to speed up the activation of rare events by applying
a bias force. To this end, in this section we consider the
canonical case of activated diffusion of a Brownian monomer
in a periodic potential in the limit of high friction and low
temperature [1]. The equation of motion for the system is
given by

mẍ(t) + mγ ẋ(t) − F (x) = ξ (t) + Fb(x), (14)

Here F (x) is the force due to spatially periodic potential
V (x) = −(V0/2)[1 − cos(2πx/λ)] and Fb(x) is the bias force.
We set scales for length as λ, energy as kBT and mass as
m. The time scale is then defined as t0 = λ

√
(m/kBT ) and

all other relevant quantities are expressed as dimensionless.
The numerical values of the parameters we have used are
λ = 1, V0 = 1, γ = 20, T = 0.05, and m = 1. In this range,
the diffusion coefficient is to very good approximation given
by Eqs. (11) and (12). We use two independent numerical
integration algorithms to solve the equation of motion: the
Brünger-Brooks-Karplus (BBK) algorithm [16] with time step
�t = 0.01 and the Ermak algorithm [17,18] with time step
�t = 0.005 and, thereafter Eqs. (7) and (13) to recover the
unbiased jump rates. The Ermak algorithm has been used
previously with PIHD in Ref. [12] to study polymer escape
with intermediate friction coefficient γ = 0.7 with good
accuracy. In our case of high friction (γ = 20), however, the
algorithm introduced a systematic error of about 15%, which
could be reduced by decreasing the time step to �t = 0.0005.
The error is caused by the extreme sensitivity of the functional
integral in Eq. (7) to the numerical value of the random force
ξi(t). Within the approximation of the Ermak algorithm, the
random force is preintegrated with respect to time to give the
random displacement and random velocity, and at high friction
this approximation requires an extremely small time step in the
evaluation of the functional integral. In the BBK algorithm,
however, the fluctuations are written down explicitly as a
random force and the problem does not occur. Consequently,
in this section we present the results obtained using the BBK
algorithm as the numerical integrator, for which the same time
step can be used for both MD and PIHD simulations.

We have simulated the monomer with regular MD (i.e.,
without bias potential) and with PIHD using two different
choices of bias force: the (piecewise) constant bias force
Fb(x) = fb(constant) for x < λ/2 and 0 for x � λ/2, and the
(spatially) sinusoidal bias force Fb(x) = −πVb

λ
sin(2πx/λ), for

−λ/2 � x � λ/2, and 0 otherwise. Examples of the boosted
potentials V (x) + Vbias(x) are shown in Fig. 1. For each
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FIG. 1. (Color online) The unbiased periodic potential V (x)
(solid black line) and the boosted potentials for the constant bias
force (solid blue line, solid gray in grayscale) and the sinusoidal bias
force (dashed red line, dashed gray in grayscale) for several values of
fb and Vb. For the constant bias, the critical tilt for which the barrier
height is reduced to zero, is fcr = π .

value of fb (Vb) we performed simulations consisting of 109

independent trajectories. The initial position of the particle is
sampled from the Boltzmann distribution corresponding to the
unbiased external potential and, after the initial equilibration,
the bias potential is switched on at time t = 0. Each trajectory
is then simulated until the maximum simulation time tmax = 15
is reached or once a successful crossing of the barrier at
x = λ occurs, at which time the value of the functional Iξ (t)
is recorded. The contribution of any one crossing trajectory to
the sum in Eq. (13) is therefore exp[−βIξ (tcross)].

The results of the simulations with the constant bias force
are shown in Fig. 2. Panel (a) shows the crossing probability
versus time, from which the jump rate � is obtained as the
average slope of the linear region of the curve. The p(t) curves
have two important features. First, the number of crossings
increases steeply as the bias force is increased, resulting in
a smoother curve. At the chosen temperature, the number
of successful crossings with unbiased MD is in fact so low
that determining the crossing rate at reasonable accuracy is
not possible. In contrast, the PIHD simulations allow one to
determine the rate with good accuracy. The second important
feature is that the large-bias curves start to bend down after
a certain time and exhibit very large jumps in p(t). This
behavior is the result of estimating the exponential average
in Eq. (13) with a finite sample size. The finite exponential
average gives large weight to the tail of the distribution of the
action functional Iξ (tcross), resulting in the occasional sudden
jumps in p(t) and a systematic error between the rare jumps.
The error becomes larger with time because the distribution
shifts toward higher values of Iξ (tcross), making the finding of a
linear slope practically impossible with very high bias forces.

In Fig. 2(b) the computed crossing rates are shown for
different values of fb. The value of � is determined by taking
the average of dp(t)/dt within the linear region of the p(t)
curve, which is divided into n intervals of length �t , each
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FIG. 2. (Color online) (a) The crossing probability p(t) vs time
t of a Brownian monomer in a sinusoidal potential well with
V0/T = 20. The regular MD simulations yield only four crossings
out of 109 runs, while the PIHD simulations give several orders
of magnitude more. (b) The jump rate � for bias force values
fb = 0(MD),0.5,1.0,1.5,2.0,2.5,3.0,3.5. The error bars indicate the
standard error of the mean value. The dashed horizontal line indicates
the theoretical value at the low-temperature and high-friction limit,
� ≈ 3.0919 · 10−10, as calculated from Eq. (12) for one reaction
pathway (the barrier to the right).

interval giving an independent value of the derivative. The
standard error of � is calculated as s/

√
n − 1, where s is

the standard deviation of dp(t)/dt within the region. The
numerical values of � obtained with various bias forces are
listed in Table I.

The corresponding results for the sinusoidal bias force are
shown in Fig. 3. With the sinusoidal bias force, we also
performed 109 independent simulation runs, using the bias
amplitude Vb as the control parameter. Other parameters were
the same as in the previous case of constant bias force. The
results are shown in Fig. 3. Qualitatively, the results are similar
to the constant bias force case, although both the systematic
and statistical errors are smaller. Numerical results are shown
in Table I.

TABLE I. Values of the jump rate � for different magnitudes fb of
the constant bias force and different amplitudes Vb of the sinusoidal
bias force. The theoretical value of the jump rate is � ≈ 3.0919 ·
10−10.

fb �(10−10t−1
0 ) Vb �(10−10t−1

0 )

0.0 3.77 ± 1.53 0.0 3.77 ± 1.53
0.5 3.11 ± 0.26 0.2 2.58 ± 0.26
1.0 3.06 ± 0.09 0.4 3.08 ± 0.07
1.5 3.08 ± 0.05 0.6 3.09 ± 0.05
2.0 3.10 ± 0.10 0.8 3.06 ± 0.02
2.5 2.92 ± 0.06 1.0 3.04 ± 0.02
3.0 2.87 ± 0.04 1.2 3.01 ± 0.01
3.5 2.81 ± 0.04
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FIG. 3. (Color online) (a) The crossing probability and (b) jump
rate for the sinusoidal bias force for various magnitudes of Vb =
0,0.2,0.4,0.6,0.8,1.0,1.2. Conventions are the same as in Fig. 2.

The PIHD boost factor

An important property of any hyperdynamics method is
the boost factor B that describes the computational speedup
due to the accelerated dynamics [6]. The simplest approach to
estimating B is to consider the gain in the number of crossing
paths given by the PIHD method, g = N cross

PIHD/N cross
MD . This

would give the boost factor that is exponentially dependent
on the decrease in barrier height. For the constant bias force,
the gain is

g =
√

1 − z2 exp{βV0[1 −
√

1 − z2 − z arcsin z + zπ/2]},
(15)

where z = λfb/πV0. This is shown in Fig. 4 as the solid
black curve, along with the corresponding numerical data
from simulations. However, this simple approach will give
a huge overestimate of B because of the exponential average
in Eq. (13). The distribution of the exponential weight factors
for the crossing paths P{exp[−βIξ (tcross)]} has a long tail,
implying that the number of paths that give a significant
contribution to the sum in Eq. (13) constitute only a small
fraction of the total number of crossing paths. As a result, the
actual boost factor is in reality much lower than the gain in
number of crossings, especially for large bias forces.

To quantify the computational speedup given by PIHD, we
define B as the ratio of computational time of conventional MD
simulations over the computational time of PIHD simulations
required to give the same accuracy of the crossing rate.
With conventional MD, the variance of the mean is in-
versely proportional to the number of crossings, implying that
B = σ 2

MD/σ 2
PIHD. However, because of the increasing system-

atic error with high bias, it is more appropriate to use the mean
squared error (MSE) instead of the variance. The MSE for
the estimator of the mean rate � is the sum of the variance
and the square of systematic error Y (in statistics, the latter
is often called estimator bias, but to avoid confusion with the
hyperdynamics bias, we use the term systematic error)

MSE(�̂) = σ 2
�(�̂) + Y(�̂,�)2. (16)
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FIG. 4. (Color online) The PIHD boost factor B as a function of
equivalent constant bias force f

equiv
b for both the constant bias force

(circles) and the sinusoidal force (squares). For the constant bias
force, f equiv

b = fb, while for the sinusoidal force, f equiv
b = π√

2
Vb. The

solid black curve indicates the theoretical gain in number of crossings
given by Eq. (15), with the black markers being the corresponding
values from PIHD simulations. The red (gray) markers with error
bars are the boost factors measured from simulations on the basis of
Eqs. (16)–(18). The blue (gray) markers without error bars show the
corresponding boost factors calculated with the random deposition
model from the measured distributions of Iξ (tcross).

We then define the boost factor as

B = MSEMD/MSEPIHD. (17)

While the choice of MSE as a measure of B is certainly not
unique, it has the benefit of being a well-established measure
of accuracy of estimators and it captures the typical behavior of
biased PIHD simulations: for low to moderate bias, the MSE
(and consequently, the boost) is mostly determined by the
variance σ 2, but for large bias, the systematic error becomes
increasingly important. We define the systematic error as

Y (�̂,�) = max[0,� − �̂ − σ�(�̂)], (18)

where � is the theoretical value given by Eq. (12) and �̂ and
σ�(�̂) refer to the values given by the PIHD simulations. The
upper limit �̂ + σ�(�̂) is used instead of the mean value �̂ to
avoid double counting of the statistical error.

The measured boost factor B for various levels of bias for
both the constant and sinusoidal bias potentials is shown in
Fig. 4. To compare the constant and sinusoidal bias potentials,
the amplitude Vb of the sinusoidal force is expressed in terms
of an equivalent constant bias force f

equiv
b by scaling the

amplitude with the spatial rms average of the sinusoidal bias
force,

√
1
λ

∫ λ/2
−λ/2[Fb(x)]2dx= π√

2
. In addition, the boost factor for the

constant bias force given by Eqs. (16)–(18) is further divided
by 2, because the linear biasing only allows the calculation of
the rate � over one of the barriers. As opposed to the number
of crossing trajectories, which monotonously increases with
f

equiv
b , the boost factor has a maximum of B ≈ 500 near

fb ≈ 1.5 for the constant bias force, and B ≈ 4000 near
Vb ≈ 0.8.

Quantitatively the decrease in efficiency can be understood
by considering a simple model for the accumulation of p(t)
as a function of time t in the linear region of the curve.
In calculating the rate �, the horizontal axis is divided into
n bins of length �t . In the linear region of length τ , the
probability that the crossing occurs at a time belonging to
the ith bin is equal for all bins: pi = 1/n = �t/τ . The
probability that any given bin holds m crossing events is
therefore binomially distributed, with pi being the acceptance
probability and the number of crossings, Ncross, being the
number of trials. The problem is analogous to the problem of
surface growth by random deposition, with the corresponding
quantities being the mean jump rate � � 〈h〉 (average surface
height), the standard deviation of mean jump rate σ� � w

(surface width), Ncross � t (time), and n = τ/�t corresponds
to the number of lattice sites. For MD, the height of each
increment is given by one over the number of trajectories
h = 1/Ntraj. The results for � and σ� follow from the
well-known results of the random deposition model (see,
e.g., Ref. [19]) by direct substitution: � = (1/τ )(Ncross/Ntraj)
and σ� = (�/

√
Ncross)

√
1 − 1/n ≈ �/

√
Ncross for sufficiently

large n. For PIHD, on the other hand, the height of the
individual increment is not constant, but its distribution can
be computed from the distribution of Iξ (tcross). The probability
density P(H ) of having a total increment of H in any one bin
i is

P(H ) =
Ncross∑
m=1

(
Ncross

m

)
pm

i (1 − pi)
Ncross−mP

(
m∑

l=1

hl = H

)
.

(19)

The distribution of hl is approximately log-normal. Since we
are not aware of any analytical form for the distribution of
the sum of log-normal random variables, the last term in
Eq. (19) has been computed numerically. The boost factors
according to the random deposition model are shown with
the blue markers in Fig. 4. The agreement with the direct
measurements from simulations is very good, which indicates
that the observed decrease in the boost factor with strong bias
is caused by the long-tailed distribution of the weight factors in
Eq. (13). This long tail gives large weight for a small minority
of trajectories, effectively reducing the number of crossing
paths that contribute to the PIHD average. In addition, the
systematic error at large bias decreases the boost, because
as the bias increases, sufficient sampling of the tail of the
distribution P(H ) would require an increasing number of
simulated trajectories.

Finally, we note that the maximum boost factor for the
sinusoidal bias force is almost ten times larger than the
corresponding maximum for the constant bias force. A factor
of 2 is explained by the asymmetry of the constant bias force,
which effectively eliminates all transitions across the barrier
on the left-hand side. In addition, the required constant bias
force amplitude to completely remove the barrier on the right is
fcrit = π ≈ 3.14, which is much larger than the corresponding
equivalent force for the sinusoidal bias: f

equiv
crit = π√

2
≈ 2.22.

For high constant bias forces, a large portion of the bias force
is effectively wasted in merely shifting the locations of the
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minimum and maximum. This is easily seen by looking at the
curves in Fig. 1. The sinusoidal bias force, on the other hand,
targets the locations of steepest ascent of the potential V (x),
giving a significant improvement in the overall boost. This
result suggests that an efficient choice of the bias potential
is the one that uniformly lowers the activation barrier and
preserves the symmetry of the system. By carefully choosing
the bias potential, the boost factor of the PIHD method can be
significantly improved.

B. Brownian particle in periodic potential
with time-varying bias

Diffusion coefficient

In this section, we employ PIHD for parallel resampling
of a Brownian particle in a one-dimensional spatially periodic
potential with an external, time-dependent ac driving force
[2–5]. For such a system, the equation of motion is given by

mẍ(t) + mγ ẋ(t) − F (x) = ξ (t) + A sin(2πνt), (20)

where the second term on the right-hand side indicates an
ac driving force with amplitude A and frequency ν. The
diffusion of a Brownian particle can be studied with respect
to various values of these two parameters. Here, we have
used the PIHD method to numerically solve Eq. (20) with
A = 0. The diffusion coefficients for different values of A and
ν can be obtained by choosing Fb(A,ν) = A sin(2πνt) and
then estimating the functional Iξ (t,Fb) and the reweighting
factor exp(−βIξ ) for every bias force.

The parameters we have used in the present work are V0 =
2, T = 1, γ = 2, λ = 1, and m = 1. Here we also employed
both the BBK and Ermak integration algorithms. We found
that the required time step for the BBK algorithm is the same
for both PIHD and unbiased MD, while the Ermak algorithm
required a shorter time step (�t = 0.0005) for high-bias forces
(large values of A). At high-bias forces the approximation
of the Ermak algorithm becomes insufficient due to the time
dependence of the bias force in the product Fb(x,t)ξ (t) of
Eq. (7). With the BBK algorithm this problem does not occur.

An interesting issue in Brownian motion under time-
periodic forcing concerns the existence of stochastic reso-
nance, which leads to a significant enhancement of the relevant
transition rates [5]. In the case of a double-well potential, SR
is expected to occur in the vicinity of the matching condition
νr = �/2, where � is the (thermal) escape rate [5]. Similarly, in
the case of an extended periodic potential there is enhancement
of local jumps over the barrier V0 [2]. However, it has been
shown in Refs. [2,3,5] that this enhancement exactly cancels
out in the hydrodynamic limit for a 1D periodic potential such
as used in the present study. One can estimate the resonance
frequency νr as [5]

νr = πV0

2γ
e−V0 . (21)

The calculation results in νr = 0.213. Our data for the diffusion
coefficients as extracted from the MSD with A = 0 using
Eq. (10) are shown in Fig. 5. The data have been obtained for a
range of values of A (A = 0.1,0.5,1.0,1.5) and the frequency
ν, and averaged over 106 trajectories. We find that for the
currently used amplitude values A � 1.5 and frequencies
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FIG. 5. (Color online) Diffusion coefficients D for the ac-driven
Brownian particle in a periodic potential as a function of the driving
frequency ν for various values of the amplitude A. The reference
value of the diffusion coefficient D0 (horizontal dashed line) is
taken as the value at zero amplitude A = 0. The numerical value
of D0 is 0.1570 ± 0.0002. The vertical dashed line indicates the
position of the resonance frequency νr (see text for details). The inset
shows a magnification of higher accuracy data for A = 1.5 in the
neighborhood of νr .

up to ν = 30.0, the diffusion coefficients are monotonically
decreasing functions of ν, and there is no stochastic resonance
in this system.

The PIHD boost factor

For the parallel resampling the boost factor B can be defined
similarly to the barrier crossing problem: B is the ratio of
computational time of MD simulations over the computational
time of PIHD simulations required to give the same accuracy
of the diffusion coefficient D. Here, the difference is that the
bias force is not used to accelerate the dynamics, but instead
to obtain the diffusion coefficient for multiple values of A and
ν while solving the equations of motion just once. Therefore
the optimal gain is dependent on the time that is spent on
numerically solving the equations motion as compared to
computing the correction factor exp(−βIξ ). Clearly, the simple
case of a single particle in an external potential gives an
estimate on the minimum boost that can be attained with
parallel resampling: with a complex many-particle system the
time spent on solving the equations of motion can become
very large as compared to calculating the correction factor,
and therefore the boost factor can be much higher.

In the present setting of a single particle, a parallel
resampling of 100 combinations of A and ν was able to
achieve a modest boost factor of B ≈ 2–3, taking into account
the increased noise due to the exponential average (for direct
comparison with MD, see Table II). The effect of the noise
increases rapidly after A = 1.5, which indicates that the
parallel resampling of a single particle under ac bias is limited
to relatively small bias forces (i.e., low amplitudes A). On the
other hand, because increasing the frequency ν of the ac bias
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TABLE II. Values of the diffusion coefficient D from PIHD and
direct solution of Eq. (20) with ν = 0.2.

A D [from Eq. (20)] D (PIHD)

0.1 0.1569 ± 0.0001 0.1570 ± 0.0002
0.5 0.1630 ± 0.0002 0.1631 ± 0.0003
1.0 0.1827 ± 0.0004 0.1825 ± 0.0012
1.5 0.2139 ± 0.0005 0.2162 ± 0.0035

force does not lead to an increase in the action functional Iξ (t),
there are no limits on the extrapolation of ν other than those
set by the simulation time and the time step of the underlying
MD simulation. In addition, for a system with more degrees of
freedom, we expect the boost factor to be much higher due to
the increased computational cost of the equations of motion.
We also note that at lower temperatures it would be possible
to use a static bias potential to boost the number of jumps (cf.
preceding section) in combination with parallel resampling for
maximal computational boost.

V. CONCLUSION

In this work, we have employed the recently proposed
PIHD scheme to study the diffusive motion of Brownian
particles in periodic potentials in one dimension. In the first
case, we have considered the diffusion of a monomer in the
low-temperature and high-friction regime, where we have used
the PIHD method to boost the number of jumps across the
external potential barrier. We have measured the boost factor
(increase in computational efficiency) to reach an optimum
of approximately 4000 with the present set of parameters. In
addition, we observe a decrease in the boost factor as the bias
force is increased beyond the optimal value. This decrease is

caused by the exponential averaging of the path sampling and is
explained by a simple mathematical model. Intuitively, we can
conclude that if the bias force significantly changes the original
system, the boost is reduced by the inefficient sampling of the
transition paths. For instance, in our benchmark case, the boost
starts to decrease as the activation barrier disappears or, when
the symmetry of the system is significantly altered.

In the second case, we have demonstrated that the PIHD
method can be used to extrapolate results to multiple values
of the bias force from a single simulation run. Here, we have
used the PIHD method to extrapolate the diffusion coefficient
of a monomer moving in a periodic potential under an ac force
for multiple values of the ac amplitude and frequency. Our
results are in agreement with previous studies and show that
there is no stochastic resonance in this system. In this case,
the PIHD boost remains modest due to the simplicity of the
equation of motion. Finally, we note that the PIHD method is
not limited to simple single-particle systems considered in this
work. The method can be used even with entropic activation
barriers Ref. [11] and, as shown in Ref. [12], it can be easily
generalized for systems with internal degrees of freedom, such
as polymer chains.
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