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So far, it is not well known how to deal with dissipative systems. There are many paths of investigation in the
literature and none of them present a systematic and general procedure to tackle the problem. On the other hand,
it is well known that the fractional formalism is a powerful alternative when treating dissipative problems. In this
paper, we propose a detailed way of attacking the issue using fractional calculus to construct an extension of the
Dirac brackets in order to carry out the quantization of nonconservative theories through the standard canonical
way. We believe that, by using the extended Dirac bracket definition, it will be possible to analyze more deeply
gauge theories starting with second-class systems.
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I. INTRODUCTION

The Dirac approach was very popular in the 1990s, when an
industrial production of papers concerning methods treating
constrained systems was developed. The Dirac brackets
(DB) [1] were an unmodified common point between all
papers about the subject. The motivation of many works was
to convert second-class into first-class systems. The main
objective was to obtain a gauge theory (first-class system),
the holy grail for the standard model. Although not so popular
as before, the analysis of constrained systems still deserves
some recent attentions in the literature [2,3].

In a few words, we can say that the main feature of gauge
theories is the existence of constraints that fix boundaries in
the phase space of gauge invariant systems to a submanifold
[4]. Dirac covered all the main issues concerning constraint
systems [1], namely, a Hamiltonian approach to gauge theo-
ries and general constrained theories and, consequently, the
corresponding operator quantization procedure. Later on, the
path integral method was found to be useful for quantizing
gauge theories [5–7] and so-called second-class systems [8,9],
where the conventional Poisson bracket must be replaced by
the DB in the quantization procedure.

However, in constrained systems, it is possible to solve
constraint equations [4]. The formalism proposed by Dirac for
classical second-class constrained systems uses the DB to deal
with the evolution problem. The procedure is to apply the DB
to functions of canonical variables in the unconstrained phase
space, which avoids problems concerning the restriction of
systems to constraint submanifolds [4].

On the other hand, there are various problems when
considering classical systems aside from those involving the
quantization of second-class systems as we just have seen
above. These problems encompass nonconservative systems.
The curiosity about them is that the great majority of actual
classical systems are nonconservative and, nevertheless, the
most advanced formalisms of classical mechanics deal only
with conservative systems [10].
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Dissipation, for example, is present even at the micro-
scopic level. There is dissipation in every nonequilibrium or
fluctuating process, including dissipative tunneling [11,12],
electromagnetic cavity radiation [13,14], and so on.

One way to treat adequately nonconservative systems is
through fractional calculus (FC) since it can be shown that,
for example, a friction force has its form resulting from a
Lagrangian containing a term proportional to the fractional
derivative, which is a derivative of any noninteger order [10].

Nonlinear dynamics is today an important subject of study
in different physical and mathematical disciplines. However,
its real success and a radically new understanding of nonlinear
processes occurred in the last 40 years. This understanding was
inspired by the discovery and insight of a new phenomenon
known as dynamical chaos. The reason for this is easy to
understand since any typical system with more than one
degree of freedom possesses chaotic motion for some initial
conditions. We still do not know what is the measure of chaotic
trajectories, but it seems that it is nonzero, and that makes the
study of chaos important for constructing models of dynamical
processes in nature [15].

FC is one of the generalizations of classical calculus. It
has been used in several fields of science. FC provides a
redefinition of the mathematical tools and it seems very useful
to deal with anomalous and frictional systems. In particular, we
can cite the continuous time random walk scheme as a physical
counterpart example where, within the fractional approach, it
is possible to include external “fields” in a straightforward
manner. Also, the consideration of transport in the phase
space spanned by both position and velocity coordinates is
possible within the same approach. Moreover, the calculation
of boundary value problems is analogous to the procedure
for the corresponding standard equations [16–21]. Other
important applications can be found investigating response
functions where many studies have been reported on the
phenomenon of nonexponential, power-law relaxation, which
is typically observed in complex systems such as dielectrics,
ferroelectrics, polymers, and so on. The main feature of such
systems is a strong (in general, random) interaction between
their components in the passage to a state of equilibrium. The
FC approach to describing dynamic processes in disordered or
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complex systems such as relaxation or dielectric behavior in
polymers or photo-bleaching recovery in biologic membranes
has proved to be an extraordinarily successful tool. Some
authors have proposed some fractional relaxation models to
filled polymer networks and investigate the dependence of the
decisive occurring parameters on the filler content [22,23].
The study of exactly solvable fractional models of linear
viscoelastic behavior is another successful field of application.
In recent years, both phenomenological and molecular-based
theories for the study of polymers and other viscoelastic
materials came up with integral or differential equations of
fractional order. Some current models of viscoelasticity based
on FC are usually derived from the Maxwell model replacing
the first order derivative d/dt by its fractional version dα/dtα ,
where α is not an integer [24].

In this paper, we will use the well-known FC to analyze
the well-established DB. The objective is to construct a
generalized DB capable of treating a bigger number of
mechanical systems than the standard DB.

Since we believe that the FC has not been explored
enough in field theory research yet, we tried to construct
a self-sustained paper so that the issues are distributed as
follows. In Sec. II, we furnish a short history about FC
together with its main equations and formulations. We will
follow here the Riemann-Liouville (RL) approach. In Sec. III,
we establish the so-called fractional variational principle, the
ground stone for our cherished result. However, we have to
perform a modification of this fractional principle in order
to include constrained systems. In Sec. IV, we analyze the
same question but considering the action functional with
generalized coordinates embedded in a fractional context, then
we reinterpret these different initial conditions to obtain a
general formulation for the Dirac description for constrained
systems. In Sec. V, we use the free relativistic model
to apply the fractional bracket. As usual, the conclusions,
perspectives, and last comments are depicted in the last
section.

II. MODIFIED VARIATIONAL PRINCIPLE

Nowadays, the interdisciplinarity and multidisciplinarity
among areas must be ever considered, and it therefore can be
quite useful to study several problems from different areas of
science (aside from those mentioned in the last section) such
as viscoelasticity and damping, glassy condensation, diffusion
and wave propagation, electromagnetism, chaos and fractals,
heat transfer, biology, electronics, signal processing, robotics,
system identification, genetic algorithms, percolation, mod-
eling and identification, telecommunications, chemistry, irre-
versibility, control systems as well as engineering, economics,
and finance [25,26].

It is well known too from the current literature that the
fractional approach can describe more precisely a myriad of
physical systems. The formalism can be incorporated in many
classical and quantum systems as described in the last section.
We believe that its use can be extended up to field theory
domain.

The generalization of the concept of derivative with
noninteger values goes back to the beginning of the

theory of differential calculus. Nevertheless, the develop-
ment of the theory of FC is due to contributions of many
mathematicians such as Euler, Liouville, Riemann, and
Letnikov [27–30].

Since 1931, when Bauer [31] showed that we can not use
the variational principle to obtain a single linear dissipative
equation of motion with constant coefficients, a new horizon
of possibilities has been glimpsed. Nowadays, it has been
observed that in physics and mathematics the methodology
necessary to understand new questions has changed toward
more compact notations and powerful nonlinear and qualitative
methods. Derivatives and integrals of fractional order have
been used to understand many physical applications. For
instance, questions about viscoelasticity and diffusion process
may have a more detailed description when this approach is
used. In nature, the majority of systems contain an internal
damping process and the traditional approach based on energy
aspects can not be used everywhere to obtain the right
equations of motion.

So, after Bauer’s corollary, Bateman [32] proposed a
procedure where multiple equations were obtained through
a Lagrangian. Riewe [10] observed that, by using FC, it was
possible to obtain a formalism that could be used to describe
both conservative and nonconservative systems. Namely, by
using this approach, one can obtain the Lagrangian and
Hamiltonian equations of motion also for nonconservative
systems. Agrawal studied a fractional variational problem
[33]. A fractal concept applied to quantum physics has been
investigated [34].

The solution of a fractional Dirac equation of order α = 2/3
has been introduced [35] and, recently, this subject has been
revisited [36].

A. The fractional calculus

We give a short introduction to FC. We believe that it will
not provide the interested reader with all the FC tools, but we
want to explain at least what a fractional derivative is.

The first way to formally introduce fractional derivatives
proceeds from the repeated differentiation of an integral power

dn

dxn
xm = m!

(m − n)!
xm−n . (1)

For an arbitrary power μ, repeated differentiation gives

dn

dxn
xμ = �(μ + 1)

�(μ − n + 1)
xμ−n , (2)

with gamma functions replacing the factorial. The gamma
functions allow for a generalization to an arbitrary order of
differentiation α,

dα

dxα
xμ = �(μ + 1)

�(μ − α + 1)
xμ−α . (3)

Of course, the objective of this work is that α can be a
real number. The extension defined by the latter equation
corresponds to the RL derivative. It is sufficient for handling
functions that can be expanded in Taylor series. A second
way to introduce fractional derivatives uses the fact that the
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nth derivative is the inverse operation to an n fold repeated
integration. Basic is the integral identity

∫ x

a

∫ y1

a

. . .

∫ yn−1

a

dyn . . . dy1f (yn)

= 1

(n − 1)!

∫ x

a

dy f (y) (x − y)n−1 . (4)

A generalization of the expression allows one to define a
fractional integral of arbitrary order α via

aD
−α
x f (x) = 1

�(α)

∫ x

a

dy f (y) (x − y)α−1(x � a). (5)

A fractional derivative of an arbitrary order is defined through
fractional integration and successive ordinary differentiation.

For the time being, we will not use the aD
α
x notation to

indicate a fractional derivative. We will return to this in the
future.

After these few words about the fractional formalism, we
think that it is important to justify our choice of using the RL
fractional derivative instead of other very popular fractional
derivatives, such as the Caputo time derivative, for instance.
This last one could be another way to pursuit the construction
of the fractional DB. However, we understood that Caputo
is more appropriated to applications in several engineering
problems due to the fact that it has a better relation with Laplace
transform.

In the last years, the Caputo approach has been favored
relatively to that of the RL approach because it is believed
that the RL case leads to initial conditions without physical
meaning. This was contradicted by Heymans and Podlubny
[37], who studied several cases and gave physical meaning to
the RL initial conditions [38].

Still trying to clarify our objectives, let us affirm that
Caputo’s definition considers the differentiation inside the
integral in order to solve the constant derivative problem. For
us, it is an inconvenient way to describe some Lagrangian
systems and, consequently, to obtain a consistent definition
for our Dirac bracket, since we will be dealing only with field
derivatives. For our main purpose, the RL approach is more
convenient than the Caputo approach.

However, it is well known that several definitions of frac-
tional derivatives and integrals exist. For instance, Grünwald-
Letnikov, Caputo, Weyl, Feller, Erdelyi-Kober, and Riesz
fractional derivatives as well as fractional Liouville operators,
which have been popularized when fractional integration is
performed in dynamical systems [39,40]. There is no equally
simple definition that applies both to functions expressed as
exponentials and to functions expressed as powers. In order
to obtain a definition that is as general as possible, in order
to be possible to attack other problems too, it has become
conventional [10] to use an integral representation discovered
by Liouville [41] and extended by Riemann [42]. This is the
main reason of our choice among other formulations of FC.
Since we consider this work as the first step in the direction of
the analysis of quantum field theories, we believe that a general
definition of the fractional derivative is the more convenient
one. We will talk more about these perspectives in the last
section.

B. Modified Euler-Lagrange equations

Let us consider a smooth Lagrangian function. For any
smooth path q : [a,b] → M satisfying boundary conditions
q(a) = qa and q(b) = qb, consider an action like the Riemann
Liouville fractional integral as considered in Eq. (5) above
[39,40]:

aS
−α
t [q(τ )] = 1

�(α)

∫ t

a

L[q̇(τ ),q(τ ),τ ](t − τ )α−1dτ, (6)

where �(α) is the Euler gamma function, with α ∈ (0,1] and
q̇ = dq

dτ
is the derivative with respect to the intrinsic time

τ ∈ (a,t ′) and t ∈ [t0,t ′] is the time for some observer in a
particular reference system.

Notice that the Lagrangian in Eq. (6) is weighted by
1

�(α) (t − τ )α−1. The time weighting acts as a time-dependent
damping factor [35] and, obviously, when α → 1, we reobtain
the usual functional

aS
−α
t [q(τ )] =

∫ t

a

L[q̇(τ ),q(τ ),τ ] dτ. (7)

Constructing the variation of the action functional δSα =
0, we obtain after standard calculus the Euler-Lagrange
equations associated with the fractional action integral [39]
in Eq. (6) that

∂L

∂qi

− d

dτ

∂L

∂q̇i

− 1 − α

t − τ

∂L

∂q̇i

= 0, i = 1, . . . ,n. (8)

The Euler-Lagrange equation above, for some fractional
action functional, must be obeyed. Now, we will consider the
invariance in phase space

δ aS
−α
t = 0 (9)

because we are interested in Dirac’s quantization approach.
We intend to explore the same idea when constrained systems
will be under consideration.

We can write, from Eq. (7), that the variation is

δaS
−α
t = 1

�(α)
δ

∫ t

a

[pq̇ − H (p,q,τ )] (t − τ )α−1dτ = 0

(10)

so that

δaS
−α
t = 1

�(α)

∫ t

a

{(δL) (t − τ )α−1 + L[δ(t − τ )α−1]} dτ

= 0, (11)

where L = pq̇ − H (p,q,τ ) and the rest of the calculation
is standard from the variational calculus textbooks. The
modification is due to FC formalism. However, it is direct
to deal with this additional factor. Hence, after performing the
variation of the Lagrangian as in Eq. (3), and of the damping
factor, and isolating the coefficients for δq̇ and δṗ that will be
equal to zero, we obtain a new set of perturbed equations of
motion

q̇i = ∂H

∂ṗi

, (12)

ṗi = −∂H

∂q̇i

+ 1 − α

t − τ
pi, (13)
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which can be understood as the (fractional) Hamilton-Jacobi
equations when this new action functional is considered. It is
clear that, when α → 1, our results will turn back to the usual
case.

We will see later that the expression 1−α
t−τ

pi will be
important in our fractional DB formulation. The order α will
be directly related to the fractional approach. The presence
of a fractional factor 1−α

t−τ
is responsible for the generation of

a time-dependent damping into the dynamics of the system,
which is very useful to study models with smooth turbulence.
Furthermore, it is possible to establish a relationship between
the fractional Rayleigh dissipation function and the Euler-
Lagrange equation [39]

∂L

∂qi

− d

dτ

∂L

∂q̇i

− ∂R

∂q̇i

= 0, i = 1, . . . ,n (14)

where R is the fractional Rayleigh dissipation function
given by

R = 1 − α

t − τ
L. (15)

Note that, in Eq. (14), the dissipation function is part of the
extended Euler-Lagrange equation. The origin of the third term
is nonstandard and is due to fractional analysis.

III. MODIFIED VARIATIONAL PRINCIPLE
ON CONSTRAINED SYSTEMS

Now, our main objective is to obtain an extended analysis,
which allows the quantization of classical systems with
turbulence flow in field theory. We know that the quantization
of a classical field theory in a natural context is not a
straightforward unique process. The replacement of classical
Poisson brackets by commutators of quantum operators can
not be carried out simultaneously for all conceivable dynamical
variables without paying a price, i.e., internal obstructions will
occur [43,44].

In general, the commutation formalism is restricted first to a
certain class of variables, such as the canonical coordinates of
the theory. All commutators obtained will be derived from this
first set. However, the classical theory may be substantiated in
terms of any set of canonically conjugated variables in such a
manner that the transition from Poisson brackets to quantum
commutators leads to a “weird” quantum theory, depending
on the chosen canonical coordinates system.

This kind of problem usually occurs when the classical
theory has constraints, and the right prescription for this was
first formulated by Dirac [43] and Bergmann and Goldberg
[44], where they pinpointed the right bracket algebra to be
used. Thus, our goal now is to extend our last result to
constrained systems. The action in Eq. (10) can be considered
in phase space

aS
−α
t = 1

�(α)

∫ b

a

[pq̇ − H̃ (p,q,φa)](t − τ )α−1dτ, (16)

where H̃ is

H̃ = H + λaφa. (17)

The question involved in such systems is that, when we carried
out the Legendre transformation where L(q̇,q,t) becomes

H (p,q,t) and defined the canonical momenta as pi = ∂L
∂q̇i

,
perhaps the N quantities are not all independent functions
of the velocities. We can not eliminate the q̇i’s and obtain M

constraints equations φa(q,p) = 0. Extending our discussion,
we write the variation for Eq. (16) as

δaS
−α
t = 1

�(α)
δ

∫ b

a

[pq̇ − H̃ (p,q,φa)](t − τ )α−1dτ

= 1

�(α)

∫ b

a

{
δpq̇ −

[
ṗ − p

(
1 − α

t − τ

)
δq

]
− ∂H

∂q
δq

−∂H

∂p
δp + λa

∂φa

∂q
δq − λa

∂φa

∂p
δp

}
(t − τ )α−1dτ

= 0. (18)

After some algebraic manipulations, some terms can be
isolated, allowing us to write the Hamilton-Jacobi equations
for the fractional constrained case:

q̇ = ∂H

∂p
+ λa

∂φa

∂p
, (19a)

ṗ = −∂H

∂q
− λa

∂φa

∂q
+ 1 − α

t − τ
pi, (19b)

and again we have in Eq. (19b) a second term representing the
fractional contribution.

A. The fractional Dirac bracket

Consider a dynamical variable 	[pi,qi,t]; by using
Eqs. (9), we obtain

d	

dt
= ∂	

∂qi

q̇i + ∂	

∂pi

ṗi + ∂	

∂t
= ∂	

∂qi

(
∂H

∂pi
+ λa

∂φa

∂pi

)

+∂	

∂pi

[
−∂H

∂qi
− λa

∂φa

∂qi
+ pi 1 − α

t − τ

]
+ ∂	

∂t

=
[(

∂	

∂qi

∂H

∂pi
− ∂	

∂pi

∂H

∂qi

)
+ λa

(
∂	

∂qi

∂φa

∂pi
− ∂	

∂pi

∂φa

∂qi

)

−pi

α − 1

t − τ

∂	

∂pi

]
+ ∂	

∂t

= {	,H } + λa{	,φa} − pi

α − 1

t − τ

∂	

∂pi
+ ∂	

∂t
. (20)

The constraints are dynamical variables too. Then, by substi-
tuting some of the constraints in Eq. (20), we have that

dφa

dt
= {φa,H } + λb{φa,φb} − pi

α − 1

t − τ

∂φa

∂pi
+ ∂φa

∂t
, (21)

and solving for λa , we finally obtain a new result for the DB
in a fractional context:

{F,G}∗ = {F,G}PB − {F,φa}C−1
ab {φb,G}

+ {F,φa}C−1
ab pi

α − 1

t − τ

∂φb

∂pi

− pi

α − 1

t − τ

∂F

∂pi

.

(22)

Our calculations show precisely this new result as a natural
extension for the DB. We must observe that the usual
DB appears inside the fractional correction and the matrix
Cab = {φa,φb} is the constraint matrix. It is obvious that when
α → 1, we reobtain the usual approach.
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IV. FRACTIONAL EMBEDDING

Our next step is to build a general way to obtain the Dirac
description for constrained systems. For this, we will consider
the problem under different initial conditions. A different
and more general approach to analyze any dynamical system
begins by considering the action as a function of generalized
coordinates [10]

S[q(τ ),Q(τ )] =
∫ b

a

L
[
qr

n(τ ),Qr
n′(τ ),τ

]
dτ

(23)
qr

n = (
a
Dα

t

)n
xr (t) , Qr

n′(τ ) = (
t
Dα

b

)n′
xr (t),

with r = 1,2, . . . ,R coordinates considered, n = 1,2, . . . ,M

is the sequential order of the derivatives for the generalized
coordinates q, and n′ = 1,2, . . . ,M ′ is the same for the
coordinates Q. It can be shown [45] that the necessary
condition for an extremum of S is satisfied by

∂L

∂qr
0

+
N∑

n=1

(
t
Dα

b

)n ∂L

∂qr
n

+
N∑

n′=1

(
a
Dα

t

)n′ ∂L

∂Qr
n′

= 0, (24)

and the momenta have the form

pr
n =

N∑
k=n+1

(
t
Dα

b

)k−n−1 ∂L

∂qr
n

,

(25)

πr
n′ =

N∑
k=n′+1

(
a
Dα

t

)k−n′−1 ∂L

∂Qr
n′

.

It is important to observe that we could extend the approach
to a phase space just considering the usual action functional
depending on the generalized fractional coordinates.

The Dirac formalism can be easily obtained here. It
is well known that it is useful in Lagrangian constrained
systems. Now, we propose its extension using the FC to
encompass constrained nonconservative systems. Of course,
we could define our initial conditions in a different way and,
consequently, obtain other final expressions. We realize that it
is a very general form to deal probably nonlinear systems and
other kinds of phenomena. With this objective, we define our
constrained Hamiltonian

H̃ = H +
∑

k

λk	k +
∑
k′

v′
kX

′
k, (26)

where now the constraints are in fractional form too. We can
define them by means of the RL prescription

�k = 1

�(k − α)

(
d

dt

)k ∫ t

a

(t − τ )k−α−1φk(p,q,τ ) dτ, (27a)

X′
k = 1

�(k′ − α)

(
− d

dt

)k′ ∫ b

t

(t − τ )k
′−α−1xk′ (π,Q,τ ) dτ.

(27b)

The resulting action is

S =
∫ t ′

t

dt

(
R∑

r=1

N−1∑
n=0

pr
nq

r
n +

R∑
r=1

N ′−1∑
n′=0

πn′Qn′ − H̃

)
, (28)

and using the variational principle δS = 0 again, we can
calculate the Hamilton-Jacobi equations

bD
α
t pr

n = ∂H

∂qr
n

+ λk

∂�k

∂qr
n

,

tD
α
b Qr

n = ∂H

∂πr
n′

+ vk′
∂Xk′

∂qr
n′

,

(29)

tD
α
a πr

n′ = ∂H

∂Qr
n′

+ vk′
∂Xk′

∂Qr
n′

,

aD
α
t qr

n = ∂H

∂pr
n

+ λk

∂�k

∂pr
n

.

This form of the Hamilton-Jacobi equations is new in the
literature and introduces an extension of the Poisson bracket
into the RL context presented in Ref. [45]. It is natural that the
next step is to obtain the proper DB expression. One way to do
that is to consider some dynamical variable F (qr

n,p
r
n,Q

r
n′ ,πr

′ ),
where

dF

dt
= ∂F

∂qr
n

aD
α
t qr

n + ∂F

∂pr
n

bD
α
t pr

n + ∂F

∂Qr
n′

tD
α
b Qr

n

+ ∂F

∂πr
n′

tD
α
a πr

n′ + ∂F

∂t
, (30)

and after using Eq. (29), it is straightforward to build our final
and main result for the DB in the RL context, namely,

{A,B}� = {A,B} − {A,φk}C−1
kl {φl,B}

− {A,χk′ }E−1
k′l′ {χl′,B}, (31)

where C and E are constraint matrices as in the standard
Dirac constraint formalism. The consequent quantization can
be described also in the standard way as

[A,B] = i h̄ {A,B}�. (32)

Now that we have constructed a proper fractional form for
the DB, we believe that the conversion methods for obtaining
first-class systems from second-class ones with nonlinear
models can be carried out.

In the next section, we will apply our result obtained in
Eq. (31) in a well-known and simple model, the relativistic
free particle.

V. THE RELATIVISTIC FREE PARTICLE

Our objective in this section is to study one application in
light of the fractional DB introduced in Eq. (31). To fix our
ideas developed before, we will consider a simple example,
the relativistic free particle model, to apply the fractional
embedding.

This model is well known, and its usual Lagrangian is
given by

L = −m
√

ẋ2. (33)

Using the ideas of the last sections, the action under consider-
ation is

L = −m

√[(
aDα

t

)n
xr

]2 + [(
tDα

b

)n′
xr

]2
. (34)
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We will restrict our calculations to the case when α = 1/2
and n = n′ = 1. Therefore, we have

L = −m

√[(
aD

1
2 t

)
xr

]2 + [(
tD

1
2 b

)
xr

]2
(35)

or, in a simpler way,

L = −m

√(
qi

1

)2 + (
Qi

1

)2
. (36)

Of course, we could consider different orders for the derivative
operator, but our main intention now is to apply the method
and to show its usefulness to canonically quantize fractional
systems.

By using the definition of generalized momentum, we
obtain the two conjugated momenta

pi
0 = −m

qi
1√(

qi
1

)2 + (
Qi

1

)2
, (37a)

πi
0 = −m

Qi
1√(

qi
1

)2 + (
Qi

1

)2
. (37b)

The primary constraint is

φ1 = p2
0 + π2

0 − m2 ≈ 0. (38)

As the canonical Hamiltonian is zero, to construct the extended
Hamiltonian by Dirac’s prescription, we can write

H̃ = λ
(
p2

0 + π2
0 − m2

)
, (39)

and, since it is a first-class constraint

φ̇1 = {φ1,H̃ } = 0 ,

we therefore do need to fix the gauge and our choice is

q0
1 + Q0

1 − τ = 0. (40)

Now, we have two second-class constraints

{φ1,φ2} = −2
(
p0

0 + π0
0

)
, (41)

and the new extended Hamiltonian can be written as

H̃ = λ1
[(

pi
0

)2 + (
πi

0

)2 − m2
] + λ2

[(
qi

1

)0 + (
Qi

1

)0 − τ
]
.

(42)

The time evolution of these constraints gives us the correct
form of the Lagrange multipliers. The extended Hamiltonian
in its final form is

H̃ = 1

2
(
p0

0 + π0
0

)[(
pi

0

)2 + (
πi

0

)2 − m2
]
. (43)

By using the DB definition from Eq. (31), we can calculate
finally that {

qi
1,Q

j

1

}� = {
πi

0,π
j

0

}� = 0, (44a){
qi

1,p
j

0

}� = δij − pi
0δ

j

0

p0
0 − π0

0

, (44b)

{
Qi

1,π
j

0

}� = δij − πi
0δ

j

0

p0
0 − π0

0

, (44c)

and the quantization is directly obtained using the standard
Eq. (32). We can observe that the brackets obtained above have
(a kind of) expected results. In other words, the commutative
result in Eq. (44a) is standard. The results in Eqs. (44b) and
(44c) are standard also in the first term. The second terms
in both these equations are consequences of the fractional
approach. The result obtained in Eq. (44a) makes us think
about noncommutative issues. We will talk more about this in
the next section.

We have to clarify for the interested reader that here we
introduced the FC to investigate nonconservative physical
systems. Consequently, we are beginning to fathom other
physical features inside the fractional formalism, different
from the current literature. To help us in this task, the next
step would be to investigate a solid nonconservative system
such as radiation damping, which is not completely understood
using the standard (nonfractional) formalism. This is a target
of current research by the authors and will be published
elsewhere.

VI. CONCLUSIONS AND PERSPECTIVES

Our main motivation is to develop an approach based
on fractional variational calculus to handle nonconservative
constrained systems since FC can be used to deal with a
frictional force, for example. In other words, our effort is
to construct a fractional DB. Consequently, we showed that
it is possible to think about quantization in this scenario. In
this way, we proposed two kinds of fractional formulations for
the DB.

The first one is based on the RL derivative, but it is
incorporated directly into the action functional. We obtained
the Hamilton-Jacobi equations that are deformed by the
fractional contribution. Consequently, the DB also has the
same kind of modification.

However, this first approach does not seem to be the right
one. Therefore, we changed the formalism considering a usual
form for the action, but redefining the coordinates in a gen-
eralized prescription using the fractional definition according
to Riewe’s prescription. The constraints were defined in the
same way and the consequence was the extension of the usual
Euler-Lagrange equations of motion into a fractional scenario.

We obtained the final form for the fractional DB, which has
an additional term due to the FC contribution. We showed that
the standard DB can be recovered, of course. After this result,
we believe that obtaining gauge theories for nonlinear systems
is now an easier task.

Other and different definitions could be used with the same
objective. For example, the generalized Euler formula, Abel
or Fourier integral representation, Sonin, Letnikov, Laurent,
or Nekrasov and Nishimoto representations can be used.

To apply our fractional Dirac formalism, we used an
example where a D

1
2 version of the relativistic free particle was

considered. We calculated the respective DB in the fractional
embedding context, and its form results are very reasonable
considering the conditions imposed. It is reasonable to see that,
with this first prescription for the fractional DB, we can not
pinpoint all the physical features of the results.

Geometrically speaking, fractional models provide us with
a memory effect about the convolution integrals and give us
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some differential equations with a bigger expressive power.
This allows us to consider several different physical situations
such as viscoelasticity and more abstract scenarios such as
mapping using tensorial fields. Physically, we can understand
the derivative of order α of some individual velocity v as the
same velocity vob from the point of view of an independent
observer [46].

As a perspective, one possible target of research would
be the noncommutative fractional dynamics. We can observe
from Eq. (44a) that this algebra is commutative. However,
we can ask whether this is the standard pattern or whether
there exists any algebra induced by FC where something like
Eq. (44a) is not true, such as in string theory (using ordinary
calculus) in a magnetic field background [47]. Considering
this scenario, we can ask whether, with the application of
the symplectic formalism (where we can choose the zero
mode, as in Ref. [48]) coupled with fractional formalism,
the canonical noncommutativity can be obtained. This is our
next task, together with the construction of a Moyal-Weyl
product using FC to handle problems such as noncommutative

quantum mechanics, where the Moyal-Weyl product will have
a fractional form and maybe we can obtain interesting results
comparing with the fractional quantum mechanics ones in the
current literature, or, with a noncommutative algebra obtained
with the DB obtained here. One manner in which we have
to reobtain the commutativity introduces a noncommutative
parameter in the original nonlinear system. We can investigate
how it works in a fractional scenario.

Aside from the applications proposed here, we strongly
believe that quantization in a fractional context is an open area
and deserves more attention. We do not know yet all the types
of problems that can be handled using this approach. In gen-
eral, research in gravitation, condensed matter, and field theory
seem to be ready to be reinterpreted using the formalism of FC.
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