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Frequency-fluctuation model applied to Stark-Zeeman spectral line shapes in plasmas
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A very fast method for calculating line shapes in the presence of an external magnetic field accounting
for charge particle dynamics is proposed. It is based on a reformulation of the frequency fluctuation model,
which provides an expression of the dynamic line shape as a functional of the static distribution function of
frequencies. In the presence of an external magnetic field, the distribution of intensity and polarization of the
emission depends on the angle between the observation line and the magnetic field’s direction. Comparisons
with numerical simulations and experimental results for various plasma conditions show very good agreement.
Results on hydrogen lines in the context of magnetic fusion and the Lyman-α line, accounting for fine structure,
emitted by argon in the context of inertial fusion, are also presented.
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I. INTRODUCTION

The presence of a static magnetic field is common for
many types of plasmas and revives the interest for modeling
the line shapes affected simultaneously by Stark and Zeeman
effects. Such a combined influence on profiles of spectral lines
has been studied for several decades both theoretically and
experimentally since the initial work [1]. Different methods
have been developed or have been extended to magnetic
plasmas, such as numerical simulations [2–4] and theoretical
models [5–12]. The aim of the latter is to give a rapid and
accurate description of the line shapes or to be implemented
in transport codes dedicated to plasma spectroscopy.

Modeling the broadening due to both the Stark and the Zee-
man effects is a complex problem that requires the knowledge
of accurate atomic physics data, statistical mechanics, and
plasma physics. A magnetic field has three essential effects on
Stark-broadened spectral lines: (1) partial polarization of the
emitted light, (2) additional splitting caused by the magnetic
field according to value of the magnetic quantum number m,
and (3) bending of the electron trajectories into a helical path
around the magnetic lines of forces. The third point will not
be considered in this paper. The magnetic field leads to an
additional structure in the line profile due to the energy level
splitting. A measure of the relative importance of the Stark
and Zeeman effects is given by the ratio τ between the two
respective average energy shifts [1]. For hydrogen, with the
normal field strength F0 = 2.603eN

2/3
e , τ is as follows:

τ = 5.15 × 10−11nN2/3
e /B, (1)

where n is the principal quantum number, Ne is the electron
density, expressed in cm−3, and B is the magnetic field
strength, expressed in teslas. The line profile coincides with
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the pure Stark profile if τ � 1 and deviates progressively as τ

decreases. When τ ≈ 1, profiles broadened by the combined
Stark-Zeeman effect are an intricate function of Ne and B.
Such cases are found in magnetically confined plasmas for
low-n hydrogen lines emitted in the divertor region at Ne >

1014 cm−3, kTe ∼ 1 eV, and B � few teslas. In plasmas
produced by laser impact or implosion (temperatures from 100
to 1000 eV and electron densities from 1021 to 1024 cm−3),
high magnetic fields (B > 100 T) are generated that can
strongly affect the emission of highly ionized atoms. These
conditions are favorable for the combined Stark-Zeeman effect
on line profiles, not to mention astrophysical plasmas where the
signature of uniform magnetic fields is observed on hydrogen
lines in regions where Ne ∼ 1014 cm−3 and kTe ∼ 1 eV (see
Ref. [6] and references therein).

The most difficult part of the line broadening problem
is to properly identify the environment of the emitter. In
particular, accounting for the fluctuations of electric fields
produced at emitters, by moving electrons and ions, is a
nontrivial problem that has been of constant interest for
both experimental and theoretical points of view since the
1960s (see Ref. [7] and references therein). Moreover, the
presence of a static magnetic field, by giving a preferential
axis, imposes the orientation of the electric dipole and can
alter the dynamical properties of the plasma. Few models
accounting for both the magnetic and the fluctuating electric
fields have been developed [6,8,12,13]. Here, a method based
on a reformulation of the frequency fluctuation model (FFM)
[14], extended to magnetized plasmas, is presented.

II. METHOD

The line shape function in the radiative dipole approxima-
tion is related to the imaginary part of the Fourier-transformed
dipole autocorrelation function. This can be written as a
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normalized Liouville space-matrix element of the response
function,

I (ω) = Im〈〈d†|G(ω)|dρ0〉〉, (2)

with ρ0 as the equilibrium density matrix operator and d as the
dipole operator for the emitting system. The response function
G(ω − iε) is given by the one-sided Fourier transform of the
bath averaged evolution operator of the emitter U (t),

G(ω) = lim
ε→0

i

∫ +∞

0
U (t)e−i(ω−iε)t dt. (3)

U (t) = 〈Ul(t)〉l∈{F } with Ul(t) as the solution of the following
equation:

dUl(t)

dt
= −iLl(t)Ul(t) and Ul(0) = 1. (4)

Here, 1 is the unit operator and Ll(t) is the sum of
three terms: Ll(t) = L0 + l(t) + LZ , where L0 describes the
behavior of the unperturbed atom and where l(t) and LZ are the
Liouvillians corresponding to the Stark and Zeeman effects,
respectively. The latter are treated as perturbations to L0. Here:

(i) l(t) = − 1
h̄

d · Fl(t) is the time dependent Liouville
perturbation operator that connects the quantum emitter via
the dipole operator d to the external electric field Fl(t). The
latter is assumed to belong to a measurable functional space
{F } that provides a statistical method for the calculation of
average quantities,

(ii) and LZ is written as LZ = 1
h̄
μBB · [J + (gS − 1)S],

with the spin S and the angular momentum J; gS
∼= 2.002 32

is the anomalous gyromagnetic ratio for the electron spin.
Here, the diamagnetic term, proportional to B2, is assumed
negligible compared to the paramagnetic term, proportional to
B, and is not taken into account.

Due to the stochastic behavior of the electric field, U (t)
can be obtained by numerical simulation integrating Eq. (4)
on a simulated sampling of {F }. Alternatively, efficient ana-
lytical models (e.g., the quasistatic approximation, the impact
approximation, the model microfield method, the FFM, and
the Boerker-Iglesias-Dufty model [7]) have been developed.

One feature of the Stark-Zeeman line shape modeling is a
quantization axis imposed by the magnetic field. Averaging
over Fl implies considering the three directions of space
separately. Considering the magnetic field in the direction z,
i.e., B = Bez, one can define F‖ and F⊥ as the microfield
parallel and perpendicular, respectively, to the direction of the
magnetic field.

The selection rules for electric dipole radiation are as
follows:

�J = 0, ± 1(0 � 0), �M =
{±1, σ components,

0, π component,
(5)

with M as the magnetic quantum number. By observing per-
pendicular to the magnetic field, the σ and π components show
a linear polarization, respectively, parallel and perpendicular
to B. Along the B direction, the σ components show a circular
polarization, and the π components do not appear. The profile
observed in a direction with an angle α to the magnetic field
is given by

I (ω,α) = I‖ cos2 α + I⊥ sin2 α, (6)

where the parallel I‖ and the transverse I⊥ profiles are
expressed in terms of polarized emission as

I‖ = I+(ω) + I−(ω), (7)

I⊥ = 1
2 [I+(ω) + I−(ω)] + I0(ω). (8)

Decomposing the dipole operator along the polarization
vector basis {eq ; q = 0, ± 1}, the line intensity Iq(ω) associ-
ated with each polarization state is given by

Iq(ω) = Im〈〈d†
q|G(ω)|dqρ0〉〉. (9)

In the FFM, the line shape calculation is initially performed
by treating the electron collisions as impacts and the ion pertur-
bation as quasistatic [15]. The time dependence is introduced at
a later stage of the calculation. Considering a static ionic elec-
tric field and electrons as impact results in a quantum-emitter
system evolution operator l = − 1

h̄
d · Fl + i
e containing

a non-Hermitian homogeneous electron-impact broadening
contribution 
e and the ion microfield interaction − 1

h̄
d · Fl ,

which has to be numerically averaged with a static-field
probability distribution Q(Fl) [16]. The evaluation of the
Liouville operator matrix elements requires the calculation
of the electric dipole matrix elements 〈γ JM|dq|γ ′J′M′〉 and
the matrix elements 〈γ JM|J0 + S0|γ ′J′M′〉 related to the
paramagnetic matrix elements of Lz with B = Bez and gS = 2.
The calculation can be simplified by using the Wigner-Eckart
theorem [17]:

(i) the electric dipole matrix elements become

〈γ JM|dq|γ ′J′M′〉 = (−1)J−M

(
J 1 J ′

−M q M ′

)

×〈γ J ||d||γ ′J′〉, (10)

where 〈γ J ||d||γ ′J′〉 is the reduced matrix element,
(ii) and in the LS representation, the paramagnetic matrix

elements become

〈γ JM|J0 + S0|γ ′J′M′〉
= MδγJM,γ ′J ′M ′ − δγLSMγ ′L′S ′M ′(−1)L+S+M

×[J,J ′]1/2
√

S(S + 1)(2S + 1)

×
(

J 1 J ′

−M 0 M

) {
L S J

1 J ′ S

}
. (11)

Here, the diagonal and off-diagonal (J ′ = J − 1) matrix
elements are given by the analytical evaluation of the 3 − j

and 6 − j symbols.
This implies the knowledge of J and S values of each

state and the reduced matrix elements between states. Such
information can be extracted from atomic structure codes
(based on either LS or JJ coupling) [17–20].

In the absence of a magnetic field, models that rely on
quasistatic approximation assume the plasma, surrounding
the emitting atom, isotrope. The ion microfield distribution
function is then a function of the ionic field strength, i.e.,
W (F ) = 4πF 2Q(F). With the introduction of an external
magnetic field, the symmetry is broken, and the integration
over the electric field has to take it into account. If θ is the angle
between the magnetic and the electric fields, then the parallel
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and perpendicular components are defined by F‖ = Flμ and
F⊥ = Fl

√
1 − μ2, where μ = cos θ and Eq. (9) is written as

Iq(ω) =
∫ ∞

0
W (Fl)

∫ 1

−1
Jq(Fl,μ,ω) dμ dFl, (12)

Jq(Fl,μ,ω) = Im〈〈d†
q | (ω1 − L0 − l − LZ)−1 | dqρ0 〉〉 re-

presents the q-polarized intensity emitted by an ion in an
external magnetic field and in a static ion field Fl having a
direction μ compared to the magnetic field direction. In order
to numerically treat Eq. (12), the integrations over Fl and μ

are replaced by two weighted sums: Two-point integration
weights W

(2)
f are used for the summation over discrete ionic

field intensities f , and Gauss-Legendre quadrature weights
W (G)

μ , with the respective abscissa μ, are used for the angle
summation [21,22]. Note that this discretization is possible
because of the homogeneous electron broadening. Thus,
the Fourier transform in Eq. (3) can be calculated in the
{f,μ}-dependent basis that makes the Liouville operator
diagonal,

Iq(ω)W = W
∑
f

W
(2)
f

∑
μ

W (G)
μ Im

〈〈
d†

q|Mf,μ

×[ω1 − Ld (f,μ)]−1M−1
f,μ|dqρ0

〉〉
. (13)

Here, Mf,μ is the matrix that diagonalizes the Liouville oper-
ator L, M−1

f,μL(f,μ)Mf,μ = Ld (f,μ). This procedure leads to
the concept of the Stark spectral components emitted by a set of
dressed two-level radiators [Stark-dressed transitions (SDTs)],
which are defined by two complex numbers, the generalized
intensity aq,k + icq,k and the generalized frequency fq,k +
iγq,k (for more details, see Ref. [23]). Now, working in the
Liouville space of the dressed two-level radiators, the static
line shape is written [24]

Iq(ω) = Re
1

π

∑
kj

i〈Dq,k|(ω1 − Ld )−1|Dq,j 〉pq,j , (14)

where Ld is the Liouville operator involving the transition
frequencies of the SDT, Dq,j = rq

√
1 + icj /aj are the matrix

elements of the dipole moment for the SDT in the q

polarization state (r2
q = ∑

k aq,k), and pq,j = aq,j /r2
q is the

instantaneous probability of state j in the q polarization state.
The next step is to account for the fluctuations of the ionic

electric field. The FFM is based on the assumption that an
atomic system perturbed by a fluctuating microfield behaves
like a set of SDTs that are subject to a stationary Markov
mixing process induced by the field fluctuation. This results in
an effective exchange between two-level transitions following
a Poisson process with a fluctuation rate of ν = vth/ri where
vth is the ion thermal velocity and ri is the mean distance
between ions. According to Ref. [14], � is defined as the
diagonal matrix of inverse state lifetimes with �kj = νδkj and
W as the matrix transition rates between different states, such
as Wkj = νpq,k . The expression of the Stark-Zeeman line shape
accounting for ion dynamics and polarization is written as

Iq(ω) = Re
1

π

∑
kj

i〈Dq,k|(ω1−Ld − i�+iW )−1|Dq,j 〉pq,j ,

(15)

which leads to the line shape function for a given transition,

Iq(ω) = r2
q

π
Re

∑
k

(aq,k+icq,k )/r2
q

i(ω−ωq,k )+γq,k+ν

1 − ν
∑

k

aq,k/r2
q

i(ω−ωq,k)+γq,k+ν

. (16)

Thus, the observed Stark-Zeeman profile is the sum given by
Eqs. (6)–(8).

If ck is negligible and if the homogeneous broadening γq,k

does not depend on k, Eq. (16) can be written as a functional
of the normalized static profile Wq(ω). The line shape is then
expressed as the convolution of a Lorentzian function that
represents the homogeneous broadening and the ion dynamic
profile,

Iq(ω) =
∫

dω′′ γq/π

γ 2
q + (ω − ω′′)2

Re

⎡
⎣r2

q

π

∫ Wq (ω′)dω′

ν+i(ω′′−ω′)

1 − ν
∫ Wq (ω′)dω′

ν+i(ω′′−ω′)

⎤
⎦.

(17)

III. RESULTS AND DISCUSSION

In this section, we present calculations of spectral line
shapes of hydrogen for conditions relevant to magnetic fusion
and argon lines emitted in dense magnetized plasmas.

For the present spectral line shape study, the high-density
(Ne � 1014 cm−3) low-temperature (kTe � 10 eV) tokamak
edge plasmas are of particular interest: The optically thin
Balmer lines of hydrogen and its isotopes present line profile
features that depend directly on plasma properties. For exam-
ple, odd principal quantum number transitions, such as the
Hα line, are useful for determining the magnetic field strength
from the measure of the Zeeman components separation. Even
principal quantum number transitions, such as the Hβ line are
useful for determining the electron density from the wings of
the Stark line shape [25].

In Fig. 1, we show the Balmer-α (Hα) Stark-Zeeman
profiles without Doppler broadening for the plasma con-
ditions Ne = 1015 cm−3, kTe = kTi = 10 eV, and B = 4 T.
The profiles plotted above and under the abscissa correspond
to an observation perpendicular and parallel to the magnetic
field, respectively. Two different results are shown: the static
profiles (dashed line) and the dynamic profiles (full line).
The three Zeeman components (σ+, π , and σ−) are clearly
distinguishable for an observation perpendicular to B, whereas,
only the σ components appear for an observation parallel to
B. The corresponding static line shape presents a plateau in
the center of the line, which is explained by the asymmetry
of each σ component: As the electric microfield has an
arbitrary direction, all M sublevels that fulfill the condition
�M = 0, ± 1 are coupled. Emission then appears on the
three directions of polarization. In order to understand the ion
dynamics effects on the Zeeman components, recall that the
general behavior of a set of SDTs undergoing a Markovian
mixing process is a collapse of the elements around the
gravity center of the set when the fluctuation rate increases.
Along this evolution, lines originally inhomogeneous become
homogeneous, and their shape can get broader or thinner
depending on ν and on the initial SDT distribution. At
large ν, the perturbation becomes inefficient, and the line
evolves toward the unperturbed shape, here, the pure electron
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FIG. 1. Hα line shape with an external magnetic field (B = 4 T)
for Ne = 1015 cm−3 and kTe = kTi = 10 eV. Comparison between
static profile (dashed line) and dynamic profile (full line). Observation
perpendicular to B plotted above the abscissa. Observation parallel
to B plotted under the abscissa.

broadened Zeeman profile. This quite unpredictable response
is illustrated in Fig. 1: The π component is symmetric and
gets narrower while the σ components, mainly nonsymmetric
due to the presence of forbidden components, get shifted and
broader for the fluctuation rate relevant to this case.

Figure 2 shows a comparison of the pure electron broadened
Zeeman profile (gray curve) of the Hα line, presenting the three
σ+, π , and σ− components, with dynamic profiles for different
values of the fluctuation rate. In order to make a narrowing
effect more pronounced, the values of ν were increased up to
the value of 100 × ν. The intensity of the line center is set
to 1 in order to clearly show the convergence of the dynamic
profiles to the pure Zeeman profile as ν increases.

The method presented here is validated by numerical
simulation [2] involving hydrogenlike emitters in magne-

FIG. 2. Comparison of the pure electron broadened Zeeman
profile (gray curve) of the Hα line calculated in same conditions as
in Fig. 1 with dynamic profiles for different values of the fluctuation
rate: ν, 10ν, and 100ν (a)–(c). The observation is perpendicular to B.

FIG. 3. Hα line shapes with external magnetic fields, B = 2 T
(gray) and B = 4 T (black), for Ne = 1015 cm−3 and kTe = kTi =
8.5 eV: FFM (full lines) and numerical simulations (circles). Obser-
vation parallel to B.

tized plasmas. Numerical simulations play a role as ideal
experiments [26], considered as benchmarks. The simulation
technique used here relies on (1) the generation of Fl(t)
by considering a set of ions and electrons moving along
straight trajectories inside a spherical volume (a model of
quasiparticles is used [27]) and (2) a fast numerical resolution
of Eq. (4) [2,28]. Figure 3 shows the profiles of the Hα line
obtained from simulation (circles) and from FFM (full line) for
two different values of magnetic field (B = 2 T and B = 4 T)
and for Ne = 1015 cm−3 and kTe = kTi = 8.5 eV. Very good

FIG. 4. Comparison between Alcator C-mod multifaceted ax-
isymmetric radiation from the edge (MARFE) Dα experimental line
(crosses) with the Stark-Zeeman dynamic profile (full line) and the
static profile (dashed line) for Ne = 1015 cm−3, kTe = kTi = 1 eV,
and B = 7 T.
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FIG. 5. Ar XVIII Lyman-α line profiles calculated within (a) the quasistatic approximation and (b) accounting for ion dynamics for an
external magnetic field B = 100 MG and for Ne = 1.5 × 1023 cm−3 and Te = Ti = 107 K: (gray line) electron broadened Zeeman profile with
fine structure, (dashed line) Stark broadened profile, (full line) Stark-Zeeman profile, and (circles) numerical simulations. The direction of
observation is perpendicular to B.

agreement is found between the simulation and the model.
Note that none of these calculations are Doppler broadened
and, of course, for such high ionic temperature, the Doppler
effect brings an additional broadening.

In the present density range, the Stark-Zeeman profiles
are intricate functions of Ne, Te, and B. To use spectral line
profiles as a diagnostic tool, one has to compare the whole
measured profile to the whole theoretical one. As, for example,
Fig. 4 shows a comparison between the FFM calculated static
(dashed line) and dynamic (full line) Stark-Zeeman-Doppler
profiles and the Dα (deuterium) line profile (crosses) observed
in Alcator C-mod MARFE experiments [25]. The plasma
parameters (Ne and Te) were diagnosed independently and,
as in the original paper, the theoretical profiles have not been
instrumentally broadened. The dynamic profiles are rather
sensitive to electron density variations, and the dynamic profile
shows very good agreement with the experimental one for the
diagnosed plasma conditions.

The second application concerns Stark-Zeeman line shapes
of the Ar XVIII Lyman-α line, accounting for a fine structure
calculated for plasma conditions relevant to plasmas produced
by laser impact or implosion. In such plasmas, high magnetic
fields on the order of 10 to 100 MG have been predicted or
have been observed directly [29]. Various physical processes,
such as perturbations due to ion microfield, self-generated
magnetic field, motional electric field, and Doppler effect, can
contribute to the broadening of such highly ionized emitter
lines. We have considered a typical laser-driven implosion
of a deuterium gas filled microsphere with impurities of
argon with a temperature of Te = 107 K, an electron density
of Ne = 1.5 × 1023 cm−3, and a magnetic field strength of
B = 100 MG [30]. Even for such high values of magnetic
field, the spin-orbit interaction dominates over the effect of
the external magnetic field. This case is very advantageous
because: First, the profile involves two patterns resulting
from both linear and quadratic Stark splitting, respectively,
associated with the two fine structure components 1S1/2-2P1/2

and 1S1/2-2P3/2 [14]; second, it presents a strong ion dynamics
effect on the Zeeman components. Figures 5(a) and 5(b)
show comparisons of the Lyman-α profiles for hydrogenlike
argon obtained with pure Zeeman calculations (gray line),
pure Stark calculations (dashed line), and Stark-Zeeman
calculations (full line) within the quasistatic approximation for
the ionic electric field and accounting for the ion dynamics,
respectively. Considering the quasistatic case, the four Zeeman
components of the 1S1/2-2P1/2 disappear due to the linear
Stark effect, whereas, the six Zeeman components of the
1S1/2-2P3/2 are still distinguishable. The characteristic wing
at high energies due to the quadratic Stark effect is visible.
The ion dynamics effect results in an overall broadening of the
line shape. Numerical simulations have been performed using
the technique previously described but with electric fields
generated by the molecular dynamics technique to account
for ion correlations. Here again, comparisons with numerical
simulations (circles) give very good agreement.

IV. CONCLUSION

In this paper, we have described a method to account for
charged particle dynamics effects in calculations of Stark-
Zeeman spectral line shapes. The method, not restricted to
simple lines, relies on a reformulation of the FFM, which
provides an expression of the dynamic line profile as a
functional of the static distribution function of frequencies.
Comparisons with numerical simulations and experiments,
when they exist, validate the method.

In a first step, the Stark-Zeeman broadened profile is
calculated in the quasistatic approximation. Next, the line
profile accounting for ion dynamics is calculated via an
expression, which depends only on two quantities: the static
distribution function and a unique parameter, the fluctuation
rate. Here, the method is not limited to a specific atomic physics
as the Stark and Zeeman effects are added as perturbations.
This highly efficient formalism provides Stark-Zeeman line
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shapes for a wide range of density, temperature, and magnetic
field values, which is of importance in plasma physics and
astrophysics. In addition, this method is numerically fast
enough to be implemented in codes that require spectral line
shape calculations including all main effects as, for example,
in the investigation of radiation effects on plasma transport
in plasmas. As shown, spectral line profiles can easily be
generated to be used as a diagnostic tool to infer electron
density or magnetic field in magnetic fusion devices. Another

domain of application is the study of x-ray lines emitted by
plasmas produced by laser impact and inertial confinement
where high magnetic fields (over 100 MG) can significantly
modify the line profile of highly charged ions.
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