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The concept of soliton management has been explored in the Bose-Einstein condensate and optical fibers. In this
paper, our purpose is to investigate whether a similar concept exists for a variable-coefficient modified Korteweg–
de Vries equation, which arises in the interfacial waves in two-layer liquid and Alfvén waves in a collisionless
plasma. Through the Painlevé test, a generalized integrable form of such an equation has been constructed
under the Painlevé constraints of the variable coefficients based on the symbolic computation. By virtue of the
Ablowitz-Kaup-Newell-Segur system, a Lax pair with time-dependent nonisospectral flow of the integrable form
has been established under the Lax constraints which appear to be more rigid than the Painlevé ones. Under such
Lax constraints, multisoliton solutions for the completely integrable variable-coefficient modified Korteweg–de
Vries equation have been derived via the Hirota bilinear method. Moreover, results show that the solitons and
breathers with desired amplitude and width can be derived via the different choices of the variable coefficients.
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I. INTRODUCTION

Since the first introduction of the soliton concept [1],
the classical nonlinear evolution equations (NLEEs) which
support soliton solutions, such as the modified Korteweg–de
Vries (mKdV) and nonlinear Schrödinger (NLS) equations,
have been proposed to describe a variety of physical phe-
nomena in the fields of hydrodynamics, ocean dynamics,
plasma physics, Bose-Einstein condensate (BEC), and op-
tical fibers [2–8]. Meanwhile, different methods have been
developed to address those NLEEs for deriving their soliton
solutions [2].

Based on the significance of the nonlinear mechanisms in
different physical fields, Ref. [3] has stated that it is necessary
to investigate the soliton dynamics to provide theoretical
tools for supporting the relevant physical phenomena and
experiments. In such case, the concept of soliton management
which is claimed to be of some physical applications [4],
such as the Feshbach resonance and dispersion management
in the BEC and dispersion and nonlinearity management in
the optical fibers, has been explored [3–5]. For example,
Ref. [4] has presented the dispersion and nonlinearity man-
agement for the femtosecond optical solitons and studied the
optimal amplification of solitons through dispersion wells and
barriers. Reference [5] has proposed a scheme to control the
dynamics of the localized states in a one-dimensional BEC,
periodically flipping the sign of the scattering length via the
Feshbach resonance, which is named the Feshbach-resonance
management.

As one technique of the soliton management, the dispersion
management has received attention for improving the opera-
tion characteristics (i.e., stability and bit rates) of the solitons
in the optical fibers [6] or reducing certain negative effects (i.e.,
radiation, jitters, resonant four-wave mixing, and the Gordon-
Haus effect) [7]. Reference [8] has employed the dispersion
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management to study the interaction features of the optical
solitons, such as the soliton-width compression, soliton-energy
control, and soliton-pulse amplification. However, such a
technique is mainly focused on the BEC and optical fiber
systems described by the NLS-typed models [4–8]. With
this consideration, Ref. [6] extends the concept of dispersion
management to the internal waves in stratified fluids governed
by a KdV system with a periodic modulation of the dispersion
coefficient, and presents the existence of the stable solitary-
wave solutions in the region defined by the average dispersion
and initial momentum [6]. Therefore, it is possible to extend the
concept of soliton management to other NLEEs with physical
backgrounds, such as the mKdV equation which can describe
the interfacial waves in the two-layer liquid with gradually
varying depth [9].

Generally speaking, the soliton management can be realized
with the four basic parameters featuring the dynamics of a
soliton: the amplitude (or width), frequency (or velocity),
phase, and time position [3]. It is known that the classical
solitons behave like particles during the propagation and
preserve their shapes and velocities with only phase shift
after their interactions [2]. As the extension of the classical
soliton concept, Ref. [10] reports that the soliton can propagate
with time-invariant amplitudes but changeable velocities as
time evolution in a linearly inhomogeneous plasma, which is
described by the NLS equation with a linear external potential.
At the same time, the analytical soliton solutions are also
derived from the KdV equation with varying nonlinearity and
dispersion [11]. We notice that the soliton management for
the NLS and KdV models can be achieved by the control
of the soliton amplitudes and velocities. Consequently, in
Ref. [12], the soliton with time-variant amplitude and velocity
is suggested to be named the nonautonomous soliton, which is
one type of solution for the nonautonomous system with time-
or space-dependent dispersion and nonlinearity [12]. More-
over, in those nonautonomous systems, the constant spectral
parameter in the inverse scattering method should be extended
to the nonisospectral time-dependent function [12,13].
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In this paper, from the viewpoint of manipulating the soliton
dynamics, we will investigate the soliton management for a
variable-coefficient mKdV equation,

ut + a(x,t) u2 ux + b(x,t) uxxx + c(x,t) ux + d(x,t) u = 0,

(1)

where u(x,t) is a function of the scaled space x and time
t , a(x,t), b(x,t), c(x,t), and d(x,t) account for the cubic
nonlinear, dispersion, nonuniformity term, and line-damping
coefficients, respectively. Equation (1) is not completely inte-
grable unless the variable coefficients satisfy certain constraint
conditions, such as the standard mKdV equation describing
the interfacial waves in two-layer liquid [9], propagation of an
elastic quasiplane wave in a lattice [14], and Alfvén waves in
a collisionless plasma [15], cylindrical mKdV equation with
physical interest [16], and the following integrable variable-
coefficient mKdV equation [16–22],

ut = K0(t) (uxxx − 6 u2 ux) + 4 K1(t) ux

−h(t) (u + x ux) = 0, (2)

with a(x,t) = 6 K0(t), b(x,t) = −K0(t), c(x,t) = x h(t) −
4 K1(t), d(x,t) = h(t) in Eq. (1). Integrable properties of
Eq. (2) have been investigated from the different points of
view in the previous attempts [16–22]: Ref. [16] has presented
existence of the infinite conserved quantities; the solvability
via the inverse scattering method and Lax pair representation
related to the nonisospectral problem have been investigated
in Ref. [17]; symmetries and Hamiltonian structures have
also been constructed [18]; some explicit expressions of
the solitonlike solutions have been derived through different
types of methods, such as the symmetry reduction [19], the
so-called Ricatti equation expansion method [20], and the
variable-coefficient extended mapping method [21]. However,
the soliton management for Eq. (2), namely, the control of
the soliton amplitude and velocity, has not been explored
to our knowledge, and the graphic illustration of the soliton
propagations and their interactions could also be interesting to
some extent. Moreover, although some special integrable cases
of Eq. (1) have been studied from the viewpoint of integrable
properties, it seems that further study on Eq. (1) is of certain
value, especially in the sense of the Painlevé and complete
integrability.

Therefore, in this paper, in order to discuss the dynam-
ics of the solitons governed by Eq. (1), firstly it will be
necessary to investigate the integrability of Eq. (1) in the
Painlevé sense based on the Weiss-Talor-Carnevale (WTC)
method [23] with the simplified Kruskal ansatz [24], and a
generalized integrable form of Eq. (1) will be constructed
when the variable coefficients satisfy certain constraints (the
Painlevé constraints). Then under more rigid constraints (the
Lax constraints), we will seek a nonisospectral Lax pair
representation by virtue of the Ablowitz-Kaup-Newell-Segur
(AKNS) system [25], which will be able to ensure the complete
integrability of such integrable form for Eq. (1). Secondly,
we will construct the multisoliton and breather solutions for
such a completely integrable case by employing the Hirota
bilinear method [26]. Furthermore, based on the explicit
expressions of the solitons, we will discuss the effects of
the nonuniformity term c(x,t) on the soliton amplitude and

velocity, and present the graphic illustration of the soliton
interactions and breather propagations. In addition, numerical
simulation will be performed to show the soliton dynamics
with the Lax constraint finitely perturbed. Finally, we will
present our conclusions.

II. PAINLEVÉ ANALYSIS AND LAX PAIR

In order to determine the constraint conditions for Eq. (1)
in the sense of the Painlevé integrability, we resort to the
WTC method with the simplified Kruskal ansatz, which is an
effective way to study the integrability of the partial differential
equation (PDE) [23,24].

A. Painlevé analysis

In order to simplify the calculations, we choose the sim-
plified Kruskal ansatz with the noncharacteristic singularity
manifold ϕ(x,t) written as [24]

ϕ(x,t) = x + φ(t), (3)

and the solution u(x,t) of Eq. (1) can be expressed in terms of
the Laurent series,

u(x,t) = [x + φ(t)]−α

∞∑
j=0

uj (t) [x + φ(t)]j , (4)

where uj (t) and φ(t) are the arbitrary analytic functions with
variable t in the neighborhood of a noncharacteristic movable
singularity manifold defined by ϕ(x,t) = 0, and α is a positive
integer to be determined.

Variable coefficients a(x,t), b(x,t), c(x,t), and d(x,t) can
be also expanded on the same singularity manifold as [27]

a(x,t) =
∞∑
i=0

ai(t) [x + φ(t)]i , (5a)

b(x,t) =
∞∑
i=0

bi(t) [x + φ(t)]i , (5b)

c(x,t) =
∞∑
i=0

ci(t) [x + φ(t)]i , (5c)

d(x,t) =
∞∑
i=0

di(t) [x + φ(t)]i , (5d)

with

ai(t) = 1

i!

∂ia(x,t)

∂xi

∣∣∣∣
x=−φ(t)

, (6)

and bi(t), ci(t), di(t) are similar to the expression of ai(t).
Substituting Expansions (5) into Eq. (1), via the bal-

ance between the dominant terms, we can derive α = 1
and a0(t) u0(t)2 + 6 b0(t) = 0. Without loss of generality,
we choose a(x,t) and b(x,t) to be independent of x, that
is, a(x,t) = a0(t) = a(t) and b(x,t) = b0(t) = b(t) in the
following Painlevé test due to the complexity procedure.

By virtue of the symbolic computation [28,29], Resonances
−1, 3, and 4 are found, where j = −1 corresponds to the
arbitrariness of the singular manifold ϕ(x,t). Resonances
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j = 3 and 4 are verified if the following conditions on the
variable coefficients are satisfied:

j = 3, − 2 c1(t) + 2 d0(t) − a′(t)
a(t)

+ b′(t)
b(t)

= 0, (7a)

j = 4, c2(t) − d1(t) = 0, (7b)

with the assumption that c2(t) = d1(t) = 0, which leads d(x,t)
to be space independent from the definition of d1(t) =
∂d(x,t)/∂x|x=−φ(t). Hence, we have d1(t) = d2(t) = · · · = 0
and c2(t) = c3(t) = · · · = 0. The compatibility condition at
j = 4 is satisfied automatically, and Eq. (7a) at j = 3 is one
of the constraints on the variable coefficients which ensures
that Eq. (1) can pass the Painlevé test.

Summarizing, we have the following:
Proposition 2.1. Equation (1) passes the Painlevé test

if the following relations on the variable coefficients are
verified,

a(x,t) = a(t), b(x,t) = b(t),
(8)

c(x,t) = c0(t) + x c1(t), d(x,t) = d0(t) = d(t),

where a(t), b(t), c1(t), and d(t) satisfy constraint (7a), and
c0(t) is the arbitrary function.

Therefore, we conclude that a generalized integrable form
of Eq. (1) should have the following form:

ut + a(t) u2 ux + b(t) uxxx

+ [c0(t) + x c1(t)] ux + d(t) u = 0, (9)

with the arbitrary function c0(t), but a(t), b(t), c1(t), and
d(t) satisfying constraint (7a). One notices that Eq. (9)
reduces to Eq. (2) when a(t) = 6 K0(t), b(t) = −K0(t),
c0(t) = −4 K1(t), c1(t) = h(t), and d(t) = h(t), as well as
constraint (7a) being satisfied automatically at the same
time.

B. Lax pair

Reference [13] mentions that the unique analytic solutions
are supported by the PDE when such equation is Painlevé
integrable, while there exist a Lax pair and N -soliton solution
for the completely integrable PDE. In the present work, we
will show that the complete integrability of Eq. (9) under
constraint (7a) can be further confirmed by the existence of
the Lax pair with time-dependent nonisospectral flow λ′(t) =
−d(t) λ(t), where λ(t) is the nonisospectral eigenvalue. By
virtue of the AKNS system, we consider the following linear
eigenvalue problems for Eq. (9):

�x = U �, �t = V �, (10)

where � = (ψ1,ψ2)T with T representing the transpose of the
vector, while U and V are taken the forms as

U =
(

λ(t) i u(x,t)
i u(x,t) −λ(t)

)
, V =

(
A(x,t) B(x,t)

C(x,t) −A(x,t)

)
. (11)

Meanwhile, the 2 × 2 matrices U and V should satisfy the
zero curve equation,

Ut − Vx + [U,V ] = 0, (12)

by which the unknown functions in matrix V can be determined
as follows:

A(x,t) = −4 b(t) λ(t)3 − [x d(t) + 2 b(t) u2 + c0(t)] λ(t),

(13a)

B(x,t) = −4 i b(t) u λ(t)2 − 2 i b(t) ux λ(t)

− i [x d(t) u + c0(t) u + b(t) (2 u3 + uxx)], (13b)

C(x,t) = −4 i b(t) u λ(t)2 + 2 i b(t) ux λ(t)

− i [x d(t) u + c0(t) u + b(t) (2 u3 + uxx)], (13c)

with the nonisospectral flow λ′(t) = −d(t) λ(t) and con-
straints

a(t) = 6 b(t), c1(t) = d(t). (14)

It is straightforward to prove that the zero curve Eq. (12)
with the determined matrices U and V gives rise to the
completely integrable Eq. (9) under Constraint (14) and
the nonisospectral eigenvalue λ(t). Meanwhile, we note that
Eq. (9) is completely integrable only if Constraint (14) is
satisfied and such Lax constraints are one group of the special
solutions for constraint (7a) which is derived from the Painlevé
test. In such a case, we conclude that the Lax constraints of the
complete integrability are more rigid than the Painlevé ones of
the Painlevé integrability for Eq. (9).

III. SOLITON SOLUTIONS AND SOLITON MANAGEMENT

In this section, before investigating the soliton dynamics
and management for Eq. (9), we first pay attention to the
explicit multisoliton solutions of Eq. (9) under Constraint (14)
by virtue of the Hirota bilinear method [26]. Such a method
has been effectively used to investigate the soliton, breather,
and doubly periodic wave solutions to types of NLEEs [7,30].

In order to construct the analytic multisoliton solutions
of Eq. (9) under Constraint (14), we apply a dependent
variable transformation u = −i [ln(G/F )]x with the complex
conjugate functions F (x,t) and G(x,t) [30], and decouple
Eq. (9) into a couple of bilinear equations under Constraint (14)
as[

Dt + b(t) D3
x + c0(t) Dx + x c1(t) Dx

]
(G · F ) = 0, (15a)

D2
x(G · F ) = 0, (15b)

where the Hirota’s bilinear operators Dx and Dt are defined
by [26]

Dn
xD

m
t a · b =

(
∂

∂x
− ∂

∂x ′

)n (
∂

∂t
− ∂

∂t ′

)m

× a(x,t)b(x ′,t ′)|x=x ′,t=t ′ . (16)

For conveniently constructing soliton solutions for Eq. (9),
with the same constraints (14), Eq. (9) can be rewritten as the
following bilinear equations,

[
Dt + b(t) D3

x + c0(t) Dx + x c1(t) Dx

]
(g · f ) = 0, (17a)

D2
x(f · f + g · g) = 0, (17b)
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where f and g are real functions and assumed as
follows [30]:

F = f − i g, G = f + i g. (18)

Under such an assumption, the variable transformation turns
out to be

u =
[

2 arctan

(
g

f

)]
x

. (19)

In the following section, based on Eq. (17) and Transfor-
mation (19), we will construct the multisoliton solutions for
Eq. (9). In order to analytically discuss the soliton management
through controlling the amplitudes and velocities of the
soliton, we expand g and f into a power series of a small
parameter ε as [7]

g = 1 + g1 ε + g2 ε2 + g3 ε3 + · · · , (20a)

f = 1 + f1 ε + f2 ε2 + f3 ε3 + · · · . (20b)

Substituting expression (20) into Eq. (17), via collecting
coefficients of the same power of ε, the analytic multisoliton
solution for Eq. (9) can be constructed under some reasonable
assumptions.

A. One-soliton solution

In this part, to present the analytic expression of the one-
soliton solution for Eq. (9), we assume that

g1 = exp(θ1), f1 = m1 exp(θ1), (21)

with θ1 = n1(t) x + ω1(t) + η1. Substituting the above expres-
sions into Eq. (17), the unknown variables can be determined
as

m1 = −1, n1(t) = μ1 exp

[
−

∫
c1(t) dt

]
,

(22)
ω1(t) = −

∫
c0(t) n1(t) dt −

∫
b(t) n1(t)3 dt,

with the arbitrary constants η1 and μ1. Therefore, the explicit
analytic one-soliton solution can be expressed as

u =
[

2 arctan

(
g

f

)]
x

=
[

2 arctan

(
1 + g1

1 + f1

)]
x

= n1(t) sech[n1(t) x + ω1(t) + η1]. (23)

Meanwhile, the amplitude A and velocity v for each soliton of
Eq. (9) can be, respectively, derived as

A = |n1(t)| = |μ1| exp

[
−

∫
c1(t) dt

]
, (24a)

v = c0(t) + b(t) n1(t)2 − c1(t) [ω1(t) + η1]

n1(t)
. (24b)

From Expression (24), it is obvious that the soliton ampli-
tude is governed by the nonuniformity coefficient c1(t) and
arbitrary constant μ1, while the velocity relies on the variable
coefficients d(t), c0(t), c1(t) and arbitrary constants η1, μ1.
To accomplish the purpose of soliton management for Eq. (9),
we will emphasize how to control the soliton amplitude and
velocity by changing the nonuniformity coefficient c1(t) and
arbitrary constant μ1.

0

4
x

0

0.8

t

1

4

u

0

4
x

0

4

x0

0.8
t

0

2u 0

4

x

0

2

(a) (b)

2

2

x1.2

1.2
t

1

3

u 2

2

x

1

3

4

4
x

2

2
t

0.2

1

u

4

4
x

0.2

1

(c) (d)

FIG. 1. (Color online) Evolution of the one-soliton via solu-
tion (23) for Eq. (9) under Constraint (14) when (a) a(t) = 6, b(t) = 1,
c0(t) = 1, c1(t) = −1, d(t) = −1, μ1 = 1, η1 = 0; (b) a(t) = 6,
b(t) = 1, c0(t) = 1, c1(t) = −1, d(t) = −1, μ1 = −1, η1 = 0; (c)
a(t) = 6, b(t) = 1, c0(t) = 1, c1(t) = −t , d(t) = −t , μ1 = 1, η1 = 0;
(d) a(t) = 6, b(t) = 1, c0(t) = 0, c1(t) = t , d(t) = t , μ1 = 1, η1 = 0.

Firstly, our interest will be devoted to the effect of the
arbitrary constant μ1 when the nonuniformity coefficient c1(t)
is invariant. Via Expression (23), we find that there exist two
families of solitons, namely, elevation and depression solitons,
which depend on the sign of μ1. Generally speaking, for
μ1 > 0, the elevation soliton is derived for Eq. (9), while the
depression soliton appears in the case of μ1 < 0. Furthermore,
the soliton amplitude and speed (velocity in magnitude)
gradually increase with the increase of |μ1|.

In the following part, we will construct different types of
one-soliton profiles depending on the nonuniformity coeffi-
cient c1(t) under Constraint (14). We assume that c1(t) does
not vary with time [i.e., c1(t) is a constant]. When c1(t) > 0,
the amplitude of the one soliton decreases with time and
correspondingly the soliton width broadens with time. On the
contrary, when c1(t) < 0, the one-soliton amplitude increases
gradually and the soliton width gradually decreases as a result.
Figure 1(a) presents the evolution of the elevation soliton with
μ1 = 1 and c1(t) = −1, from which one can observe that the
soliton amplitude monotonously grows with the decreasing of
the soliton width due to the presence of the negative c1(t). Such
variation is consistent with the analytical expression of the
soliton amplitude A = exp(t), which exponentially increases
with t . Correspondingly, the similar amplitude and width
variation are identical to those for the depression soliton with
μ1 = −1 and c1(t) = −1, as shown in Fig. 1(b).

In Fig. 1(c), we describe the one-soliton dynamics when
c1(t) is selected as the monotonous function decreasing with
time and μ1 is supposed to be a positive constant [c1(t) = −t ,
μ1 = 1]. To discuss the soliton management for Eq. (9) under
Constraint (14), the corresponding amplitude for each soliton
can be expressed as A = exp(t2/2), from which we figure
out that the soliton with minimal amplitude takes place at
the moment of t = 0. Such a development trend can also
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be observed in Fig. 1(c), that is, the soliton propagates with
the amplitude attenuating but width broadening as the time
gradually approaches to zero. If c1(t) = d(t) = t , c0(t) = 0
and other parameters are selected as same as those in Fig. 1(c),
another different type of soliton can be derived in Fig. 1(d), in
which the soliton amplitude and width variation are opposite
to those in Fig. 1(c), that is, at the moment of t = 0, the
soliton amplitude reaches to the maximal value but the soliton
width is compressed into the narrowest one. In addition,
the variation of the soliton amplitude in Fig. 1(d) accords
with the analytical expression A = exp(−t2/2). Furthermore,
when the soliton in Fig. 1(d) is compared with the two-
soliton bound state in Ref. [31], we notice that both of them
can generate high-amplitude waves along the propagation
direction. However, the mechanism for the formation of the
high-amplitude waves is different. In Fig. 1(d), the formation
of high-amplitude waves is caused by the soliton compression

effect, while in Ref. [31], the generation of high-amplitude
waves is induced by the two-soliton interaction in the bound
state.

B. Two solitons and breather

Based on the one-soliton solution for Eq. (9) under
Constraint (14), we have studied the compression of the soliton
by manipulating the nonuniformity coefficient c1(t). Generally
speaking, the soliton interaction plays a role in determining
the physical features of the dynamical systems and benefits
the relevant applications in various fields [32]. Therefore, it
is necessary to investigate the similar soliton management
problems on the two-soliton interaction. The Hirota bilin-
ear method can be employed to generate the multisoliton
solutions [7]. For instance, the two-soliton solution can be
constructed as

u =
{

2 arctan

[
1 + exp(θ1) + exp(θ2) + N1 exp(θ1 + θ2)

1 + m1 exp(θ1) + m2 exp(θ2) + M1 exp(θ1 + θ2)

]}
x

,

θi = ni(t) x + ωi(t) + ηi,ni(t) = μi exp

[
−

∫
c1(t) dt

]
, (i = 1,2),

(25)

ωi(t) = −
∫

c0(t) ni(t) dt −
∫

b(t) ni(t)
3 dt, mi = −1, (i = 1,2),

N1 = M1 = − (μ1 − μ2)2

(μ1 + μ2)2
,

where μi and ηi (i = 1,2) are arbitrary parameters. From
the expression of the two-soliton solution, it is observed that
the amplitude and velocity of each soliton in the two-soliton
solution can also be influenced by c1(t). Thus, it is possible to
form different types of two-soliton profiles if one manages to
control the function c1(t).

Figure 2(a) describes the evolution of the two-soliton
interaction with unequal amplitudes and velocities when the
nonuniformity coefficient c1(t) is a negative constant. From
Fig. 2(a), one observes that the soliton amplitudes increase
but the soliton widths get compressed, which can also be

3
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FIG. 2. (Color online) Interaction of the two solitons via solu-
tion (25) for Eq. (9) under Constraint (14) when (a) a(t) = 6, b(t) = 1,
c0(t) = 0, c1(t) = −1, d(t) = −1, μ1 = 1, η1 = 0, μ2 = 0.9, η2 = 0.
(b) Profiles of (a) when t = −0.6 (solid line), t = 1 (bold dashed line),
and t = 1.75 (dashed line).

interpreted by Fig. 2(b). Meanwhile, it is noted from Fig. 2(b)
that the two solitons interact with each other without a phase
shift, and then the two slide over each other. Furthermore, we
present another two scenarios of interactions between the two
neighboring solitons as shown in Fig. 3, in which c1(t) is taken
as −t in Fig. 3(a) and t in Fig. 3(b), respectively. The results
suggest that the main features of the two-soliton interaction
have a similar appearance to those of the one-soliton case, that
is, the soliton amplitudes and widths vary with time along the
propagation directions, except for the different variation types
due to the different choices of c1(t). In Fig. 3(a), the soliton
amplitudes decrease to the minimal value but the soliton widths
increase to the maximal value at the moment of t = 0. As a
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FIG. 3. (Color online) Interaction of the two solitons via solu-
tion (25) for Eq. (9) under Constraint (14) when a(t) = 6, b(t) = 1,
μ1 = 0.6, η1 = 0, μ2 = 0.5, η2 = 0 with (a) c0(t) = 1, c1(t) = −t ,
d(t) = −t ; (b) c0(t) = 0, c1(t) = t , d(t) = t .
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FIG. 4. (Color online) Interaction between an elevation soliton
and a depression soliton via solution (25) for Eq. (9) under
Constraint (14) when (a) a(t) = 6, b(t) = 1, c0(t) = 0, c1(t) = −t ,
d(t) = −t , μ1 = 0.6, η1 = 0, μ2 = −0.5, η2 = 0. (b) Profiles of (a)
when t = 0 (solid line), t = −2.1 (bold dashed line), and t = 2.15
(dashed line). (c) Evolution of a breather via solution (26) for Eq. (9)
under Constraint (14) when a(t) = 6, b(t) = 1, c0(t) = 0, c1(t) = −1,
d(t) = −1, p = 0.5, q = 1.

comparison, the two solitons have the highest amplitudes but
narrowest widths at the moment of t = 0 in Fig. 3(b).

Similarly, the interaction between the two depression
solitons can be studied via supposing the two parameters
μ1 and μ2 to be negative, and the interaction features for
the depression solitons are similar to the elevation cases in
Figs. 2 and 3, that is, the amplitudes and velocities for the
depression solitons have the same development trend when
the nonuniformity term coefficient c1(t) is chosen as the
same function for the elevation case. For further description
of the two-soliton interaction, it is necessary to discuss the
interaction between an elevation and a depression, as shown
in Figs. 4(a) and 4(b). Moreover, in the far field of the left
side [corresponding to the bold dashed line in Fig. 4(b)], the
elevation leaves behind the depression but the amplitude of the
elevation is larger than that of the depression. As T approaches
zero, both the elevation and depression amplitudes decrease to
the minimal values, but the soliton widths achieve the maximal
values [solid line in Fig. 4(b)], which is due to the effect of the
nonuniformity term c1(t) x. With time evolution, the solitons
are compressed into the ones with narrow widths again, and
as a result the soliton amplitudes gradually increase in the far
field of the right side [dashed line in Fig. 4(b)]. Meanwhile,
the elevation soliton goes ahead of the depression one (i.e.,
the elevation and depression preserve their identities after the
collision), except for the phase shifts.

Based on the two-soliton solution derived, we will construct
the breather which is an isolated wave form with periodic
pulsating or oscillating and has the energy concentrated in
localized range [33]. Such a structure can be realized by
assuming the two complex conjugate parameters as μ1 = p +
i q and μ2 = p − i q (p, q are real constants). Substituting the
two complex conjugate parameters into Expression (25) for the

two-soliton solution, we can obtain the explicit expression of
the breather for Eq. (9) under Constraint (14) as follows:

u =
[

2 arctan

(
g

f

)]
x

,

g = exp(−p ϒ) + q2

p2
exp(p ϒ) + 2 cos �,

f = exp(−p ϒ) + q2

p2
exp(p ϒ) − 2 cos �,

ϒ = x exp

[
−

∫
c1(t) dt

]
− (p2 − 3 q2)

∫
b(t)

× exp

[
− 3

∫
c1(t) dt

]
dt

−
∫

c0(t) exp

[∫
c1(t) dt

]
dt,

� = q x exp

[
−

∫
c1(t) dt

]
+ (q3 − 3 p2 q)

∫
b(t)

× exp

[
− 3

∫
c1(t) dt

]
dt

− q

∫
c0(t) exp

[∫
c1(t) dt

]
dt. (26)

With the suitable choice of the variable coefficients and
parameters, we depict the evolution of breather in Fig. 4(c),
from which we observe that the breather amplitude gradually
increases and as a result the breather is gradually compressed
due to the presence of the nonuniformity term c1(t) x. Similar
to the two-soliton interaction, we can construct another type of
breather by the different choices of c1(t), which plays a crucial
role in the soliton and breather dynamics.

C. Three-soliton solution and interaction
between a breather and a soliton

According to the above procedure of deriving the one- and
two-soliton solutions by virtue of the Hirota bilinear method,
the three-soliton solution for Eq. (9) under Constraint (14) can
be constructed as follows:

u =
[

2 arctan

(
1 + g1 + g2 + g3

1 + f1 + f2 + f3

)]
x

,

g1 = exp(θ1) + exp(θ2) + exp(θ3),

f1 = m1 exp(θ1) + m2 exp(θ2) + m3 exp(θ3),

g2 = N12 exp(θ1 + θ2) + N23 exp(θ2 + θ3)

+N13 exp(θ1 + θ3),

f2 = M12 exp(θ1 + θ2) + M23 exp(θ2 + θ3)

+M13 exp(θ1 + θ3),

g3 = N123 exp(θ1 + θ2 + θ3),

f3 = M123 exp(θ1 + θ2 + θ3),

θi = ni(t) x + ωi(t) + ηi,

ni(t) = μi exp

[
−

∫
c1(t) dt

]
, (i = 1,2,3),

ωi(t) = −
∫

c0(t) ni(t) dt −
∫

b(t) ni(t)
3 dt,
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mi = −1, (i = 1,2,3),

Mij = Nij = − (μi − μj )2

(μi + μj )2
, (i,j = 1,2,3, i < j ),

M123 = −N123 = (μ1 − μ2)2 (μ2 − μ3)2 (μ1 − μ3)2

(μ1 + μ2)2 (μ2 + μ3)2 (μ1 + μ3)2
,

(27)

where μi’s and ηi’s (i = 1,2,3) are the arbitrary parameters.
Similar to the two-soliton solution, it is possible to form
different types of three-soliton interactions if one manages to
control the function c1(t). Moreover, the soliton amplitude and
velocity variation in the three-elevation and three-depression
interactions are similar to the corresponding two-soliton
interactions when c1(t) is chosen as the identical function.

Therefore, we will pay attention to the interaction be-
tween the elevation and depression, as shown in Fig. 5.
Figure 5(a) depicts the interaction between two elevations and
a depression, from which we observe that the compression
phenomenon also occurs in such a case. Furthermore, the
depression leaves behind the elevations but the depression
amplitude is larger than those of the elevations in the far field of
the left side [corresponding to the solid line in Fig. 5(b)]. As T

approaches zero, the depression collides with the left elevation
and then overtakes it. Meanwhile, the elevation and depression
amplitudes gradually attenuate to the minimal values, but the
soliton widths gradually increase to the maximal values [bold
dashed line in Fig. 5(b)], which is due to the effect of the
nonuniformity term c1(t) x. In the far field of the right side,
the depression goes ahead of the two elevations, and the two
elevations have changed their positions. At the same time,
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FIG. 5. (Color online) Interaction between two elevation solitons
and a depression soliton via solution (27) for Eq. (9) under
Constraint (14) when (a) a(t) = 6, b(t) = 1, c0(t) = 0, c1(t) = −t ,
d(t) = −t , μ1 = −1, μ2 = 0.5, μ3 = 0.6, η1 = 0, η2 = 0, η3 = 0.
(b) Profiles of (a) when t = −1.95 (solid line), t = 0 (bold dashed
line), and t = 1.95 (dashed line). (c) Interaction between an elevation
and two depressions via solution (27) for Eq. (9) under Constraint (14)
when a(t) = 6, b(t) = 1, c0(t) = 0, c1(t) = −t , d(t) = −t , μ1 = 1,
μ2 = −0.5, μ3 = −0.6, η1 = 0, η2 = 0, η3 = 0.
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FIG. 6. (Color online) Interaction between a breather and a
soliton via solution (27) for Eq. (9) under Constraint (14) when
a(t) = 6, b(t) = 1, c0(t) = 0, μ2 = 1 + 2 i, μ3 = 1 − 2 i, η1 =
0, η2 = 0, η3 = 0 with (a) μ1 = −1.75, c1(t) = −1, d(t) = −1;
(b) μ1 = 2, c1(t) = t , d(t) = t .

the soliton amplitudes gradually increase, and as a result the
soliton widths are compressed again [dashed line in Fig. 5(b)].
Correspondingly, the interaction between an elevation and two
depressions is shown in Fig. 5(c), in which the interaction
process and compression phenomenon are similar to those in
Figs. 5(a) and 5(b).

Similar to the technique employed in Ref. [30], the
interaction between a breather and a soliton can be de-
rived from the three-soliton solution by supposing the three
arbitrary parameters as μ1 = p + i q, μ2 = p − i q, and
μ3 (p, q, μ3 are real constants). Due to the complicated
expression for describing such interaction, we just present
the graphic illustrations in Fig. 6 by symbolic computation
[28,29]. Figure 6(a) describes the interaction between a
depression and a breather, from which we observe that
the depression moves toward the breather when t < 0 but
the trajectories of the two are dictated as t > 0. During the
propagation of the depression and breather, both of them are
compressed and correspondingly their amplitudes gradually
increase with time evolution. Moreover, the interaction be-
tween the elevation and breather is shown in Fig. 6(b), in
which the elevation and breather are gradually compressed
and the amplitudes monotonously increase as t approaches
zero, but after such a moment the amplitudes attenuate
and the widths increase gradually along the propagation
directions.

IV. NUMERICAL SIMULATION OF SOLITON DYNAMICS

In this section, the finite difference method will be em-
ployed to simulate dynamics of the typical one soliton for
Eq. (9) with the following conditions: (i) Constraint (14) is
completely fulfilled; (ii) Constraint (14) is finitely perturbed.
As we know, Eq. (9) has the standard mKdV equation as
its special case, which supports the soliton solutions with
balance between the nonlinearity and dispersion [a(t) = 6b(t)
and c0(t) = c1(t) = d(t) = 0 in Eq. (9)]. In general, we
connect Eq. (9) to the unsteady (time-dependent) physical
system describing the solitary waves with the second-order
nonlinearity and first-order dispersion in the weakly nonlinear
theory [34]. In such a case, coefficients of the first-order non-
linearity approach zero, while a(t), b(t), and d(t) are related
to the time-dependent second-order nonlinearity coefficient,
dispersion coefficient, and shoaling coefficient. Specifically,
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the linear phase velocity xc1(t) + c0(t) is not only time
dependent, but also linear with the spatial coordinate, which
can be explained with the varying topography in the physical
system.

Thus, the generation of solitons under Constraint (14) can
be explained by two types of balances in the physical system:
(i) balance between the first-order dispersion and second-order
nonlinearity; (ii) balance between the linear phase velocity and
shoaling effect. Our analytical soliton solutions are constructed
with both balances. However, it may be less appropriate to
use the analytical solutions to describe the type of system in
Eq. (9) if those balances are not completely achieved. For
such a condition, Eq. (9) is solved numerically with a finite
difference form:

un+1
j − un−1

j

�t
+ a(tn)

(
un

j

)2 un
j+1 − un

j−1

�x

+ b(tn)
un

j+2 − 2un
j+1 + 2un

j−1 − un
j−2

�x3

+[c0(tn) + xj c1(tn)]
un

j+1 − un
j−1

�x
+ 2d(tn)un

j = 0. (28)

For the first step, (un+1
j − un−1

j )/(2�t) is replaced by (u1
j −

u0
j )/�t , where u0

j is the initial value. We assume that the
reasonably large spatial domain is chosen with the lateral
boundary conditions u(−L,t) = u(L,t) = 0, where −L and
L are the two edges of the domain. Such a numerical scheme
has been used and developed for the KdV-type equation [35].
In our simulation, we employ the one-soliton solution (23)
with the parameters in Fig. 1(a) as the initial conditions, and
properly choose (�x,�t) = (5 × 10−2, 2 × 10−5).

In Fig. 7(a), we demonstrate good agreement between the
soliton profiles at t = 1 with the analytical and numerical
approaches under Constraint (14). As mentioned, such a case is
based on the balance between the dispersion and nonlinearity,
as well as the balance between the linear phase velocity and
shoaling effect. Here, ±20% perturbation on a(t) = 6b(t) in
Constraint (14) is first considered, and the simulation results
are illustrated in Fig. 7(b). It can be observed that small oscil-
lating tails are separated backward from the soliton for both
unbalanced cases. However, with the stronger nonlinearity
[a(t) = 7.2b(t)], the soliton gets compressed to hold a larger
amplitude than that for the balanced case [a(t) = 6b(t)] at
t = 1, and appears to acquire an increased velocity during
propagation. As a comparison, the situation with the stronger
dispersion [a(t) = 4.8b(t)] is fundamentally opposite. In fact,
perturbation on a(t) = 6b(t) in Constraint (14) may decide
whether the nonlinear focusing or dispersion effect dominates
on the soliton dynamics. Following a similar procedure, we
propose ±20% perturbation on c1(t) = d(t) in Constraint (14),
and simulate the soliton dynamics, as seen in Fig. 7(c). We find
that with the larger absolute value of c1(t) [c1(t) = 1.2d(t)],
the soliton amplitude at t = 1 cannot reach the one with the
balance of c1(t) = d(t), and the soliton velocity decreases
correspondingly. When the absolute value of d(t) is larger
[c1(t) = 0.8d(t)], the soliton propagates faster than that with
c1(t) = d(t), and its amplitude exceeds the one in the balanced
case.

Therefore, generation of solitons in the system governed
by Eq. (9) with Constraint (14) fulfilled is based on two types
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FIG. 7. (Color online) Initial condition u(x,t = 0) is chosen
as the one-soliton solution (23) with the parameters in Fig. 1(a).
(a) Comparison of the soliton profiles u(x,t = 1) between the
analytical and numerical approaches with Constraint (14) completely
satisfied. (b) Comparison between the soliton profiles with a(t) =
6b(t) completely satisfied and with a(t) = 6b(t) ±20% perturbed
[a(t) = 7.2b(t) = 7.2 in the upper panel and a(t) = 4.8b(t) = 4.8
in the lower panel]. (c) Comparison between the soliton profiles
with c1(t) = d(t) completely satisfied and with c1(t) = d(t) ±20%
perturbed [c1(t) = 1.2d(t) = −1.2 in the upper panel and c1(t) =
0.8d(t) = −0.8 in the lower panel].

of balances mentioned above. The soliton dynamics is more
complicated if such a constraint is not satisfied, as investigated
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in our numerical simulation. In fact, we have proposed the
elevation solitons in Fig. 7, and the depression ones can be
addressed in a similar manner.

V. CONCLUSIONS

In this paper, we have analyzed the integrability of the
variable-coefficient mKdV equation (1) which might possess
applications in the interfacial waves in two-layer liquid and
Alfvén waves in a collisionless plasma. Under constraint (7a),
we have found generalized integrable form (9) of Eq. (1) in
the sense of Painlevé integrability. Moreover, Lax pair (11)
with time-dependent nonisospectral flow of Eq. (9) has been
established under the Lax constraint (14) which seems to be
more rigid than the Painlevé constraint (7a). To discuss the
soliton management, the soliton solutions for Eq. (9) under
Constraint (14) have been constructed by the Hirota bilinear
method, and then the one-soliton (23), two-soliton (25), and
three-soliton (27) solutions have been presented.

As the basic parameters of the dynamics of a soliton, the
amplitude (or width) and frequency (or velocity) have been
applied to show the main features of the soliton. Results
have revealed that we can achieve the purpose of soliton
management by controlling the nonuniformity coefficient c1(t)
and constant μi . The conclusions inferred from the above
discussions can be presented as follows:

(1) As seen in Fig. 1, Eq. (9) supports two families of
solitons (elevation and depression) depending on the sign of
μi , which can also affect the soliton amplitude and velocity.

(2) Different types of one-soliton profiles and soliton
interactions with unequal amplitudes and velocities can be
formed when c1(t) is chosen to be different functions, which
have been described in Figs. 1–3.

(3) As seen in Figs. 1(a) and 1(b), when c1(t) is a
negative (positive) constant, the amplitude of each soliton
monotonously increases (decreases) with time and correspond-
ingly the soliton is compressed (broadened) with time.

(4) When c1(t) is supposed to be the linear function of t

in Figs. 1(c) and 1(d), each soliton is gradually compressed
(broadened) and as a result the soliton amplitude gradually
increases (decreases) to the maximal (minimal) value at the
moment of t = 0. While after such moment each soliton
amplitude begins to decrease (increase) and corresponding
the width of soliton is broadened (compressed) along the
propagation direction.

Moreover, the above conclusions are also consistent with
the features for the dynamics of the breather in Fig. 4(c), as
well as the interaction between a breather and a soliton in
Fig. 6. Besides the analytic procedure, numerical simulation
has been proposed to illustrate the soliton dynamics with
Constraint (14) finitely perturbed, as seen in Figs. 7(b)
and 7(c). The results have inferred that the soliton am-
plitude and velocity are influenced when the balances in
Constraint (14) are perturbed, and oscillating wave tails are
observed to separate backward from the soliton in such a
situation.
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