
PHYSICAL REVIEW E 84, 026603 (2011)

Coupling between gap plasmon polariton and magnetic polariton
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The excitation of plasmons in a metallic nanostructure represents a feasible and practical approach for
manipulating the propagation and absorption of light at the subwavelength scale. Of particular interest is the
coupling between plasmons, which can be used to facilitate the spectral tunability and tailor the optical response
of the structure. In this paper, we study the coupling between two highly localized plasmonic modes: gap plasmon
polariton mode and magnetic polariton mode, supported by a metallic-dielectric multilayer structure. The strong
coupling gives rise to the formation of hybrid plasmon modes and large mode splitting. These hybrid modes
result in unique spectral-directional absorption characteristics in the structure. The findings hold promise in
applications such as photonic and energy conversion systems as well as the design of plasmonic nanodevices.
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I. INTRODUCTION

The coupling and hybridization phenomena of plasmonic
modes excited in metallic nanostructures offer exotic optical
properties that cannot be easily achieved with natural mate-
rials. These phenomena have received considerable attention
from both fundamental and practical points of view [1–5].
Numerous exotic characteristics have been demonstrated,
such as the plasmonic analog of electromagnetically induced
transparency (EIT) constructed by the coupled radiative-
subradiant plasmon elements [6,7], the negative magnetic
permeability provided by the coupled metallic strips [8], and
the stereometamaterials constructed by the coupled split-ring
resonators with twist angles [9]. Furthermore, the coupling
between the localized plasmon mode and the surface plasmon
polariton (SPP) mode propagating along the interface of
a metal and a dielectric also provide remarkable optical
properties. When a periodic metal strip array, supporting the
localized plasmon mode, is placed close to the metal surface,
the resonance properties of the metallic strips can be strongly
modified due to the coupling with surface plasmon modes on
the metal surface [10,11]. In addition, the metallic strips can
interact with their own image created by the metal film to form
a magnetic polariton (MP) mode, which mimics the magnetic
resonance mode of a double-wire system and represents unique
spectral and directional radiative properties [12]. Recently, the
effect of the coupled MP modes on radiative properties of
double-layer nonslit arrays has also been discussed [13].

The metal-dielectric-metal structure can support the prop-
agation of the gap plasmon polariton (GPP) mode resulting
from the coupling effect of surface waves [14–16], which
can achieve the subwavelength confinement of light and have
important applications in nanoscale optical circuits [15,17]
and enhanced optical nonlinearity [18]. Based on the coupling
effect of the GPP mode in the metallic-dielectric multilayer
structure, highly localized bulk mode [16] and negative
refraction [19] have been demonstrated recently. However,
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in the structured metallic-dielectric multilayer, the interplay
between the GPP mode and other plasmon modes or the cavity
mode is of great importance for future plasmon engineering
and deserves further investigation.

In this work, a metallic grating coated on a dielectric
spacer is introduced onto a metal-dielectric-metal (MDM)
waveguide. In addition to the GPP mode, the structure can
also support the MP mode. The excitation of the MP mode can
strongly localize the electromagnetic energy into the dielectric
layer underneath the metal strip. The localized near-field
energy can be used to efficiently excite the GPP mode.
More importantly, the anticrossing behavior with large mode
splitting can be observed due to the strong coupling between
MP and GPP modes. With regards to the reverse symmetry
of field, the hybrid modes resulting from the coupling with
even- and odd-order MP modes represent different excitation
behaviors, which contribute to the remarkable spectral and
directional absorption properties of the structure. Furthermore,
the effect of geometric structure on the energy coupling
between different modes is also examined.

II. DISPERSION RELATIONS

The proposed structure consists of a periodic metal strip
array with a dielectric spacer deposited on top of an MDM
waveguide, as illustrated in Fig. 1. The whole structure
is assumed to be infinitely extended in the x direction. A
TM-polarized (the magnetic field component is parallel to the
y axis) electromagnetic wave is incident from air on the
structure at an angle θ . In the present work, silver is selected
as the material for the strips and cladding of the waveguide,
and SiO2 is used for the spacer and waveguide layer. The
permittivity of SiO2 is assumed to be constant and taken as
2.25. The frequency-dependent dielectric function of silver
is taken from Ref. [20]. The rigorous coupled-wave analysis
(RCWA) [21] was used to calculate the spectral response of
the structure, and the absorption is 1 minus the reflectance,
i.e., α = 1 − R. In the calculation, the employed number of
harmonics in the grating region was chosen to be 121, which
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FIG. 1. (Color online) Schematic of the metamaterial nanostruc-
ture consisting of a periodic metallic strip array positioned atop
a metal-dielectric-metal (MDM) waveguide, separated by a spacer
layer with a thickness d1. Here, � is the grating period; w and h1

are the width and thickness of metal strips, respectively. The MDM
waveguide is composed of a dielectric layer with a thickness d2

sandwiched between two metal films. The thickness of the upper
metal film is h2. The bottom metal film is considered opaque with
a thickness much greater than the penetration depth of light. A
TM-polarized plane wave is incident on the structure at an angle θ .

is sufficient to provide the needed accuracy. Unless otherwise
stated, the grating period is taken as � = 400 nm, the width
of metal strip is set to w = 300 nm, the thickness of the spacer
layer is d1 = 20 nm, and the geometrical parameters of the
MDM waveguide are h2 = 20 nm and d2 = 50 nm in the
numerical simulation.

When the spacer layer is absent, the structure describes
the typical interaction between a grating and a waveguide.
The GPP mode can be excited by the periodic alignment
of metal strips. The contour plot of the spectral-directional
absorptance α in terms of photon energy and the parallel
wave vector component Kx (divided by 2π ) is shown in
Fig. 2(a). Note that Kx = (ω/c) sin(θ ). In Fig. 2, darker colors
represent lower absorption, whereas bright colors correspond
to higher absorption. The region outside the light line in the
lower-right-hand corner is left blank. From Fig. 2(a), it is clear
that absorption can be greatly enhanced when the GPP modes
are excited. The excitation frequencies of GPP modes can be
predicted with the grating equation:

ω

c
sin(θ ) ± m

2π

�
= ±β(m = 1 · · · n), (1)

where m is the diffraction order of grating, and β is the
magnitude of the wave vector associated with the GPP mode.
According to the Bloch-Floquet condition, the dispersion of
the GPP mode is folded into the region Kx � π/�. The branch
labeled GPP(−1) at frequencies lower than 1.4 eV corresponds
to the mode excited by the −1 diffraction order and the higher
frequency branch labeled GPP(1) is associated with the +1
diffraction order. Similarly, SPP modes propagating along the

FIG. 2. (Color online) Contour plots of the spectral-directional
absorptance: (a) the structure without spacer layer; (b) the structure
without waveguide layer; (c) the composite structure shown in Fig. 1.

interface between the metal grating and air can also be excited.
For the same diffraction order, the dispersion curve of SPP is
located at higher frequencies and is not studied here.

The contour plot of absorptance is shown in Fig. 2(b) for
the structure without a waveguide layer. It exhibits several
absorption bands, which are attributed to the excitation of MP
modes. The multiple magnetic polariton branches, denoted
as MP1, MP2, and MP3, correspond to the fundamental,
second, and third harmonic resonances, respectively. Their
optical properties have been particularly studied in Ref. [12]. In
contrast to the GPP mode, Kx has little effect on the absorption
bands. The resonance frequency of the MP mode is mainly
determined by the strip width w rather than the grating period
or incidence angle.

Figure 2(c) shows the contour plot of absorptance for
the composite structure shown in Fig. 1. The dispersion
characteristics of both GPP and MP modes are exhibited.
Compared with results shown in Fig. 2(a), much more
intense light absorption and much wider absorption spectral
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FIG. 3. (Color online) The spatial magnetic fields distribution
for normal light incidence and TM polarization: (a) GPP, at 1.4 eV;
(b) MP1, at 0.61 eV; (c) MP3, at 1.73 eV, which correspond to the
spectral positions of absorption maxima shown in Figs. 2(a) and 2(b)
at wave vector Kx = 0, respectively. The arrows represent electric
field vectors, and the loops illustrate induced electric currents.

width are observed. This indicates the enhanced excitation
efficiency of the GPP mode through introducing the spacer
layer. More importantly, the dispersion curves of the GPP
and MP modes are strongly modified, forming the multiple
absorption branches in the spectrally overlapping regions.
Here, we are interested in the four absorption branches labeled
A–D, which are obtained from the intersections with the line
θ = 10◦. Clearly, branches A and D describe the dispersion
similar to the GPP(−1) mode and MP3 mode, respectively,
by comparison with Figs. 2(a)–2(c). It should be noted that
branches B and C are the new energy branches that represent
the unique dispersion property with weak angle dependence.
Furthermore, a large band gap is also observed between
branches B, C, and D, which is difficult to achieve using the
grating-waveguide structure shown in Fig. 2(a).

Before discussing the interaction between the GPP mode
and the MP mode, let us review their field structures. The
magnetic field distributions are calculated with RCWA and
displayed in Fig. 3 for normal incidence and TM polarization.
The contour represents the amplitude of the magnetic field,
and the arrows indicate the electric field vectors. The loops
indicate induced electric current with arrows pointing in the
electric field direction. Figure 3(a) shows the field distribution
at 1.4 eV, corresponding to the spectrum position of the
absorption maximum shown in Fig. 2(a) at wave vector Kx =
0. Due to the excitation of the GPP mode, there exists strong
field confinement in the waveguide layer. Figures 3(b) and 3(c)
show the field distributions at 0.61 and 1.73 eV, respectively,
corresponding to the spectrum positions of absorption maxima
shown in Fig. 2(b) at wave vector Kx = 0. Similar to the
metallic strip pairs [8], the oscillating magnetic field parallel
to grating grooves can cause antiparallel currents in the metal
strips and the metal film surface. The antiparallel currents
result in a diamagnetic response [12,22]. The diamagnetic
response is then coupled with the metal film to cause strong
field localization between the metal strips and the metal film.
It is the field localization that is responsible for the strong
light absorption in the spectrum. It is noted that one and
three antinodes of magnetic field are formed in the spacer
layer underneath the metal strip shown in Figs. 3(b) and 3(c),
indicating, respectively, the excitation of MP1 and MP3. As

illustrated in Fig. 2(b), MP2 can only be excited by inclined
incidence due to the symmetry of field [12].

Furthermore, the periodic arrangement of metal strips
provides the necessary momentum to couple the MP mode
with the GPP mode for the composite structure shown in
Fig. 1. For a given thickness d2 of the MDM waveguide and
incidence angle, the resonance frequency of the GPP mode is
determined by the grating period �. The resonance frequency
of the MP mode, however, is determined by the geometrical
parameters of metallic strips and the thickness of the spacer
layer for given materials [12,22]. Consequently, the resonance
spectrum of the MP mode can overlap with that of the GPP
mode through adjusting the structural parameters.

III. PHYSICAL MECHANISMS

In order to visualize the interaction between the GPP and
MP modes of different order, the contour plot of absorptance as
a function of frequency and strip width w is shown in Fig. 4(a)
at θ = 10◦. To facilitate the comparison, the contour plot of
absorptance for the structure without a waveguide layer is
shown in Fig. 4(b), where the two horizontal lines correspond
to the resonance frequencies of GPP modes predicted from
Eq. (1). The strong absorption shown in Fig. 4(b) is attributed
to the excitation of the uncoupled MP modes, whose resonance
frequencies decrease with increasing strip width. According
to the theoretical prediction, when the width of the metal
strip is taken as 110 or 140 nm, the spectral position of

FIG. 4. (Color online) Contour plots of absorptance as a function
of strip width w and frequency at incidence angle θ = 10◦ for (a)
the composite structure shown in Fig. 1; (b) the structure without the
waveguide layer.
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the MP1 mode will overlap with that of GPP(1) mode or
GPP(−1) mode at frequency 1.46 or 1.27 eV, respectively.
In this spectral region, the coupling between the two modes
can be established. This is shown in Fig. 4(a) where the energy
anticrossing behavior in the absorption spectrum can be clearly
seen. Similarly, the spectral overlap between the MP2 mode
and GPP mode is expected as the strip width is between
260 and 320 nm, according to the prediction. However, the
energy anticrossing behavior does not appear in the absorption
spectrum. Moreover, the interesting energy branches have four
intersections with the vertical line at w = 300 nm as shown in
Fig. 4(a). The four intersections are identical to those shown
in Fig. 2(c) and are also labeled A–D. Comparing Fig. 2(c)
with Fig. 4(a), branches A, B, and C exhibit the characteristics
of both the GPP and MP modes. Their resonance frequencies
decrease with increasing strip width and exhibit a weak angle
dependence. Thus, we can deduce that branches A, B, and
C originate from excitation of the hybrid modes of GPP
and MP. The coupling with the MP mode gives rise to the
new dispersion property. A detailed analysis of the coupling
behavior between the MP mode and GPP mode will be given
in subsequent sections.

The finite-difference frequency domain (FDFD) method is
adopted through the use of an auxiliary field to accurately
calculate the eigenmode supported by this periodic structure
[23]. Here, the permittivity of silver is modeled with the Drude
formula for free electron gas, ε(ω) = ε∞ − ω2

p/ω(ω − i	d ),
where ε∞ describes the contribution to permittivity by the
positive background of the ion cores [24], ωp is the plasmon
frequency of the free electron gas, and 	d is the scattering rate.
The equation of motion of a free electron under an external
electric field E is [24]

d2r
dt2

+ 	d

dr
dt

= eE
m

, (2)

where m is the mass of the electron and e is the charge of
the electron, which is negative. Note that electron scattering
is modeled as a damping term with a damping coefficient 	d .
Defining the polarization density P = Ner, where N is the
number density of electrons, we can express the equation of
motion as follows:

d2P
dt2

+ 	d

dP
dt

= ε0ω
2
pE, (3)

where ε0 is the permittivity of vacuum. Equation (3) is
equivalent to the Drude model of metal whose plasma
frequency is ω2

p = Ne2/mε0. The polarization current density
is J = dP/dt . The basic equations of the electromagnetic field
in a dispersive medium can be described as

∂H
∂t

= − 1

μ0
∇ × E, (4)

∂E
∂t

= 1

ε0ε∞
(∇ × H − J) , (5)

∂J
∂t

= ε0ω
2
pE − 	dJ, (6)

where μ0 is the permeability of vacuum. Assuming that all
fields vary as exp(iωt), we can obtain the eigenequation of the
system as follows:

⎛
⎜⎜⎝

0 i
μ0

∇× 0

− i
ε0ε∞

∇× 0 i
ε0ε∞

0 −iε0ω
2
p i	d

⎞
⎟⎟⎠

⎛
⎝

H
E
J

⎞
⎠ = ω

⎛
⎝

H
E
J

⎞
⎠ . (7)

It should be noted that all coefficients in Eq. (7) are
frequency independent and the dispersive property of material
is taken into account by introducing the auxiliary field [23].
For a specific geometry, Eq. (7) can be discretized with the
finite difference method [25,26]. In the simulation, we set
ωp = 0 and 	d = 0 for the air and dielectric regions. This
ensures that the J field is not present in these regions. Then,
the eigenmodes and optical band structure of system can be
accurately calculated through solving the eigenequation with
the FDFD method.

A. Coupling with the MP1 mode

For the coupling between the GPP and MP1 modes,
Fig. 5(a) shows the contour plot of absorptance as a function
of grating period � and frequency at normal incidence. As
the grating period increases, the broad magnetic resonance
absorption spectrum exhibits an anticrossing behavior with
that of the GPP mode resonance. The anticrossing behavior can
be explained in terms of the polariton model [27,28], which
describes the coupling behavior of the original “bare” modes
in the system. The effective Hamiltonian Heff of the system
near the center of the first Brillouin zone can be written as
follows:

Heff =
⎛
⎝

EGPP − iγ + c̃Kx V1 V2

V1 EGPP − iγ − c̃Kx V2

V2 V2 EMP − i	

⎞
⎠ ,

(8)

where EGPP and γ are the energy and the damping loss of the
GPP mode, c̃ is the group velocity, EGPP − iγ ± c̃Kx are the
bare energies of GPP modes near momentum K± = ±2π/�

[27], EMP and 	are the energy and the damping loss of the
MP mode, V1 is the energy coupling between the symmetric
and asymmetric GPP mode, and V2 is the coupling energy
between the GPP and MP modes. The coupling behavior can be
described by introducing V1 and V2 in Eq. (8). The eigenvalues
of Eq. (8) represent the new eigenfrequencies of the coupled
system. The corresponding eigenvectors of Eq. (8) represent
the new hybrid modes. The amplitude of coupling parameters
V1 and V2 can be estimated from the photonic band gap shown
in Figs. 2(a) and 2(c). In Fig. 2(a), a minigap is formed at the
wave vector Kx = 0, which results from the energy coupling
between the symmetric and asymmetric GPP modes. However,
the photonic band gap can be greatly enlarged due to the
energy coupling between GPP and MP modes as shown in
Fig. 2(c). It indicates that the coupling parameter V1 is very
small compared with the coupling parameter V2. To simplify
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FIG. 5. (Color online) (a) Contour plot of absorptance as a function of grating period and frequency, showing the coupling between the
GPP mode and MP1 mode at normal incidence; (b) the dependence of eigenfrequency of system on the grating period. The lines denote the
results obtained from Eq. (7) with FDFD calculation and the symbols are obtained from the polariton model; (c) the normalized magnetic field
distribution of eigenmodes with grating period 850 nm; (d) the imaginary part of the eigenfrequency of the system as a function of grating period.
In the simulation, the parameters of the Drude model of silver are taken as ε∞ = 4.0, ωp = 1.33 × 1016 rad/s, and γ = 1.33 × 1014 rad/s,
respectively.

the discussion, a reasonable approximation is to neglect the
coupling parameter V1. In the case of normal incidence (Kx =
0), the three eigenvalues of the Hamiltonian can be expressed
as

E1 = EGPP − iγ, (9)

E2,3 = 0.5
{
(EGPP + EMP) − i(γ + 	)

±
√

[(EGPP − EMP) − i(γ − 	)]2 + 8V 2
2

}
. (10)

When the frequency of the GPP mode is equal to that
of the MP mode, the mode splitting between the hybrid
modes E2 and E3 is equal to

√
8V 2

2 − (γ − 	)2. Figure 5(b)
illustrates the eigenfrequency of the system as a function of
the grating period. The symbols represent the calculation from
Eqs. (9) and (10), while the lines are the numerical solutions
of Eq. (7) obtained from the FDFD method. Clearly, the
two methods are in good agreement. Interestingly, branch
E1 is decoupled from the MP mode, whose eigenfunction
|ψ(E1)〉 = [|ψ1〉,|ψ2〉,|ψ3〉]T exhibits only the component of
asymmetric GPP mode with |ψ1〉 = −|ψ2〉 but no MP mode
component since |ψ3〉 = 0 [28]. However, the eigenfunctions
of branches E2 and E3 contain both GPP and MP components.
To better understand the coupling mechanism, the normalized
magnetic field distributions, obtained from Eq. (7), of the

eigenmodes with grating period 850 nm and wave vector Kx

= 0 are shown in Fig. 5(c). It can be seen that the magnetic
field of mode e1 (located at 0.64 eV) is mostly localized in
the waveguide layer with little energy emerging in the spacer
layer. On the other hand, the magnetic fields of modes e2
(located at 0.57 eV) and e3 (located at 0.71 eV) exhibit not
only the localized energy in the waveguide layer, but also a
strong field localization in the spacer layer underneath the
metal strip; suggesting that these two modes are coupled GPP
and MP1 modes. From the field distributions, it can be deduced
that mode e1 cannot be excited with normal incidence due to
the antisymmetric field distribution. In contrast, modes e2 and
e3 with symmetric field distributions can be strongly coupled
with normally incident light, as demonstrated in Fig. 5(a).
Furthermore, the loss for each eigenmode can also reflect
the hybrid behavior between the GPP mode and MP mode.
The imaginary part of eigenfrequency ω, corresponding to the
loss of the mode, is shown in Fig. 5(d) as a function of the
grating period. Due to the decoupling with the MP mode, the
loss of branch E1 is mostly from the absorption of metal,
and it decreases gradually with increasing grating period and
reaches a constant when � > 900 nm. In contrast, as the
grating period is increased, the loss of branch E2 or E3 rapidly
increases or decreases, respectively, due to the hybridization
of modes.
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FIG. 6. (Color online) (a) Contour plot of absorptance as a function of grating period and frequency, showing the coupling between the
GPP mode and higher-order MP modes at normal incidence; (b) the dependence of eigenfrequency, obtained from Eq. (7) with FDFD method,
of the system on the grating period; (c) the normalized magnetic field distribution of eigenmodes with grating period 400 nm; (d) the imaginary
part of the eigenfrequency of the system as a function of grating period.

B. Coupling with higher-order MP mode

The coupling behavior between the GPP mode and higher-
order MP modes can also be analyzed using this method.
Figure 6(a) shows the contour plots of absorptance as a
function of grating period and frequency at photon energies
from 0.8 to 1.9 eV. The corresponding eigenfrequencies of
the system, obtained from Eq. (7) using the FDFD method,
are shown in Fig. 6(b). Unlike the coupling with MP1 mode,
the system represents the coupling among four modes and
cannot be described using Eq. (8). In order to correspond
to the case shown in Fig. 5(b), the branches are labeled
E1–E4. While the energy anticrossing behavior also appears
in the eigenfrequency diagram as in the case of coupling with
MP1 mode, it does not appear in the absorption spectrum as
shown in Fig. 6(a). To better understand this phenomenon, the
normalized magnetic field distributions of the eigenmodes with
grating period 400 nm and wave vector Kx = 0 are shown in
Fig. 6(c). It can be seen that these modes exhibit strong energy
localization in both the waveguide layer and spacer layer,
suggesting that these modes are coupled GPP and MP modes.
For modes e2 (located at 1.12 eV) and e3 (located at 1.5 eV),
antisymmetric field distributions appear in the waveguide
layer and spacer layer. The magnetic fields localized in the
spacer layer exhibit two antinodes underneath the metal strip,
indicating these two modes are coupled asymmetric GPP and

MP2 modes. This is opposite to the case of the MP1 mode,
which is the coupling with symmetric GPP mode. However,
modes e1 (located at 1.29 eV) and e4 (located at 1.65 eV)
exhibit the symmetric field distribution both in the waveguide
layer and spacer layer. The magnetic fields localized in the
spacer layer exhibit three antinodes underneath the metal strip,
suggesting these two modes result from the coupling between
symmetric GPP mode and MP3 mode. In view of the strong
coupling between the GPP mode and MP mode, as well as the
small separation in the resonance frequencies between the MP2
and MP3 modes, this system represents the coupling among
four modes (two GPP modes, MP2 mode, and MP3 mode) and
exhibits double mode splitting in the eigenfrequency diagram
shown in Fig. 6(b).

The hybridization of modes can also be understood by
analyzing the dependence of eigenmode loss on the grating
period. As shown in Fig. 6(d), the loss of branch E2 or E3

is strongly changed around � = 450 nm due to the coupling
with MP2 mode. Considering the higher resonance frequency
of MP3 mode, the coupling with MP3 mode can be achieved
by decreasing the grating period. Therefore, the loss of branch
E1 or E4 exhibits rapid changes at smaller grating period as
a result of coupling with MP3 mode. Furthermore, the loss
of branch E4 is also strongly changed around � = 550 nm.
This is due to the coupling with other modes and is not studied
here. Another characteristic is that the loss of branch E1 or
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FIG. 7. (Color online) The dispersion characteristics of the
coupled modes between GPP mode and MP1 mode: (a) contour plot
of absorptance as a function of wave vector Kx and frequency with
grating period 850 nm; (b) the corresponding eigenfrequency of the
system versus the wave vector Kx . In the absence of the spacer layer,
the eigenfrequency of grating-induced GPP mode are also shown with
dotted lines.

E4 is larger than that of branch E2 or E3 due to a large
radiative damping. Hence, when light is incident normally
on the structure, only branches E1 and E4 can be excited with
regards to the symmetry of the field. This explains why there
are only two branches in the absorption spectrum shown in
Fig. 6(a).

C. Angle dependence of the hybrid modes

We now examine the angle dependence of hybrid modes.
Figure 7(a) shows the contour plot of absorptance as a function
of wave vector Kx and frequency for the structure with
grating period 850 nm. It is noted that two absorption peaks
appear at normal incidence and a clear splitting into three
absorption peaks is observed at the inclined incidence due
to the decoupling with MP1 mode. The eigenfrequency of
system as a function of wave vector Kx is shown in Fig. 7(b).
When the spacer layer is absent, the eigenfrequency (denoted
by dotted lines) describes the dispersion of grating-induced
GPP mode. The GPP mode is folded into the Brillouin zone.
The degeneracy of the mode is lifted at the center of the zone
(Kx = 0) and a small band gap appears due to the reverse
symmetry of fields at the band edge. For the structure with
the spacer layer, the eigenfrequency (labeled E1–E3) of the
primary degenerate mode is further lifted at the zone center

FIG. 8. (Color online) The dispersion characteristics of the
coupled modes between GPP mode and higher-order MP mode:
(a) contour plot of absorptance as a function of wave vector Kx

and frequency with grating period 400 nm; (b) the corresponding
eigenfrequency of the system as a function of wave vector Kx .
Similarly, the dotted lines denote the eigenfrequency for the structure
without spacer layer; (c) the normalized magnetic field distributions
of eigenmodes corresponding to the intersections with line θ = 10◦.

as a result of the coupling with MP1 mode. A large band gap
is formed and contributes to the lower absorption as shown in
Fig. 7(a).

When the grating period is set to 400 nm, the contour plot
of absorptance as a function of wave vector Kx and frequency
is shown in Fig. 8(a). There is only one absorption peak at
normal incidence and the other two absorption peaks appear
at inclined incidence. The corresponding eigenfrequency of
the structure is illustrated in Fig. 8(b). Similar to the case of
coupling with MP1 mode, the coupling with MP2 mode also
enlarges the mode splitting of the grating-induced GPP mode
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FIG. 9. (Color online) The magnified plot of energy branch E3

shown in Fig. 8(b), where the normalized magnetic field distributions
corresponding to the points K1 and K2 are shown in the inset.

(denoted by dotted lines). Furthermore, the energy branches
have three intersections with the line θ = 10◦ as shown in
Figs. 8(a) and 8(b). Like the case shown in Fig. 2(c), the
three intersections are labeled A–C. The normalized magnetic
field distributions of eigenmodes, obtained from Eq. (7),
corresponding to these intersections are shown in Fig. 8(c),
which exhibit similar distributions as the modes e1, e2, and e3
shown in Fig. 6(c). Here, the symmetry of field is changed due
to the wave vector Kx > 0. Branches A and C can be excited by
inclined incidence. Hence, the claim in Sec. III that branches
A, B, and C are the hybrid modes of GPP and MP is reasonable.

More importantly, the dispersion of branch E3 exhibits a
weak angle dependence in contrast to that of the bare GPP
mode. The magnified plot of the eigenfrequency of branch E3

as a function of wave vector Kx is shown in Fig. 9. It is noted
that the eigenfrequency of branch E3 is again not increased or
decreased progressively but exhibits much more complicated
behavior. The magnetic field distributions of the two particular
points (labeled K1 and K2) corresponding to the frequency
minimum and maximum in the range of calculations are shown
in the inset. For the field distribution at point K1, the mode is
still considered as the hybrid of GPP mode and MP2 mode
from the previous analysis, but the mode is changed into the
bare MP3 mode at the point K2. Because the eigenfrequency
of GPP(1) mode is increased with increasing Kx , branch E3 is
mostly from the hybrid between GPP(1) mode and MP2 mode
at small wave vector. When the wave vector Kx is further in-
creased, the GPP(1) mode decouples with MP2 mode due to the
increased eigenfrequency, but couples with MP3 mode. This
coupling still leads to the energy anticrossing behavior which
can be observed between energy branches C and D shown in
Fig. 2(c). Therefore, the resonance frequency of MP3 mode is
greatly modified due to the coupling with GPP(1) mode and
the dispersion of the MP3 mode is divided into two branches C
and D. This is the reason why the dispersion of energy branch
C shown in Fig. 2(c) exhibits weak angle dependence.

D. Geometric effects on energy coupling

The dependence of the coupling energy between the GPP
mode and MP mode on the geometric parameters of the
structure is also studied. Here, we only focus on the coupling

FIG. 10. (a) The coupling energy V2 as a function of the metal
film thickness h2 with grating period 850 nm and the spacer thickness
20 nm; (b) the coupling energy V2 as a function of the spacer thickness
d1 with metal film thickness h2 = 20 nm.

with MP1 mode since it can be well described using the
polariton model of three modes. By fitting the eigenfrequency
expressed in Eq. (10) to the results obtained from Eq. (7), the
coupling parameter V2 can be extracted. The dependence of
the coupling parameter V2 on the metal film thickness h2 is
shown in Fig. 10(a). The electromagnetic field is exponentially
attenuated in the metal film due to the negative permittivity
of metal. The evanescent field that can penetrate through the
metal cladding decreases with increasing h2; this results in a
reduction of the interaction intensity between the GPP mode
and MP mode and leads to the smaller coupling energy V2

as illustrated in Fig. 10(a). The thickness d1 of the spacer
layer is also an important parameter that can affect the
resonance frequency and energy localization of the MP mode.
Figure 10(b) shows the coupling parameter V2 as a function
of d1. It is noted that there exists an optimal spacer thickness
to generate the maximum coupling intensity between the GPP
mode and MP mode. As the spacer thickness increases, the
interaction zone of the GPP mode and MP mode is enlarged.
On the other hand, the field localization of MP mode is
decreased [29], causing a reduction in the interaction intensity
between modes. These two factors together determine the
coupling behavior between the GPP mode and MP mode and
lead to the optimal spacer thickness.

IV. CONCLUSION

In summary, this study elucidates the coupling behavior
between the GPP mode and MP mode in a metallic-dielectric
multilayer structure. The large mode splitting is observed as
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a result of the strong mode coupling. Furthermore, due to the
opposite field symmetry, the odd- and even-order MP modes
exhibit different mode selections during the coupling with
GPP mode. These hybrid modes exhibit different excitation
behaviors at normal incidence; this leads to the remarkable
spectral-directional absorption property of the structure. The
studied phenomena may find applications in photonic and
energy conversion systems, plasmon engineering, and the
design of alternative metamaterials.
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