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Transport in simple networks described by an integrable discrete nonlinear Schrödinger equation
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We elucidate the case in which the Ablowitz-Ladik (AL)-type discrete nonlinear Schrödinger equation (NLSE)
on simple networks (e.g., star graphs and tree graphs) becomes completely integrable just as in the case of a
simple one-dimensional (1D) discrete chain. The strength of cubic nonlinearity is different from bond to bond,
and networks are assumed to have at least two semi-infinite bonds with one of them working as an incoming bond.
The present work is a nontrivial extension of our preceding one [Sobirov et al., Phys. Rev. E 81, 066602 (2010)]
on the continuum NLSE to the discrete case. We find (1) the solution on each bond is a part of the universal
(bond-independent) AL soliton solution on the 1D discrete chain, but it is multiplied by the inverse of the square
root of bond-dependent nonlinearity; (2) nonlinearities at individual bonds around each vertex must satisfy a sum
rule; and (3) under findings 1 and 2, there exist an infinite number of constants of motion. As a practical issue,
with the use of an AL soliton injected through the incoming bond, we obtain transmission probabilities inversely
proportional to the strength of nonlinearity on the outgoing bonds.
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I. INTRODUCTION

We investigate transport in networks with vertices and
bonds, which has received growing attention recently. The
networks of practical importance are those of nonlinear
waveguides and optical fibers [1], the double helix of DNA [2],
Josephson junction arrays with Bose- Einstein condensates
(BECs) [3], topology-induced BECs in complex networks [4],
vein networks in leaves [5,6], etc.

A major theoretical concern so far, however, is lim-
ited to solving stationary states of the linear Schrödinger
equation and to obtaining the energy spectra in closed
networks and transmission probabilities for open networks
with semi-infinite leads [7–12]. Only a few studies treat
the nonlinear Schrödinger equation on simple networks,
which are still limited to the analysis of its stationary
state [13,14].

With the introduction of nonlinearity to the time-dependent
Schrödinger equation, the network provides a nice playground
where one can see interesting soliton propagations and
nonlinear dynamics through the network [15–18], namely
through an assembly of continuum line segments connected
at vertices. Although there exist important analytical studies
on semi-infinite and finite chains [19–22], we find little exact
analytical treatment of soliton propagation through networks
within a nonlinear Schrödinger equation (NLSE) framework
[23,24]. The subject is difficult due to the presence of vertices
where the underlying chain should bifurcate or multifurcate in
general.

Recently, with a suitable boundary condition at each vertex,
we developed an exact analytical treatment of soliton propaga-
tion through networks within a NLSE framework [25]. Under
an appropriate relationship among values of nonlinearity at
individual bonds, we found nonlinear dynamics of solitons
with no reflection at the vertex. We also showed that an
infinite number of constants of motion are available for NLSE

on networks; namely, the mapping of the Zakharov-Shabat
scheme [26] to networks was achieved.

The extension of the scenario to the discrete NLSE
(DNLSE) is far from being obvious. The standard DNLSE
is not integrable and the integrable variant of the contin-
uum nonlinear Schrödinger equation is the one proposed
by Ablowitz and Ladik [24,27–29]. The Ablowitz-Ladik
(AL) equation is the appropriate choice for the zero-order
approximation in studying the soliton dynamics perturbatively
in physically motivated models, such as an array of coupled
optical waveguides [30] and proton dynamics in hydrogen-
bonded chains [31,32]. The dynamics of intrinsic localized
modes in nonlinear lattices can be approximately described
by the AL equation [33]. Exciton systems with exchange and
dipole-dipole interactions also reduce to the AL equation in
some limiting cases [34]. The AL chain is integrable by means
of the inverse scattering transform and, together with the Toda
lattice [35], constitutes a paradigm of the completely integrable
lattice systems.

The AL equation for a field variable ψ on a one-dimensional
(1D) chain is given by

iψ̇n + (ψn+1 + ψn−1)(1 + γ |ψn|2) = 0, (1)

where γ is the strength of nonlinear intersite interaction and
n denotes each lattice site on the chain. This equation can be
obtained from the canonical equation of motion with use of
the nonstandard Poisson brackets. Equation (1) has an infinite
number of independent constants of motion and is completely
integrable [27,28].

However, there is an ambiguity in generalizing the AL
model to networks: how can we define the intersite interaction
at each vertex in order to see the infinite number of constants
of motion in networks? To keep the integrability of the AL
equation, should any rule hold for the strength of nonlinearity
on bonds joining at each vertex? We resolve these questions
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in this paper and show how solitons of the AL equation
on networks are mapped to that of the AL equation on
a 1D chain. Once this mapping is found, the integrability
properties, such as the inverse scattering transform, the
Bäcklund transformation, etc., are automatically guaranteed
and are not addressed in this paper.

Below we show the completely integrable case of the AL
equation on networks with strength of nonlinearity different
from bond to bond. As a relevant issue, with the use of
reflectionless propagation of an AL soliton through networks,
we evaluate the transmission probabilities on the outgoing
bonds. In Sec. II, using a primary star graph (PSG) and
defining a suitable equation of motion at the vertex, we address
the norm and energy conservations. In Sec. III, we show
a basic idea of the soliton propagation along the branched
chain, finding the connection formula at the vertex and the
sum rule among the strengths of nonlinearity on the bonds,
which guarantee the infinite number of constants of motion
and complete integrability of the system under consideration.
In Sec. IV, the cases of generalized star graphs and tree graphs
are investigated. Section V is devoted to the investigation of an
injection of an AL soliton which bifurcates at the vertex and
is decomposed into a pair of solitons with each propagating
along the outgoing bonds, and we evaluate the transmission
probabilities on the outgoing bonds. Summary and discussions
are given in Sec. VI.

II. NORM AND ENERGY CONSERVATIONS
ON PRIMARY STAR GRAPH

A. AL equation on networks

Let us consider an elementary branched chain (see Fig. 1),
namely, a PSG consisting of three semi-infinite bonds con-
nected at the vertex O. We denote individual lattice sites as
(k,n), where k = 1,2,3 is the bond’s number and n corresponds
to a lattice site on each bond. For the first bond (k = 1), n is
numbered as n ∈ B1 = {0, − 1, − 2, . . .}, where (1, 0) means
the branching point, i.e., the vertex. For the second (k = 2) and
third (k = 3) bonds, n varies as n ∈ Bk = {1,2,3, . . .}; (2,1)
and (3,1) stand for the points nearest to the vertex.

A DNLSE à la AL is defined on each bond, except for in
the vicinity of the vertex, as

iψ̇k,n + (ψk,n+1 + ψk,n−1)(1 + γk|ψk,n|2) = 0, (2)

where (k,n) �∈ {(1,0),(2,1),(3,1)}. It should be noted that γk

may be different among bonds. There is an ambiguity about

FIG. 1. Primary star graph. Three semi-infinite chains, B1, B2,
and B3, connected at a vertex O.

the interaction around the vertex, which is resolved as follows:
Let us first introduce the Hamiltonian for a PSG as

H = −
−∞∑
n=0

(ψ∗
1,nψ1,n+1+c.c.) −

3∑
k=2

+∞∑
n=1

(ψ∗
k,nψk,n+1+c.c.),

(3)

where at the virtual site (1,1) we assume ψ1,1 = s2ψ2,1 +
s3ψ3,1 with appropriate coefficients s2 and s3. Then Eq. (2)
can be obtained by the equation of motion

iψ̇k,n = {H,ψk,n} (4)

at (k,n) �∈ {(1,0),(2,1),(3,1)}, with use of nonstandard Poisson
brackets

{ψk,m,ψ∗
k′,n} = i(1 + γ |ψk,m|2)δkk′δmn,

(5)
{ψk,m,ψk′,n} = {ψ∗

k,m,ψ∗
k′,n} = 0.

On the same footing as above, the equations of motion in
Eq. (4) at (1,0), (2,1), and (3,1) are given, respectively, as

iψ̇1,0 + (ψ1,−1 + s2ψ2,1 + s3ψ3,1)(1 + γ1|ψ1,0|2) = 0, (6)

iψ̇k,1 + (skψ1,0 + ψk,2)(1 + γk|ψk,1|2) = 0, k = 2,3. (7)

The solution is assumed to satisfy the following conditions
at infinity: ψ1,n → 0 at n → −∞ and ψk,n → 0 at n → +∞
for k = 2 and 3.

B. Norm and energy conservations

It is known that the norm conservation is one of the
most important physical conditions in conservative systems.
Since Eqs. (2), (6), and (7) are available from Hamilton’s
equation of motion with nonstandard Poisson brackets, the
norm and energy conservations seem obvious. Below, however,
we observe them explicitly. Extending the definition in the case
of a 1D chain [24], the norm for a PSG is given as

N = ‖ψ‖2 =
3∑

k=1

1

γk

∑
n∈Bk

ln(1 + γk|ψk,n|2). (8)

Its time derivative is given by

d

dt
N =

3∑
k=1

∑
n∈Bk

Ak,n (9)

with

Ak,n = 1

1 + γk|ψk,n|2 (ψ∗
k,nψ̇k,n + ψ̇∗

k,nψk,n). (10)

For (k,n) �∈ {(1,0),(2,1),(3,1)} with use of Eq. (2) we have

Ak,n = 1

i
(ψk,nψ

∗
k,n+1 − ψ∗

k,nψk,n+1)

− 1

i
(ψk,n−1ψ

∗
k,n − ψ∗

k,n−1ψk,n) ≡ jk,n − jk,n−1, (11)

where

jk,n ≡ 1

i
(ψk,nψ

∗
k,n+1 − ψ∗

k,nψk,n+1) (12)
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implies a local current. First, one observes∑
k

∑
n

′
Ak,n = j1,0 − j2,1 − j3,1, (13)

where
∑

k

∑
n
′ means the summation over all sites on a PSG

except for the points (1,0), (2,1), and (3,1).
Then, for (k,n) = (1,0),(2,1),(3,1), with use of Eqs. (6)

and (7) we obtain

A1,0 = s2
1

i
(ψ1,0ψ

∗
2,1 − ψ∗

1,0ψ2,1)

+ s3
1

i
(ψ1,0ψ

∗
3,1 − ψ∗

1,0ψ3,1) − j1,0 (14)

and

Ak,1 = jk,1 − sk

1

i
(ψ1,0ψ

∗
k,1 − ψ∗

1,0ψk,1) (15)

for k = 2,3. Substituting Eqs. (13)–(15) into Eq. (9), we can
see d

dt
N = 0, i.e., the norm conservation. Therefore, for any

choice of values s2 and s3, the norm conservation turns out to
hold well.

On the other hand, the energy for a PSG is expressed in a
symmetrical form as

E = −2Re

[ −∞∑
n=−1

ψ∗
1,nψ1,n+1 +

3∑
k=2

+∞∑
n=1

ψ∗
k,nψk,n+1

+ ψ∗
1,0(s2ψ2,1 + s3ψ3,1)

]
. (16)

To show that the energy is conservative, we see its time
derivative:

d

dt
E = −2Re

−∞∑
n=−1

(ψ∗
1,nψ̇1,n+1 + ψ̇∗

1,nψ1,n+1)

− 2Re
3∑

k=2

+∞∑
n=1

(ψ∗
k,nψ̇k,n+1 + ψ̇∗

k,nψk,n+1)

− 2Re[ψ∗
1,0(s2ψ̇2,1 + s3ψ̇3,1)

+ ψ̇∗
1,0(s2ψ2,1 + s3ψ3,1)]. (17)

With use of Eq. (2) we have

−
−∞∑

n=−1

(ψ∗
1,nψ̇1,n+1 + ψ̇∗

1,nψ1,n+1)

= 1

i

−∞∑
n=−1

[|ψ1,n−1|2 − |ψ1,n+1|2]

× (1 + γ1|ψ1,n|2) − ψ∗
1,−1ψ̇1,0, (18)

and

−
∞∑

n=1

(ψ∗
k,nψ̇k,n+1 + ψ̇∗

k,nψk,n+1)

= 1

i

∞∑
n=2

[|ψk,n−1|2 − |ψk,n+1|2]

× (1 + γ1|ψk,n|2) − ψ̇∗
k,1ψk,2. (19)

The first terms in the final expressions in Eqs. (18) and (19)
are obviously pure imaginary. Substituting Eqs. (18) and (19)
into Eq. (17) and using Eqs. (6) and (7), we find

d

dt
E = −2Re[ψ∗

1,0(s2ψ̇2,1 + s3ψ̇3,1)+ψ̇∗
1,0(s2ψ2,1 + s3ψ3,1)

+ψ∗
1,−1ψ̇1,0 + ψ̇∗

2,1ψ2,2 + ψ̇∗
3,1ψ3,2]

= 2Re

[
1

i
(1 + γ1|ψ1,0|2)(|ψ1,−1|2 − |s2ψ2,1 + s3ψ3,1|2)

+ 1

i

3∑
k=1

(1+γk|ψk,1|2)
(
s2
k |ψ1,0|2−|ψk,2|2

)] = 0.

(20)

The last equality comes from the pure imaginary nature of the
expression in square brackets. Equation (20) is nothing but the
energy conservation.

Thus we have proved that the norm and energy are
conserved for any choice of values s2 and s3. In general,
however, other conservation rules do not hold. In the next
sections we reveal a special case with appropriate choice of
s2 and s3 which guarantees an infinite number of conservation
laws.

III. COMPLETELY INTEGRABLE CASE

A. Dynamics near branching point and sum rule

Among many possible choices of s2 and s3, there is one
special case in which an infinite number of constants of motion
can be found and the DNLSE in the form of an AL equation
on a PSG becomes completely integrable. To investigate this
case, we first add to each bond Bk (k = 1,2,3) a ghost-bond
counterpart B ′

k so that Bk + B ′
k constitutes an ideal 1D chain

(see Fig. 2). Then we suppose that the soliton solution of the
AL equation on a PSG is given by

ψk,n(t) = 1√
γk

qk,n(t), k = 1,2,3, (21)

where qk,n(t) are soliton solutions of the DNLSE with unit
nonlinearity on the ideal 1D chain ( [24,27,28]):

iq̇n + (qn+1 + qn−1)(1 + |qn|2) = 0, (22)

with n being integers in (−∞, + ∞). The solutions of Eq. (22)
may be different among three fictitious chains Bk + B ′

k

(k = 1,2,3).

FIG. 2. Real bonds and real solitons (solid lines) and ghost bonds
and ghost solitons (broken lines).
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Comparing Eqs. (6), (7), and (22), one can find at the vertex
the following two equalities:

1√
γ1

q1,1(t) = s2√
γ2

q2,1(t) + s3√
γ3

q3,1(t), (23)

1√
γk

qk,0(t) = sk√
γ1

q1,0(t), k = 2,3. (24)

Noting the spatiotemporal behavior of soliton solutions and

to guarantee the equality in Eq. (24), qk,n(t) = sk

√
γk

γ1
q1,n(t)

with k = 2,3 should be satisfied for any time t and for any
integer n. Hence we obtain

sk

√
γk

γ1
= 1 or sk =

√
γ1

γk

(k = 2,3) (25)

and

qk,n(t) ≡ qn(t), (26)

namely, the solution qk,n(t) should be bond independent. With
use of Eqs. (25) and (26) in Eq. (23), we have the sum rule
among nonlinearity coefficients γ1, γ2, and γ3:

1

γ1
= 1

γ2
+ 1

γ3
. (27)

Equations (25)–(27) are the necessary and sufficient con-
ditions to see Eqs. (23) and (24). Thus, under the sum rule
for nonlinearity coefficients in Eq. (27), the solution on a PSG
is given by a common (bond-independent) soliton solution
of Eq. (22) multiplied by the square root of the inverse
nonlinearity coefficient. For example, the soliton incoming
through the bond B1 is expected to smoothly bifurcate at the
vertex and propagate through the bonds B2 and B3, as we see
in Fig. 4. In the case that γ1, γ2, and γ3 break the sum rule, we
see a completely different nonlinear dynamics of solitons such
as their reflection and emergence of radiation at the vertex, as
shown in Fig. 6. The initial value problem for such a case is
outside the scope of the present work.

We also note that the parameters s2 and s3 would correspond
to α2

α1
and α3

α1
, respectively, in the previous work [25], although

the derivations of the connection formula at the vertex are quite
different between the continuum and discrete systems. In fact,
s2 and s3 are introduced to define the intersite interaction at
the vertex and are not obtained from the norm and energy
conservations, in contrast to the case of networks consisting
of continuum segments [25].

B. An infinite number of constants of motion

It is well known that AL equation on the 1D chain has an
infinite number of constants of motion. Now we proceed to
obtain an infinite number of constants of motion for general
solutions of the AL equation on a PSG. First of all, it should
be noted that the solution on a PSG can now be written as

ψk(t) = 1√
γk

{qn(t)|n ∈ Bk}, k = 1,2,3, (28)

where q(t) stands for a general solution of AL equation (22)
and is restricted to each bond Bk (k = 1,2,3).

While we already proved the conservation of energy, we can
generalize it to the general case: Without taking the complex
conjugate, Eq. (3) can be explicitly written as

Z = −
−∞∑

n=−1

ψ∗
1,nψ1,n+1 −

3∑
k=2

+∞∑
n=1

ψ∗
k,nψk,n+1

−ψ∗
1,0(s2ψ2,1 + s3ψ3,1). (29)

Substituting Eq. (28) into Eq. (29), Z is rewritten as

Z = − 1

γ1

−∞∑
n=0

q∗
nqn+1 −

3∑
k=2

1

γk

+∞∑
n=1

q∗
nqn+1

+ 1

γ1
q∗

0 q1 −
3∑

k=2

sk√
γ1γk

q∗
0 q1. (30)

Using the value sk in Eq. (25) and the sum rule in Eqs. (27)
and (30) reduces to the constant for the ideal 1D chain
[27,28]:

Z = − 1

γ1

+∞∑
−∞

q∗
nqn+1. (31)

Therefore Z in Eq. (29) is a constant of motion, and its real
and imaginary parts imply the energy and current, respect-
ively.

For other higher-order conservation rules, we can write
them as

1

γ1
Cm = 1

γ1

−∞∑
n=0

f (n)
m ({qn|n ∈ B1})

+
3∑

k=2

1

γk

+∞∑
n=1

f (n)
m ({qn|n ∈ Bk}), (32)

with fm defined as expansion coefficients of the expression
(see Ref. [28])

log
(
g(0)

n + g(1)
n z2 + g(2)

n z4 + · · · ) = f
(n)
1 z2 + f

(n)
2 z4 + · · · ,

(33)

where g(m)
n are given by

g(0)
n = 1, g(1)

n = Rn−1Qn−2,
(34)

g(m)
n = Rn−1

Rn−2
g

(m−1)
n−1 −

m−1∑
l=1

g
(m−l)
n−1 g(l)

n , m = 2,3,4, . . . ,

Rn = q∗
n+2, Qn = −qn+2. (35)

The relations (34) and (35) are obtained by solving Eq. (4.15)
in [28], i.e.,

gn+1(gn+2 − 1) − z2 Rn+1

Rn

(gn+1 − 1) = z2Rn+1Qn, (36)

recursively with use of the expansion

gn = g(0)
n + g(1)

n z2 + g(2)
n z4 + · · · . (37)
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The right-hand side of Eq. (32) includes some undefined
field variables in the ghost bond regions which must be defined
as

ψ1,n =
√

γ1

γ2
ψ2,n +

√
γ1

γ3
ψ3,n with n � 1,

(38)

ψk,n =
√

γ1

γk

ψ1,n, k = 2,3 with n � 0.

The conservation laws in Eq. (32) follow from the nature of so-
lutions (28) and the sum rule for nonlinearity coefficients (27).

For m = 1 we obtain current and energy conservation laws.
At m � 2 we obtain higher-order conservation laws. Some of
the higher-order constants of motion are as follows:

1

γ1
C2 = −

3∑
k=1

∑
n∈Bk

[
ψ∗

k,n+1ψk,n−1(1 + γk|ψk,n|2)

+ γk

2
ψ2

k,n(ψ∗
k,n+1)2

]
, (39)

1

γ1
C3 = −

3∑
k=1

∑
n∈Bk

{[
ψ∗

k,n+2ψk,n−1(1 + γk|ψk,n+1|2)

+ γkψ
∗
k,nψ

∗
k,n+1ψ

2
k,n−1 + (ψ∗

k,n+1)2ψk,nψk,n−1
]

× (1 + γk|ψk,n|2) + γ 2
k

3
ψ∗

k,n+1ψk,n

}
, (40)

where field variables at lattice sites of the ghost bonds are
defined in Eq. (38).

IV. GENERALIZED STAR AND TREE GRAPHS

Now we proceed to explore soliton solutions of the DNLSE
in the form of the AL equation on other types of graphs and
explore the sum rule and conservation rules for solitons to
propagate through these graphs. The above treatment on a
PSG is also true for more general star graphs consisting of N

semi-infinite bonds connected at a single vertex. In such cases,
the initial soliton at an incoming bond B1 splits into N − 1
solitons in the remaining bonds, and the extended version of
Eq. (27) is

1

γ1
=

N∑
j=2

1

γj

. (41)

The solution is given by the equations

ψk,n(t) = 1√
γk

qn(t), (42)

where n = 0, − 1, − 2, . . . for the first bond (k = 1) and
n = 1,2,3, . . . for other bonds (2 � k � N ); qn(t) is a soliton
solution of Eq. (22). Conservation laws for this graph can be
obtained analogously as in the case of a PSG.

Another example of the graph for which the soliton solution
of the DNLSE in the form of the AL equation can be obtained
analytically is the tree graph in Fig. 3. Now we provide a
soliton solution in this case. We denote bonds of the graph
as B� = B1ij ···m and number the lattice sites on these bonds

FIG. 3. Tree graph: B1 ∼ (−∞,0),B11,B12 ∼ (0,L), and B1ij ∼
(0, + ∞) with i,j = 1,2, . . ..

as 1,2,3, . . . ,N�. On each branching point we assume the
following conditions hold:

1

γ�

=
∑
m

1

γ�m

. (43)

The solution is given by

ψ�,n(t) = 1√
γk

qn+s�
(t), n ∈ B�. (44)

Here s� is the number of lattice sites that the soliton passes
through from B1 to B�. For the tree graph it is defined as

s1 = s1i = n0, s1ij = n0 + N1i ,
(45)

s� ≡ s1ij ···lm = n0 + N1i + · · · + N1ij ···l .

Below, applying the induction method we give a proof
of conservation laws for soliton solutions of the AL
equation on a tree graph. Let us denote the tree graph
as G and assume the conservation laws to hold in G:∑

B�∈G

∑
n∈B�

f (k)
n (qn+s�

(t)) = const. Then we construct an
enlarged tree graph in the following way: First, we choose the
arbitrary point N� in the one of rightmost semi-infinite chains
B� as a new branching point. We cut off semi-infinite part of
this bond at the point N� and attach M semi-infinite bonds
to this point. Namely, the bond B� is now replaced by a
finite bond B̃� connected with M semi-infinite bonds B�m =
{1,2, · · · ,N�m}, with m = 1,2, . . . ,M . For the enlarged tree
graph, constants of motion are given by∑

B�∈G−B�

γ −1
�

∑
n∈B�

f (k)
n (qn+s�

(t)) + γ −1
�

∑
n∈B̃�

f (k)
n (qn+s�

(t))

+
M∑

m=1

γ −1
�m

∑
n∈B�m

f (k)
n (qn+s�+N�

(t))

=
∑

B�∈G−B�

γ −1
�

∑
n∈B�

f (k)
n (qn+s�

(t))+γ −1
�

N�∑
n=1

f (k)
n (qn+s�

(t))

+
M∑

m=1

γ −1
�m

+∞∑
n=1+N�m

f (k)
n (qn+s�+N�

(t))

= −
(

γ −1
� −

M∑
m=1

γ −1
�m

) +∞∑
n=1+N�m

f (k)
n (qn+s�+N�

(t))+const.

(46)
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It is clear that the final expression becomes constant under
the sum rule (43). Thus, starting from the PSG in Fig. 1 and
repeating the above procedure, we can get the conservation
rule for all tree graphs.

V. TRANSMISSION PROBABILITIES AGAINST
INJECTION OF A SINGLE SOLITON

A relevant issue of the above discoveries is the trans-
mission probability against injection of a single soliton.
Here we calculate transmission probabilities for a single
soliton which is incoming through a semi-infinite bond
B1 and outgoing through the other semi-infinite bonds
{Bl|l �= 1}.

A single (bright) soliton on a graph, which takes the general
form as in Eqs. (28), (42), and (44), is described with use of an
AL soliton with γ = 1 [27]: ψl,n(t) lying on individual bonds
Bl is given by

ψl,n(t) = γ
−1/2
l sinh βsech[β(n − n0 − vt)]

× e−i(ωt+αn+φ0), n ∈ Bl, l = 1,2,3, . . . ,N, (47)

where ω = −2coshβ cos α, v = −(2/β)sinhβ sin α, −π �
α � π , 0 < β < ∞, 0 � φ0 < 2π , and n0 are bond-
independent parameters characterizing frequency, velocity,
wave number, inverse width of the soliton, initial phase, and
initial center of mass, respectively. Equation (47) indicates
that a narrow soliton travels faster than wider ones with the
same α.

It should be noted that parameter values are common to
each bond, except for {γl}. Choosing the simplest network
PSG in Fig. 1, we give conservative quantities for the solution
in Eq. (47) under the sum rule in Eq. (27). First of all, the
norm in Eq. (8) turned out to be reduced to the one for the 1D
chain with the nonlinearity constant γ1 and thereby is given
by

N = 2β/γ1. (48)

Equation (48) indicates that a narrow soliton has a larger
norm than wider ones. As for the energy (E) and current
(J ), it is convenient to evaluate the combined quantity Z in
Eq. (29) with the use of s2 and s3 given by Eq. (25). In fact we
have

E = −2Re(Z), J = 2Im(Z). (49)

Substituting Eq. (47) into Eq. (29) and using the sum rule
in Eq. (27), one obtains

Z = 2

γ1
e−iα sinh β (50)

and

E = − 4

γ1
cos α sinh β, J = − 4

γ1
sin α sinh β. (51)

As is seen from Eq. (47), the center of mass of the soliton
(CMS) on each bond Bl is located at n = n0 at t = 0. However,
lattice points on the individual semi-infinite bonds are defined
on the limited interval. In particular, on outgoing bonds
{Bl|l �= 1}, their lattice points n are defined in the
interval (1, + ∞). If n0 < 0, therefore, the CMS on

{Bl|l �= 1} is initially located outside of the real bonds.
In such cases we call the soliton a “ghost soliton.” When
the CMS belongs to a real bond we use the term “real
soliton.” In Fig. 2, which corresponds to the PSG in Fig. 1,
ghost solitons are plotted with a dashed curve while real
ones are plotted with a solid line. The soliton dynamics
here is governed by a single characteristic time τ ≡ −n0

v
.

While for 0 � t � τ the soliton at B1 is a real one and
those at B2 and B3 are ghosts, for τ � t the soliton
at B1 is a ghost and those at B2 and B3 are real. At
t = 0 with −n0 � 1, the soliton lying on the bond B1

is exclusively responsible for the norm N . On the other
hand, at t � 1, the solitons running through the bonds B2

and B3 are exclusively responsible for the norm. There-
fore, we can naturally define transmission probabilities at
t → +∞.

In general networks, the transmission probability for an
arbitrary semi-infinite bond Bl (l �= 1) at discrete time t̂ that
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FIG. 4. Numerical result for time evolution of a soliton propa-
gation through a vertex in a PSG. The strengths of nonlinearity at
each bond are γ1 = 1, γ2 = 1.5, and γ3 = 3, satisfying the sum rule
in Eq. (27). The space distribution of the wave function probability is
depicted in every time interval T = 10.0 with time used commonly in
branches 2 and 3. The abscissa represents discrete lattice coordinates
defined in Fig. 1. The initial profile is an Ablowitz-Ladik soliton
in Eq. (47) at t = 0 with parameters β = 0.1, α = 5π/4. The
time difference in numerical iteration is t = 0.01. The bottom
panel shows the time dependence of partial norms at each of three
branches.

026609-6



TRANSPORT IN SIMPLE NETWORKS DESCRIBED BY AN . . . PHYSICAL REVIEW E 84, 026609 (2011)

makes vt̂ integers is defined as

Tl = 1

Nγl

+∞∑
n=1

ln(1 + γl|ψl,n|2)

= 1

Nγl

+∞∑
n=1

ln{1 + sinh2 βsech2[β(n − n0 − vt̂)]}

= γ1

Nγl

+∞∑
n′=1−n0−vt̂

1

γ1
ln[1 + sinh2 βsech2(βn′)]. (52)

At vt̂ → +∞,
∑+∞

n′=1−n0−vt̂ on the last line in Eq. (52) tends

to
∑+∞

n′=−∞ and this summation gives N , i.e., the normalization
of the soliton in the ideal 1D chain with the nonlinearity
coefficient γ1. Therefore,

Tl = γ1

γl

. (53)

Under the sum rules as in Eqs. (27), (41), and (43), we have
the unitarity condition

N∑
l=2

Tl = 1, (54)

where the summation is taken over the semi-infinite bonds
except for B1. The result in Eq. (53) means that the trans-
mission probability is inversely proportional to the strength of
nonlinearity in outgoing semi-infinite bonds.

We have checked this result using a numerical simulation
of the DNLSE in the form of an AL equation on a PSG in
Fig. 1: We numerically iterated Eqs. (2), (6), and (7) with the
use of Eq. (25) and chose the initial profile in Eq. (47) with
γ1 and n0 = −150 as an incoming soliton. Figure 4 shows the
result in the case that the sum rule in Eq. (27) is satisfied:
The soliton starting at lattice point n = −150 in branch 1
enters the vertex at n = 0 and is smoothly split into a pair
of smaller solitons in branches 2 and 3 with no reflection at
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FIG. 5. Transmission probabilities as a function of γ1
γ2

in a
PSG. Symbols and lines denote numerical and theoretical results,
respectively. A solid line with • and a broken line with ◦ correspond
to T2 and T3, respectively.

the vertex. The velocity and width of the soliton have the
definite value common to all bonds, and the squared peak
value of the soliton is inversely proportional to γk , which is
consistent with the result in Eq. (47). The bottom panel in
Fig. 4 shows the time dependence of partial norms at each
of three branches. With increasing time, the partial norms at
branches 2 and 3 converge to the transmission probabilities in
Eq. (53).

In Fig. 5, transmission probabilities T2 and T3 are plotted
as a function of γ1

γ2
in the wider range of γ1 and γ2 in the case

satisfying the sum rule in Eq. (27). We can confirm the linear
law predicted in Eq. (53).

Figure 6 shows the result in the case that the sum rule is
broken: γ1

γ2
+ γ1

γ3
�= 1. In this case the soliton starting at lattice

point n = −150 in branch 1 enters the vertex at n = 0, but it
is accompanied by both reflection and emergence of radiation
at the vertex. It is very interesting that the velocity of the
self-organized soliton has the definite value common to all
bonds. In particular, the reflected soliton at branch 1 has the
same magnitude of velocity as that of the incident soliton.
With increasing time, the partial norms at branches 1, 2, and
3 would converge to the reflection (on B1) and transmission
probabilities (on B2 and B3). For some other choice of γ1, γ2,
and γ3 that breaks the sum rule (which is not shown here), the
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FIG. 6. Numerical result for time evolution of a soliton propa-
gation through a vertex in the case of γ1 = 0.5, γ2 = 1.5, γ3 = 3,
which breaks the sum rule. The initial profile and parameter values
are the same as in Fig. 4. In the top panel, dashed curves indicate a
propagation of the reflected soliton. The bottom panel shows the time
dependence of partial norms at each of three branches.
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asymptotically (t � 1) equal velocity of solitons running on
all three semi-infinite bonds can also be observed and provides
an open question to be resolved in due course.

VI. SUMMARY AND DISCUSSIONS

We have derived conditions under which an AL-type
DNLSE on simple networks is mapped to the original one
on the ideal 1D chain and becomes completely integrable.
Here the strength of cubic nonlinearity is different from bond
to bond, and networks are assumed to have at least two
semi-infinite bonds with one of them used as an incoming
bond. Our findings are that (1) the solution on each bond is
a part of the universal (bond-independent) soliton solution of
the completely integrable DNLSE on the 1D chain, but it is
multiplied by the inverse of the square root of bond-dependent
nonlinearity; (2) the inverse nonlinearity at an incoming bond
should be equal to the sum of inverse nonlinearities at the
remaining outgoing bonds; and (3) with use of the above

two findings, there exist an infinite number of constants of
motion. The parameters s2 and s3, which played an essential
role in deriving the connection formula, are introduced to
define the intersite interaction at the vertex and are not
obtained from the norm and energy conservations, in marked
contrast to the case of networks consisting of continuum
segments [25]. The argument on a branched chain or a PSG is
generalized to general star graphs and tree graphs by using
the induction method. As a practical issue, with the use
of an AL soliton injected through the incoming bond, we
obtain transmission probabilities inversely proportional to the
strength of nonlinearity on the outgoing bonds.
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