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We study numerically the suppression of the soliton self-frequency shift as well as the compression in the
presence of bandwidth-limited optical amplification (BLA). Our results confirm the existence of equilibrium
points (stable focuses) for the soliton amplitude and speed identified by the soliton perturbation theory. Analyzing
the equilibrium amplitudes as a function of physical parameters, maximum compression factor in the amplification
of short pulses is revealed. The results of linear stability analysis allow estimation of the necessary distance for
the appearance of equilibrium states from different initial conditions. It has been shown that the shape of the
perturbed stationary solution in the presence of intrapulse Raman scattering and BLA can be described by the
earlier derived analytic expressions.
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I. INTRODUCTION

As is well known, the intrapulse Raman scattering (IRS)
is related to the delayed nature of the Raman response in
optical fibers and plays an important role in the propagation
of femtosecond optical pulses [1–6]. The first demonstration
of the Raman soliton self-scattering effect was presented
in [7]. High-frequency components of femtosecond optical
pulses can transfer energy to its low-frequency components,
which results in downshift of the soliton carrier frequency,
a phenomenon known as the soliton self-frequency shift
(SSFS) [8]. The broadband soliton supercontinuum due to
the decay of higher-order solitons (the Satsuma-Yajima N-
soliton bound state) was established in [9–11]. Numerical
Zakharov-Shabat eigenvalue analysis of this effect has been
presented in [12]. Recently, the decay of higher-order solitons
is one of the basic mechanisms for obtaining supercontinuum
spectral broadening in microstructured optical fibers [13–15].
Propagating fundamental solitons with high amplitude (η =
10) in the presence of IRS leads to soliton compression [3]. An
important difference with soliton-effect compressors, where
during compression a broad pedestal appears, is that due to the
SSFS the compressed soliton separates from the pedestal. As a
result, a redshifted and pedestal-free pulse with a compression
factor larger than in the standard soliton-effect compressors
appears [3]. Adiabatic approximations of perturbation theory
(PT) for the description of parameters of bright and dark
solitons in the presence of IRS have been proposed in [16] and
[17], respectively. The full perturbation theory, which includes
not only the change of the soliton parameters, but also the
changes in the shape of the bright solitons, has been developed
in [10] and [18]. Group theory analysis of IRS of bright solitons
in single mode fibers and strongly birefringent fibers has been
proposed in [19] and [20], respectively. Recently, it was shown
that IRS can be approximately described by the nonlinear
Schrödinger equation with a linear external potential [21–23],
known as the Chen and Liu model, in linearly inhomogeneous
plasma [24]. The circumstance that the Chen and Liu model is
integrable by means of the inverse scattering method has been

*ivan uzunov@tu-sofia.bg

used to explain the stability of the solitons in the presence of
IRS [21–23].

One possibility to suppress the IRS provides third-order
dispersion [25,26]. As is well known, third-order dispersion
(TOD) (provided the corresponding coefficient is positive)
forms a peak in the blue spectral region at a frequency
which is inversely proportional to the strength of TOD. If
the resonance peak is located within the Raman gain band,
the IRS-induced redshift of the single soliton spectrum can
be partially suppressed [25,26]. Moreover, because of IRS
the resonance radiation is eventually transferred back to
the spectral region around the carrier frequency [27]. The
interplay between TOD and IRS was studied with a numerical
Zakharov-Shabat eigenvalue analysis in [12].

It was also shown that the SSFS can be reduced using optical
fibers with spectrally inhomogeneous frequency dependence
of the group-velocity dispersion [21,22,28,29]. The passage of
a femtosecond soliton through a potential barrierlike spectral
inhomogeneity of group-velocity dispersion, including the
forbidden band of positive group-velocity dispersion [29],
has been established. This effect has been called the soliton
spectral tunneling effect [21,22,29]. Sufficient increase of the
height of the spectral barrier leads to the full suppression of
SSFS [22].

Because of their large bandwidth, erbium-doped fiber
amplifiers (EDFAs) can be used to amplify optical pulses in
fiber lasers and long-haul fiber-optic communication systems
[1–6,30]. In the case of adiabatic amplification (δ < 1, see
below) the amplified fundamental soliton with η = 1 adjusts
its parameters, so the initial soliton pulse is compressed.
Simultaneously, however, subpulses are generated and their
numbers increase with propagation distance [3,30]. When
relatively short (about 1 ps) pulses have to be amplified, IRS
should also be taken into account. It was established [31–33]
that the bandwidth-limited optical amplification (BLA) with
the gain dispersion taken in the parabolic approximation (see
below) can reduce the amount of spectral shift due to the
SSFS and stabilize the carrier frequency of the fundamental
soliton with η = 1 close to the gain peak, phenomena known
as suppression of the SSFS by BLA [31]. The amplification
and compression of short pulses in the presence of IRS have
been numerically studied by different physical models in [33],
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where the compression factor and the parameters of subpulses
were studied. The adiabatic approximation of PT has been
employed in the study of the suppression of the SSFS by
BLA and the equilibrium point for the soliton amplitude and
speed has been identified in [31,33–35]. The relation between
the equilibrium speed and the amplitude of the perturbed
soliton was found [31,33–35]. An analytical solution for the
eigenvalues of the linearized problem in the vicinity of the
equilibrium point is proposed in [35]. A perturbation approach
for analysis of the same problem has been proposed that
uses the equation of the strongly nonlinear Duffing–Van der
Pol oscillator [35]. This approach is based on the usage of
hyperbolic perturbation methods of [36,37]. The equilibrium
velocity as well as its coupling to the amplitude of the perturbed
stationary solution have been found [35]. It turned out that
this coupling is similar to the relation between the soliton
amplitude and speed derived by the adiabatic approximation
of PT [31,33–35]. Applying [37], the form of the perturbed
stationary solution has been evaluated [35] and it was found
to be similar to the one found earlier in [10,18,19].

The aim of this paper is to numerically study the suppression
of the SSFS as well as the compression of short pulses in the
presence of BLA. BLA is studied in the parabolic approxima-
tion. Using the eigenvalues of the linearized problem [35], the
type of equilibrium points will be identified. Analyzing the
equilibrium amplitudes as a function of physical parameters,
the maximum compression factor in the amplification of short
pulses will be studied. It will be shown that the eigenvalues
of the linearized problem allow estimation of the necessary
distance of propagation for the appearance of equilibrium
states from different initial conditions. Special attention will
be paid to the equilibrium fundamental solitons with large
amplitudes. All results obtained by perturbation theory will be
verified by numerical solution of the basic equation. Finally,
changes in the shape of the perturbed soliton in the presence
of BLA and IRS will be numerically explored and the results
compared with earlier analytical predictions [10,18,19,35].

II. BASIC EQUATION AND PERTURBATION RESULTS

The erbium ions in doped fiber can be modeled as
a two-level system. The Maxwell-Bloch equations for the
slowly varying part of the polarization, responsible for the
contribution of dopant and the population inversion density,
together with the modified nonlinear Schrödinger equation
(NLSE) for the slowly varying envelope of the electric field
should be solved together [3,30]. Considering optical pulses
with widths larger than that of the dipole relaxation time
T2 ≈ 0,1 ps, the rate-equation approximation in which the
polarization follows the optical field adiabatically can be used.
The dispersive effects connected with the erbium ions can be
included through the dopant susceptibility into the refractive
index change and then into the modified NLSE. The important
sequence of this procedure is that the dispersion parameters
of the fiber become dependent on the dopant content [3].
It turned out that the dopant-induced change in the group
velocity is negligible in practice, while the additional term
to the group-velocity dispersion should be taken into account.
This additional term represents the finite bandwidth of the fiber
amplifier and is referred to as gain dispersion (see below). If

the mode density and the dopant density are nearly uniform
over the doped region and zero outside it, the relationship
between the small-signal gain and the population inversion
density transforms to a linear one. In general, the dynamics
of the gain depends on the small-signal gain, the fluorescence
time (10 ms for EDFA), the saturation energy, and the pumping
configuration. For short optical pulses, the dependence on
the pumping configuration is neglected [3]. As the typical
pulse energy is much smaller than the saturation energy of
EDFA (1 μJ), the gain saturation can be neglected. Finally, the
following modified NLSE describes the pulse amplification in
erbium-doped single mode optical fiber [1–4]:

i
∂U

∂x
+ 1

2

∂2U

∂t2
+ |U |2 U = iδU + iβ

∂2U

∂t2
+ γU

∂

∂t
(|U |2),

(1)

where the dimensionless variables (soliton units) are intro-
duced as follows [3]:

x = z/LD, t = T/T0, U = (γLD)1/2A.

Here, z and t ′ are real longitudinal coordinates in the fiber
and time, T = t ′ − z/vg = t ′ − β1z, vg is the group velocity,
A(z,T ) is the slowly varying envelope, LD = T 2

0 /|β2| is the
dispersion length, T0 is the width of the pulse, and β2 represents
the dispersion of the group velocity. γ = n2ω0/cAeff is the
nonlinear parameter, n2 is the nonlinear-index coefficient, ω0 is
the carrier wavelength of the optical pulse, Aeff is the effective
core area, and c is the speed of light in vacuum. Next,

δ = (g0 − α)LD/2, β = g0LD(T2/T0)2/2,

where g0 is the peak (small-signal) gain and α is the fiber
losses [3]. The term proportional to β represents the finite
bandwidth of the amplifier. In Eq. (1) it is assumed that the
detuning parameter is zero as well as that the pulse spectrum
is narrower than the gain bandwidth (parabolic approximation
for the gain) [3,30]. Numerical values of the parameters δ,β for
most EDFAs and pulse width T0 ≈ 1 ps are δ ≈ 0.5 and β ≈
0.5 × 10−3 [3]. The last term on the left-hand side of Eq. (1) is
proportional to γ = TR/T0, where TR(≈3 fs at λ ≈ 1.55 μm)
is related to the first moment of the nonlinear response function
(the slope of the Raman gain spectrum) [3]. This term is related
to the delayed Raman response, describes the IRS, and is
consequently responsible for the SSFS. Analyzing the breakup
of higher-order solitons in the presence of IRS, the splitting of
the real parts of the eigenvalues related to the soliton solutions
at γ = 10−4(T0 ≈ 30 ps) and the change of the imaginary parts
at γ = 5 × 10−3(T0 ≈ 600 fs) have been established [12]. If
the pulse width is close to TR , the more general model for
description of the amplification of femtosecond optical pulses
should be used [3,21,30,33,38,39].

If the Raman term in Eq. (1) is neglected, the resultant
equation has exact chirped solutions [4]. To the best of our
knowledge, Eq. (1) has no exact solutions. In accordance with
PT for a small δ,β,γ , the soliton solution of Eq. (1) may be
written as [1,18]

U (x,t) = η(x)sech{η(x)[t − τ (x)]} exp{i[−k(x)t + σ (x)]},
(2)
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where η(x) and k(x) are the soliton amplitude and speed
(frequency), respectively. The speed k(x) represents the
derivation from the group velocity as well as the frequency
shift. The soliton position τ (x) and phase σ (x) are defined by
the equations dτ (x)/dx = −k and dσ (x)/dx = (η2 − k2)/2,
respectively. The relation between k(x) and the change of the
group velocity is as follows: �vg = (v2

g|β2|k)/T0, so for k < 0,
the soliton moves at a speed lower than the group velocity
and �vg < 0. Applying PT, the following system of ordinary
differential equations that describe the evolution of amplitude
and speed can be derived [1,18,33,34]:

d

dx
η=2δη−2β

(
k2+ 1

3
η2

)
η,

d

dx
k=−4

3
βkη2− 8

15
γ η4.

(3)

The following equilibrium point (EP) has been identified
[31,33–35]:

ηPT =
√

(5
√

25β4 + 144δβγ 2 − 25β2)

24γ 2
,

(4)

kPT = − (
√

25β4 + 144δβγ 2 − 5β2)

12βγ
.

The equilibrium values of speed kPT and the square of
amplitude η2

PT are related by the equation [30,33–35]

kPT = −2γ η2
PT

/
(5β). (5)

The physical meaning of the soliton with the equilibrium
values of amplitude and frequency given by Eq. (4) is as
follows: During the process of the adiabatic amplification,

the initial soliton compresses, and due to the SSFS, at some
point it escapes from the amplifier bandwidth. As a result,
the amplification process stops and soliton amplitude and
frequency stabilize to their stationary values given by the EP.
The analytical solution for the eigenvalues λ1,2 of the linearized
problem in the vicinity of the EP is [35]

λ1,2 = (−p ±
√

p2 − 4q)/2, (6)

where the quantities q, p, and 
 are defined by
p=5β(−5β2+

√
25β4+144δβγ 2)/(9γ 2), q =5β(−125β5−

720γ 2β2δ + (25β3 + 72γ 2δ)
√


)/(162γ 4), and 
=25β4+
144βγ 2δ. In our region of values of parameters (see below)
q > 0 (and p > 0), therefore the EP given by Eq. (4) is a
simple one. For p2 < 4q, the roots λ1 and λ2 are complex
conjugate and the stable focal points appear. This is the
general case studied in this paper. In the degenerate root
case p2 = 4q, the roots λ1 = λ2 = −p/2 are degenerate and a
nodal point is obtained. We will further study a situation very
similar to this one. (Note that when δ < 0, β > 0, and γ > 0,
then q > 0, p2 − 4q > 0, and p < 0, the EP is an unstable
nodal point.) For γ = 0, the system (3) has an equilibrium
point with zero amplitude, which in the case of δ > 0 and
frequency k2

0 < δ/β is unstable. As a sequence, small ampli-
tude (dispersive) waves grow exponentially, or background
instability appears.

Perturbation approach for the analysis of the stationary
solution of Eq. (1) based on the ansatz

U (x,t) = u(ξ ) exp {i [f (ξ ) + Kx]} , (7)

where ξ = t − Mx (M and K are real numbers) was proposed
in [35]. The equation of the strongly nonlinear Duffing–Van der
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FIG. 1. (Color online) (a) The contoured plots present dependence ηPT = ηPT(δ,β) for γ = 5 × 10−4 and the white squares present the
value of the equilibrium amplitude in each area. The black points mark values of δ and β for which the appearance of the ES was numerically
studied. (b) The dependence of |knum| of the ES as a function of β (δ ∼ β/3), γ = 5 × 10−4.
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FIG. 2. (Color online) The contoured plots present ηPT = ηPT(δ,β) for (a) γ = 10−4 and (b) γ = 5 × 10−3, and ηPT = ηPT(γ,β) for δ = 0.1
(c) and δ = 0.5 (d). [Points in (a) and (b) are explained in text.]

Pol oscillator was introduced for the approximate description
of the function u(ξ ) [35]:

u′′ + c1u + c3u
3 = ε(μ − μ1 u2)u′, (8)

where c1 = −2K , c3 = 2, μ = −4βM/γ , and μ1 = −4.
μ is a control parameter in the methods [36,37]. The critical
values μC0 and MC0, for the formation of the perturbed
solution of Eq. (8), were found [35]:

MC0 = 2γ a2
0

/
(5β), (9)

where a2
0 = −2c1/c3 = 2K . Similarity between Eqs. (6) and

(9) was mentioned [35]. The perturbed solution of Eq. (8) was

found by means of [37] in [35]:

u(ω0ξ )

= a0{1 − (4γ a0/5) ln[cosh(ω0ξ )] tanh(ω0ξ )}sech(ω0ξ ),

(10)

where ω2
0 = −c1 = 2K .

III. COMPARISON OF ANALYTICAL AND
NUMERICAL RESULTS

To verify the properties of the equilibrium solitons
(ES) obtained by PT, we numerically solve Eq. (1) for
the following values of parameters: δ ⊂ (5 × 10−3,0.5),
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FIG. 3. (Color online) The contoured plots of p(δ,β) as a function of δ and β for (a)γ = 10−4 and (b) γ = 5 × 10−3. [Points in (a) and (b)

are explained in text.]

β ⊂ (1 × 10−3,0.3), and γ ⊂ (10−4,0.3). As δ > 0, back-
ground instability appears. For numerical investigation of
Eq. (1), the scheme of the split-step Fourier method proposed in
[38] was applied. To check the correctness of the Blow-Wood
RK4 scheme, the error of the evolution of the two-soliton
bound state in the presence of IRS was calculated and
good agreement with the results of [40] was established.
The evolution of the amplitude and frequency of solitons
with distance was calculated, identifying their equilibrium
values ηN and kN . The time evolution of the amplitude’s
maximum of the pulse with distance x, or dt/dx = 1/c,
was studied. The velocity c here characterizes the time shift
of the soliton and it is related to the change of its group
velocity: �vg = −(v2

g|β2|)/(cT0). If c > 0, the soliton moves
at a speed lower than the group velocity and �vg < 0. Then,
kN = −1/c. To compare the numerical (ηN and kN ) and
analytical (ηPT and kPT) parameters of equilibrium solitons,
the errors �η = |ηN − ηPT|/ηN and �k = |kN − kPT|/|kN |
are used.

Using the eigenvalues of the linearized problem in the
vicinity of the EP [Eq. (6)], it was shown that in the region of
discussed values of parameters, p2 < 4q, so the EPs are stable
focuses. To obtain the EP by numerical solution of Eq. (1)
or Eq. (3) starting with different initial conditions, a certain
minimum distance of propagation xEP is required. The EP
given by Eq. (4) can be used for two purposes. First, they can
be used to obtain required parameter values for which the initial
fundamental soliton, with η = 1, reduces its SSFS. Second, as
we will see, the EP gives the parameters of ES that appear as
a result of pulse compression of initial fundamental solitons,
with η = 1 due to the BLA. In the second case the question
arises, which are the maximum values of soliton amplitudes
and therefore the maximum factor of compression?

Our first aim is to verify the description of suppression of
SSFS for the fundamental soliton η = 1. We should mention
that solving Eq. (3), two ES related to the stable focus were

reported earlier: (a) equilibrium parameters ηPT = 0.99, kPT =
−0.35, xEP ∼ 80 for the case of δ = 2.5 × 10−2, β = 5.6 ×
10−2, and γ = 5 × 10−2 [18], respectively, and (b) equilibrium
parameters ηPT = 2.3, kPT = −2.12, and xEP ∼ 60 for δ =
0.25, β = 4 × 10−2, and γ = 4 × 10−2 [30]. In both cases the
observed values of xEP are large.

We examined the dependence of ηPT on the δ,β for
γ = 5 × 10−4. δ and β satisfy the relation δ ∼ β/3 as for
the case of BLA (γ = 0) [1,41,42]. It was not possible to
analytically find the maximum of ηPT as a function of δ, β, and
γ , so we numerically plot ηPT = ηPT(δ,β) for γ = 5 × 10−4 in
Fig. 1(a). We took the parameter values [as shown in Fig. 1(a)],
so the amplitudes of ES equal to 1 were expected. Next we
numerically solve Eq. (1) for the chosen parameters, and ES
were observed with parameters shown in Fig. 1(b).

Figure 1(b) illustrates the suppression of the SSFS: with
the increase of β, the modulus of the equilibrium velocities
|kN | reduces. As anticipated, the amplitudes of ES ηN tend
to unity. In this case p2 ∼ 4q (with accuracy of 10−6), so
the EP can be considered as a “nodes,” 10 � xEP � 70.
The maximum values of errors are of the order of several
percent for amplitudes and twice larger for the frequency. One
reason for frequency errors is the small values of frequencies
that make their calculation difficult. For small equilibrium
amplitudes the background instability waves observed in
simulations are small. The appearance of EPs has been con-
firmed using different initial conditions U (0,t) = ηsech(ηt),
η ⊂ (2,20).

Our second aim is to find the maximum values of soliton
amplitudes, and therefore the maximum factor of compression
of initial fundamental solitons, with η = 1 due to the BLA.
We numerically plot two types of dependences: (a) ηPT =
ηPT(δ,β) for two different values of γ = 1 × 10−4 and γ =
5 × 10−3 [Figs. 2(a) and 2(b)], and (b) ηPT = ηPT(γ,β) for
two different values of δ = 0.1 and δ = 0.5 [Figs. 2(c)
and 2(d)].
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(a) (b)

FIG. 4. Evolution of pulse amplitude with distance according to Eq. (3) (solid line) and the numerical solution of Eq. (1) (empty circles)
for (a) δ = 0.45, β = 2 × 10−3, and γ = 10−4 and (b) δ = 0.4, β = 8 × 10−3, and γ = 5 × 10−3, respectively.

Figure 2(a) reveals a very well expressed region in the para-
metric space of parameters δ and β where the maximum values
of ηPT of an order of 20 can be obtained. Figure 2(b) shows,
however, that with the increase of γ , the maximum values of
ηPT reduce sensitively, and in addition, the region is shifted in
the direction of larger β. So we can expect that there is a proper
initial pulse width T0 for which the maximum compression is
possible. Figures 2(c) and 2(d) show the influence of the gain δ

for increasing the maximum values of ηPT. With the increase of
the value of δ, the maximum values of ηPT increase from 10 in
Fig. 2(c) to 22 in Fig. 2(d). In this case the region of maximum
values does not change with the change of δ. Keeping in mind
that increasing the gain of EDFAs δ can be larger than 1 (for
EDFA providing a 10 dB gain over LD , δ is of the order of 1)
we can expect even larger maximum values of ηPT.

The eigenvalues λ1,2 of the linearized problem in the
vicinity of the EP allow the determination of the type of the
EP. The magnitude of p [see Eq. (6)] determines the minimum
distance of propagation xEP for which the initial fundamental
soliton with η = 1 compresses and achieves its equilibrium
parameters. In Fig. 3 we plot p(δ,β) as a function of δ, and β

for two values of γ for γ = 10−4 [Fig. 3(a)] and γ = 5 × 10−3

[Fig. 3(b)], respectively.
As can be seen from Figs. 3(a) and 3(b) for fixed γ ,

p increases with δ and β. With an increase of γ for fixed
values of δ and β, p is reduced. To obtain the certain value
of compression factor for the minimum xEP, we first should
choose the proper values of the parameters δ, β, and γ from
Fig. 2. Next, from Fig. 3 we should choose the maximum
possible value of p, which will provide the minimum xEP.
Such an example is presented in Fig. 4. In Figs. 4(a) and 4(b)
we compare the results for amplitude obtained by numerical
solution of Eqs. (1) and (3) (initial condition η = 1, k = 0)
for the cases (a) δ = 0.45, β = 2 × 10−3, and γ = 10−4 and
(b) δ = 0.4, β = 8 × 10−3, and γ = 5 × 10−3, respectively.
The expected equilibrium amplitudes (therefore the compres-
sion factors) and values of p are presented by points in
Figs. 2(a) and 3(a) and Figs. 2(b) and 3(b), respectively.
According to Eq. (4) the equilibrium values of soliton
parameters are ηPT = 21.007 and kPT = −8.826 for the first
case [Fig. 2(a)], and ηPT = 5.074 and kPT = −6.436 for the
second case [Fig. 2(b)]. Using Eq. (6) the following values

(a) (b)

FIG. 5. (a) Peak amplitude of the initial pulse U (0,t) = η sech(ηt) as a function of the propagation distance for δ = 0.5, β = 10−2,
and γ = 5 × 10−4: η = 1 (solid line), η = 2 (dashed line), η = 4 (dashed-dotted), η = 8 (short dashed-dotted), and η = 14 (dotted line).
(b) Distance of appearance of the stationary soliton xEP (solid line), second pulse (dashed line), and third pulse (short dashed line), as functions
of the initial peak amplitude ηN .
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TABLE I. Values of parameters, numerical and analytical values of pulse parameters ηN , kN and ηPT, kPT, respectively, as well
as the corresponding errors.

δ × 10 β × 102 γ × 104 ηPT kPT ηN kN �η �k

4.5 2 1 21.007 −8.826 20.963 −8.831 0.21 0.06
4 0.8 50 5.074 −6.436 5.089 −6.426 0.29 0.16
5 0.5 5 12.910 −6.667 12.870 −6.662 0.31 0.07
5 0.75 5 12.297 −4.033 12.283 −4.034 0.12 0.04
5 0.875 5 11.853 −3.211 11.838 −3.217 0.12 0.04
5 1 5 11.392 −2.596 11.385 −2.596 0.06 0.01
5 1.125 5 10.943 −2.129 10.931 −2.129 0.11 0.03
5 1.25 5 10.517 −1.770 10.513 −1.771 0.04 0.08

of p were obtained: p = 2.354 [Fig. 3(a)] and p = 0.549
[Fig. 3(b)], respectively.

Excellent performance of PT in the description of amplitude
evolution should be mentioned. Due to the difference in p the
xEP in the second case is much larger. To more precisely check
the results obtained by PT, the numerical and analytical values
of pulse parameters ηN , kN and ηPT, kPT, respectively, as well as
corresponding errors are presented in Table I (first two rows),
and excellent agreement between them is identified.

The third aim is to show the suppression of the SSFS for
fundamental solitons with large amplitudes η ∼ 10. We fixed
the values of δ = 0.5, γ = 5 × 10−4, and increased the values
of β. The obtained results are also presented in Table I (last
six rows).

As can be seen from the last six rows of Table I, with
the increase of β, |kN | reduces, so the suppression of SSFS
for the fundamental solitons with large amplitudes (η ∼ 13)
is also confirmed. In all cases, starting with initial condition
U (0,t) = sech(t), the distance xEP is very small, xEP ≈ 3. The
excellent agreement (smaller than 1%) between analytical and
numerical values of pulse parameters was found. To better
study the dependence of the pulse amplitude evolution on the
initial conditions U (0,t) = η sech(ηt), where η ⊂ (1,14) for
δ = 0.5, β = 10−2, and γ = 5 × 10−4 was calculated through
numerical solution of Eq. (1) and the results are presented in
Fig. 5(a). Figure 5(b) shows xEP as a function of ηN .

As Fig. 5(a) shows, in all cases the initial pulse transforms
into the soliton pulse with the predicted amplitude ηPT =
11.39. The numerical and predicted values for the frequency
practically coincide. The additional pulses aroused from the
dispersive wave due to the background instability, do not
influence the amplitude of the initial pulse (except the small
fluctuations) that reaches the equilibrium parameters in all
cases. From Fig. 5(b) it can be seen that the increase of the
initial amplitude leads to the reduction of xEP. Simultaneously
to the process of the formation of the equilibrium soliton, the
dispersive waves amplify and the additional pulses appear [33].
Figure 5(b) shows that the distance of appearance of the
second and third pulses increases monotonically with η. It was
numerically observed that after some propagation distance the
second and third pulses achieve the equilibrium parameters.

Finally, we studied the applicability of the analytical
descriptions of the change of shape of the pulses in the
presence of IRS and BLA. To observe the typical asymmetric
changes in the form of the pulses, however, artificially
large values of γ should be used. Figure 6(a) compares the
results of numerical solution of Eq. (1) (initial condition—
soliton, η = a0 = 1) with analytical findings [Eqs. (3.5)–(3.6)
of [18] and Eq. (10) for δ = 5 × 10−2, β = 0.4, and γ =
0.8]. Figure 6(b) shows the evolution of errors εPT,LP =
(
∑N

i=1 ||U num
i |2 − |UPT,LP

i |2|)/max(|U num
i |2), where N is the

number of grid points, U num
i is the numerical values, while UPT

i

(a) (b)

FIG. 6. (a) Comparison between the numerical (solid line) shape and the analytical results of Eqs. (3.5) and (3.6) of [18] (short dashed line)
and Eq. (10) (dashed line) of the pulse for δ = 5 × 10−2, β = 0.4, γ = 0.8, and x = 5. (b) Evolution of error with distance for (a) Eqs. (3.5)
and (3.6) of [18] (short dashed line) and (b) Eq. (10) (dashed line) for δ = 5 × 10−2, β = 0.4, and γ = 0.8.
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and ULP
i are the values of solutions given by Eqs. (3.5)–(3.6)

of [18] and Eq. (10), respectively.
Figure 6(a) shows that for small values of β both analytical

results Eqs. (3.5) and (3.6) of [18] and Eq. (10) describe
the numerical results qualitatively well. However, increasing
the distance, the error for Eqs. (3.5) and (3.6) of [18] εPT

becomes smaller than εLP at x = 5: εPT = 4.34 × 10−3, while
εLP = 5.93 × 10−3 [Fig. 6(b)]. The values of errors show
that earlier derived analytical expressions well describe the
numerical findings (at least at the distances considered). The
values of errors compare well with those of [40].

IV. CONCLUSION

We numerically analyzed the suppression of the SSFS as
well as the compression of short pulses in the presence of BLA
(the parabolic approximation). The process of amplification
and compression of the initial soliton includes simultaneous
generation and amplification of the dispersive waves due to
the background instability as well as the formation of new
additional solitons [33]. The applicability of the information
provided by the EP derived by the PT [31,33–35] has
been investigated. Analyzing the equilibrium amplitudes as
a function of physical parameters, the maximum compression
factor in the amplification of short pulses is revealed. The
eigenvalues of the linearized problem in the vicinity of EP [35]
allowed determination of the type of equilibrium points as

well as estimation of the necessary distance of propagation
for the appearance of equilibrium states from different initial
conditions. Stationary pulses that correspond to the stable
focal points with large amplitudes have been found from
different initial conditions, which appear at typical distances
of several dispersion lengths. This result presents an analytical
understanding for the final stage of amplified and compressed
short pulses in the presence of IRS and can have practical
applications for the generation of short optical solitons. The
relation between the equilibrium amplitude and the speed of
the perturbed soliton [see Eqs. (5) and (9)] found analytically
earlier in [31,33–35] was numerically proven. Independently
of the complicated process of amplification and compression
of the initial soliton, all results obtained by PT were confirmed
with excellent accuracy by means of direct numerical solution
of the basic equation (1). Due to the background instability
however, obtained perturbation results have a limited area of
application that can be estimated through numerical solution
of the basic equation. Finally, it has been shown that the
numerically calculated changes in the shape of the perturbed
soliton in the presence of BLA and IRS correspond well to the
analytical results of [10,18,19] as well as compare qualitatively
well to those of [35].

ACKNOWLEDGMENTS

This research was supported by the Project 102 HI 122 −
20 with the Technical University-Sofia, Bulgaria.

[1] A. Hasegawa and Y. Kodama, Solitons in Optical Communica-
tions (Clarendon, Oxford, 1995).

[2] G. P. Agrawal, Nonlinear Fiber Optics, 3rd. ed. (Academic, New
York, 2001).

[3] G. P. Agrawal, Applications of Nonlinear Fiber Optics (Aca-
demic, New York, 2001).

[4] N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses
and Beams (Chapman and Hall, London, 1997).

[5] J. R. Taylor, Optical Solitons —Theory and Experiment (Cam-
bridge University Press, Cambridge, 1992).

[6] L. F. Molenauer and J. P. Gordon, Solitons in Optical Fibers
(Academic, Boston, 2006).

[7] E. M. Dianov, A.Ya. Karasik, P. V. Mamyshev, A. M. Prokhorov,
V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, JETP Lett.
41, 294 (1985).

[8] F. M. Mitschke and L. F. Mollenauer, Opt. Lett. 11, 659 (1986).
[9] V. N. Serkin, Sov. Tech. Phys. Lett. 13, 320 (1987).

[10] Y. Kodama and A. Hasegawa, IEEE J. Quantum Electron. 23,
510 (1987).

[11] K. Tai, A. Hasegawa, and N. Bekki, Opt. Lett. 13, 392 (1988).
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