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Electric-discharge contour-dynamics model: The effects of curvature and finite conductivity
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In this paper we present the complete derivation of the effective contour model for electrical discharges which
appears as the asymptotic limit of the minimal streamer model for the propagation of electric discharges, when the
electron diffusion is small. It consists of two integro-differential equations defined at the boundary of the plasma
region: one for the motion and a second equation for the net charge density at the interface. We have computed
explicit solutions with cylindrical symmetry and found the dispersion relation for small symmetry-breaking
perturbations in the case of finite resistivity. We implement a numerical procedure to solve our model in general
situations. As a result we compute the dispersion relation for the cylindrical case and compare it with the
analytical predictions. Comparisons with experimental data for a 2D positive streamers discharge are provided
and predictions confirmed.
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I. INTRODUCTION

The appearance and propagation of ionization waves is
the prelude of electrical breakdown of various media. In
the case of a gas, the specific features of the breakdown
waves are determined by the type of the gas, the value of
the pressure, the geometry of the discharge cell, and the
value and variation rate of the voltage at the electrodes. The
geometry determines the space distribution of the electric field
and hence the dynamics of the ionization fronts. In the case
where there in no initial ionization in the discharge gap, the
ionization wave may originate from one or several overlapping
electron avalanches. After attenuation of the electric field
in the avalanche body, a conducting channel or streamer
develops: a plasma region fully ionized with a positive side
expanding toward the cathode and a negative region toward the
anode.

One of the approaches used to model the development of the
avalanche-streamer transition and the streamer propagation is
a nonlinear system of balance equations with a diffusion-drift
approximation for the currents, together with the Poisson
equation [1]. Some progress in the understanding of the
propagation mechanism has been achieved using that model.
We can mention the study of stationary plane ionization
waves [2,3], self-similar solutions for ionization waves in
cylindrical and spherical geometries [4,5], the effect of
photoionization [6], and a branching mechanism as the result
of the instability of planar ionization fronts [7–9]. In this
hydrodynamic approximation, the fronts are subject to both
stabilizing forces due to diffusion which tend to dampen
out any disturbances, and destabilizing forces due to electric
field which promote them. The solution of the model, even
in the simplest cases, poses a challenging problem both
numerically and analytically. Early numerical simulations can
be found in [10,11]. Recently, a contour-dynamics model have
been deduced in the limit of small electron diffusion [12],
which resembles the Taylor-Melcher leaky dielectric model
for electrolyte solutions [13], but adapted to the context of
electric (plasma) discharges. This contour-dynamics model
allows the study of more general situations in two-dimensional
and three-dimensional cases.

The contour-dynamics model consists of an interface
separating a plasma region from a neutral gas region as shown
in Fig. 1. The separating surface has a net charge σ and the
thickness goes to zero as

√
D, D being the charge diffusion

coefficient. The case displayed in the figure corresponds to
a negative discharge, so the electric field is pointing toward
the plasma region and σ is the negative charge density at the
surface. The front will evolve following the equation

vN = −μeE
+
ν + 2

√
De

l0
μe|E+

ν | exp

(
− E0

|E+
ν |

)
− Deκ, (1)

where E+
ν is the normal component of the electric field at the

interface when approaching it from outside the plasma region,
μe the electron mobility, De the electron diffusion coefficient,
E0 a characteristic ionization electric field, and κ the curvature
of the interface. The parameter l0 is the microscopic ionization
characteristic length. At the interface, the total negative surface
charge density will change according to

∂σ

∂t
+ κvNσ = −E−

ν

�e

− j−
ν , (2)

E−
ν now being the electric field at the interface coming from

inside the plasma, �e a parameter proportional to the resistivity
of the electrons in the created plasma, and j−

ν the current
contribution of any electromotive force if present.

Although the equations (1) and (2) are written for the case
of a negative front plotted in Fig. 1, and we will present the
derivation of the model for this case, we could use in principle
the same model for a positive front, but the electric field should
be sign reversed, and σ would represent the positive surface
charge density. Although the moving carriers in the model
are the electrons, one may think of a front made of holes,
with a positive surface charge density, and characterized with
the corresponding parameters for the mobility, diffusion, and
so on.

In this paper, using the contour-dynamics model, we
will study cylindrical discharges when the plasma has finite
conductivity. The dispersion curve for transversal instabilities
will be obtained for these finite conductivity streamers. The
results will be compared with the limiting cases of perfect
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FIG. 1. The schematic of the contour-dynamics model. The
case displayed corresponds to a negative streamer discharge so σ

represents the negative surface charge density. The electric field points
toward the plasma region in this case.

conductivity, which is the Lozansky-Firsov model [14] with
a correction due to electron diffusion, and with the case of
a perfect insulator, i.e., the limit of very small conductivity.
Finally, we compare the results with an actual experiment for
a positive streamer discharge.

We start by introducing the model. Taking a minimal
set of balance equations to describe in a fully deterministic
manner the discharge (see for example [7]), we will derive the
contour-dynamics equations for the evolution of the interface
between the plasma region and the gas region free of charge
(or with a very small density of charge). The outline of this
derivation has already been reported [12] but here we present
it in full detail. Then, we proceed by studying a cylindrical
discharge in the case of finite conductivity, and the analytical
limits of infinite resistivity and ideal conductivity. With the
model at hand we will predict some features of the stability
of the fronts. Numerical simulations are made to calculate the
dispersion curves and test some of the analytical predictions.
We briefly describe the numerical methods employed in the
corresponding section. We end with an analysis of the results,
the comparison with an experiment for a positive 2D streamer
discharge, and an overview of possibilities that the model
opens for more complicated geometries and fully 3D cases.

II. THE DYNAMICAL CONTOUR MODEL

In this section we obtain our model as a limit of a set of
balance equations describing a streamer discharge. We will
first recall the minimal description of a streamer discharge and
some of the properties of the traveling planar fronts, and then
make use of the asymptotic behavior of those planar fronts in
the limit of small diffusion to give a correction to the velocity
of propagation of curved fronts. After finding the dynamics of
the effective interface, a balance of the charge transport along
the interface will be provided in order to complete the model.

A. The minimal model

For simulating the dynamical streamer development of
streamers out of a macroscopic initial ionization seed, in a
nonattaching gas such as argon or nitrogen, the model of a
streamer discharge [15] can be simplified. As a first approach,

the processes with the smaller probabilities or cross sections
can be ignored. Attachment and recombination processes can
be neglected on that basis in comparison with the ionization
process for nonattaching gases. We also ignore photoionization
processes in this work. With these considerations in mind, the
resulting balance equations are

∂Ne

∂t
= ∇ · (μeNeE + De∇Ne) + νiNe, (3)

∂Np

∂t
= νiNe, (4)

where Ne is the electron density, Np is the positive ion density,
μe is the electron mobility, and De is the diffusion coefficient.
The ionization coefficient νi can be modeled following the
phenomenological approximation suggested by Townsend,
which leads to

νi = μel
−1
0 |E| exp

(
− E0

|E|
)

, (5)

where l0 is the ionization length and E0 is the characteristic
impact ionization electric field. The fitting of experimental
data can be done using these parameters [16]. Note also that
it is assumed that the positive ions do not move and μeE is
the drift velocity of electrons. These are valid approximations
at the initial stages of the streamers’ development, but they
may not be correct afterward. To close the model, we consider
Gauss’s law,

∇ · E = e(Np − Ne)

ε0
. (6)

For convenience the equations are reduced to dimensionless
form. Townsend approximation provides physical scales and
intrinsic parameters of the model if only impact ionization
is present in the gas [3]. The units are given by the ion-
ization length l0, the characteristic impact ionization field
E0, and the electron mobility μe. The velocity scale yields
U0 = μeE0, and the time scale τ0 = l0/U0. Typical values
of these quantities for nitrogen at normal conditions are
l0 ≈ 2.3 μm, E0 ≈ 200 kV/m, and μe ≈ 380 cm2/V s. We
introduce the dimensionless variables rd = r/l0, td = t/τ0, the
dimensionless field Ed = E/E0, the dimensionless electron
and positive ion densities ne = Ne/N0 and np = Np/N0 with
N0 = ε0E0/(el0), and the dimensionless diffusion constant
D = De/(l0U0). From now on, all the quantities will be
dimensionless unless otherwise stated. Note however that
we will not write the subindex d. Just for reference, the
dimensionless model reads

∂ne

∂t
= ∇ · (neE + D ∇ne) + neα(|E|), (7)

∂np

∂t
= neα(|E|), (8)

∇ · E = np − ne, (9)

α(|E|) = |E| exp(−1/|E|). (10)

B. Planar fronts and boundary layer

Using the minimal streamer model, we can compute
traveling wave solutions in the planar case. We will assume
that the plasma region is on the left and the front is moving
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toward the right. The traveling waves are solutions such that
ne and np decay exponentially at infinity. This means that we
can take

ne = Ae−λ(x−vt),

np = Be−λ(x−vt),

E = (E+ + Ce−λ(x−vt)) x̂

asymptotically far ahead for the planar wave in the x̂ direction,
E+ being the value of the electric field at infinity. Introducing
these expressions into the minimal model equations we get the
relation

Dλ2 − (E+ + v)λ + α(|E+|) = 0, (11)

which has real solutions if and only if

v � −E+ + 2
√

Dα(|E+|). (12)

All initial data decaying at infinity faster than Ae−λ∗x , with
λ∗ = 1/

√
Dα(|E+|), will develop traveling waves with veloc-

ity v∗ = −E+ + 2
√

Dα(|E+|). Clearly, from the assumption
that the plasma state is on the left, negative velocity solutions
are unphysical. So in the case of a negative front, when E+
is negative, the front will move at least with the drift velocity
in the case that D = 0. For positive fronts, the motion will be
possible only if the creation of charge, given by the Townsend
factor, and its diffusion can compensate the drift. A detailed
discussion about the propagation mechanism can be found
at [3].

If D � 1 the profiles for np and E will vary very little
from the profiles with D = 0 and ne will develop a boundary
layer at the front. This boundary layer has a width of O(

√
D)

as shown in Fig. 2. The main results for the structure of the
boundary layer which we are going to make use of are

ne = f (χ ), (13)

np = −
√

D

∫ ∞

χ

f (z) dz, (14)

E = E+ + O(
√

D), (15)

with χ = (x − v∗t)/
√

D and E the electric field in the x̂
direction. The function f (χ ), also appearing in (14), is the
solution of the equation

∂2f

∂χ2
+ 2

√
α(|E+|) ∂f

∂χ
= f (f − 1), (16)

e

e

ν

τ

D

n  = 0p

n  = 0

n  = np

FIG. 2. Derivation of the contour-dynamics model. We take a
surface of constant ne at the boundary which has an effective width
of order

√
D. The local coordinates tangent and normal to the surface,

τ and ν, together with a pillbox are also shown schematically.

which becomes the solution of a Fisher equation under the
additional assumptions that the Townsend factor α(|E|) ≈ 1.
So, as plotted in Fig. 2, the function f changes from
constant values in a region of width

√
D, when imposing the

two matching conditions f (−∞) = 1 and f (∞) = 0, thus
separating the plasma region from the gas. The complete
mathematical details can be found in [8] and [9].

C. The correction due to the curvature

Next we will add the correction to the propagation velocity
due to the curvature of the front. We take a level surface of
ne representing the interface and introduce local coordinates
τ (along the level surfaces of ne) and ν (orthogonal to the
level surfaces of ne). The schematic can be seen in Fig. 2. We
scale the normal coordinate with the boundary layer thickness
ν = χ

√
D and expand the Laplacian times D as

D � = ∂2

∂χ2
+

√
Dκ

∂

∂χ
+ D

(
�⊥ − κ2χ

∂

∂χ

)
+ O(D3/2),

where � ≡ ∇2 is the Laplacian operator, �⊥ is the transverse
Laplacian, and κ is twice the mean curvature in 3D or just
the curvature in 2D (details of this expansion can be found
in [19]). We write (7) in local coordinates, and using (9),
we find

∂ne

∂t
− Eτ

∂ne

∂τ
−

(
Eν√
D

+
√

Dκ

)
∂ne

∂χ

= ∂2ne

∂χ2
+ neα(|E|) + ne(np − ne) + O(D).

Finally we use (16) so that

∂ne

∂t
− Eτ

∂ne

∂τ
−

(
Eν√
D

− 2
√

α(|Eν |) +
√

Dκ

)
∂ne

∂χ

= O(D1/2). (17)

Note that the curvature term correction will be relevant
provided 1 � κ � D−1/2. Thus we have obtained a transport
equation for the electron density with velocity

v = −E + [2
√

Dα(|E|) − Dκ]n. (18)

The level line ne which we have taken as representative of the
interface evolution will move with a normal velocity

vN = −Eν + 2
√

Dα(|E|) − Dκ. (19)

Notice that the level lines concentrate in a small region where
ne presents a jump from its bulk value to zero, so most level
lines follow (19). The tangential component of the velocity will
not change the geometry of the interface during its evolution,
although tangential exchanges of charge affect the evolution
through the dependence of vN on Eν . The mathematical
description of this effect will be the subject of the next section.

D. Charge transport along the interface

In order to describe the charge transport along the interface
we trace a small “pillbox” D around a portion of the interface
having the top and bottom areas bigger than the lateral area,
i.e., �τ 
 �ν as we can see in Fig. 2. On the other hand D
will be big enough to contain the diffusive layer and so the
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portion where the total negative charge density ne − np has
significant values different from zero.

We subtract (7) from (8) and integrate over the pillbox
volumeD, assume that ne → 0 for χ = ν/

√
D 
 1, |∇ne| →

0 for |χ | 
 1, and get

∂

∂t

∫
D

(ne − np) dV = neEν�τ |∞χ=−∞ + O(D1/2), (20)

where the contributions of the lateral transport of charge
through the lateral surface is neglected in comparison with
the exchange of charge in the normal direction. Note that in
the Taylor-Melcher model this assumption is also made. As
explained in [12] the left-hand side of equation (20) can be
written as the time partial derivative of the product of the
negative surface charge density σ times the normal area �τ ,
and the change of a surface element can be related to the
curvature times the normal velocity, so that

∂σ

∂t
+ κvNσ = − neEν |χ=−∞ . (21)

If a charge source I (t) is present in the plasma, for instance
at x0, this source will create a current density inside the plasma
and we will have at the interior of 


∇ · j = I (t)δ(x − x0). (22)

By adding this contribution to (21) we can finally write

∂σ

∂t
+ κvNσ = −E−

ν

�
− j−

ν , (23)

where j−
ν is the current density coming from the ionized region


 to its boundary ∂
 in the normal direction ν, E−
ν is the

normal component of the electric field when approaching
the interface from inside, and �−1 = limχ=−∞ ne is the
effective mobility of the electrons inside the plasma. Note
that the quasineutrality of the plasma farther away from the
interface is not changed by the current, but there is a jump in
the normal component of the electric field across the interface
given by

E+
ν − E−

ν = −σ, (24)

with E+
ν the normal component of the electric field when

approaching the interface from outside the plasma region.

E. The effective contour model

Equations (19) and (23) together constitute the dynamical
model able to describe the evolution of an interface separating
a plasma region from a neutral region. Notice that in the case
�−1 
 1, we arrive at the Lozansky-Firsov model [14] with
a correction due to electron diffusion; meanwhile in the limit
D = 0 we arrive at the classical Hele-Shaw model. Such a
model is known to possess solutions that develop singularities
in the form of cusps in finite time [17] but, when regularized by
surface tension corrections, the interface may develop various
patterns including some of fractal type (see [18] for a recent
development and references therein).

Equation (23) will provide the surface charge density σ as
a function of time. From it, we can compute the electric field
and move the interface with (19). Two limits can be easily

identified in the case that there is no charge injection inside
the plasma, i.e., j−ν ≈ 0: (a) the limit of large conductivity

�−1 
 1, E−
ν = 0,

so that the interface is equipotential, and (b) the limit of small
conductivity

�−1 � 1,
∂

∂t
(σ�τ ) = 0 ⇒ σ�τ = Cte,

where the charge contained by a surface element is constant
and the density only changes through deformation (with
change of area) of the interface. In the next sections we will
study the intermediate case of finite resistivity.

III. THE CASE OF FINITE RESISTIVITY
IN 2D GEOMETRIES

As an application we will solve the 2D case for different
conductivities. In order to grasp some features of the model
first we will consider how fronts with radial symmetry evolve.
Then we will study the stability of those fronts under small
perturbations and finally solve the model numerically in order
to test some of the analytical predictions.

A. Solutions with radial symmetry

The electric potential created by a surface charge distribu-
tion with radial symmetry at the distance r is found by solving
the equation

�V = σδ(r). (25)

The fundamental solution turns out to be in polar coordinates

V (x) =
{
C log |x|, |x| > r,

C log r, |x| � r,
(26)

where C will be determined by the condition of the electric
field jump (24) at the surface. From the potential solution we
can compute the electric field which has a discontinuity at the
surface

E−
ν = 0, E+

ν = −C

r
. (27)

For the current density, the solution of (22) gives

j = I (t)

2πr2
r, (28)

and finally using (23) and the fact that vN = dr/dt and κ =
1/r , we get

∂σ

∂t
+ 1

r

∂r

∂t
σ = − I (t)

2πr
. (29)

This equation can be easily solved. We can write it as

∂(rσ )

∂t
= −I (t)

2π
(30)

to get

σ = −Q(t)

2πr
, with Q(t) =

∫ t

0
I (t) dt, (31)
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where we have assumed that σ (0) = 0. Now we can see from
the condition (24) that C = −Q(t)/2π , so

E+
ν = Q(t)

2πr
. (32)

Then, defining ε ≡ D, the interface evolves according
to (1) as

dr

dt
= −

(
Q(t)

2π
+ ε

)
1

r
+ 2

√
εα(|Q(t)/2πr|). (33)

We shall analyze next two limiting cases. The first is the
case where

r � |Q(t)|
4πε1/2

√
α(|Q(t)/2πr|) and ε � 1. (34)

Then expression (33) becomes

dr

dt
≈ −Q(t)

2πr
, (35)

so

r(t) ≈
√

r(0)2 −
∫ t

0
Q(t ′)/π dt ′. (36)

For the particular case Q(t) = Q is constant

r(t) ≈
√

r(0)2 − tQ/π. (37)

The second case is the opposite one. If

r 
 |Q(t)|
4πε1/2

√
α(|Q(t)/2πr|) and ε � 1, (38)

we have now

dr

dt
≈ 2ε1/2

√
α(|Q(t)/2πr|). (39)

For the particular case Q(t) = Q, by standard asymptotic
calculations, when t 
 1 we deduce

r(t) ≈ |Q|
π

log t. (40)

B. Stability analysis

We will study now the stability of the fronts under small
perturbations. We change by a small amount the position of
the front as well as the charge density. The perturbed position
and charge surface density of the interface on the interface will
be parametrized using the polar angle as

r(θ,t) = r(t) + δS(θ,t), (41)

σ (θ,t) = − Q(t)

2πr(θ,t)
+ δ�(θ,t), (42)

where r(t) is the solution of the equations for the radial
symmetrical front, Q(t) = ∫ t

0 I (t) dt , and δ a small parameter.
The electric potential will change by δVp(x) after adding a

geometrical perturbation of the interface and some extra charge
on it. This term satisfies the equation �Vp = O(δ). Changing
coordinates to

x −→ x̃ = x
r(t)

r(θ,t)
,

the perturbed surface becomes a disk of radius r(t) again, and
solving for it yields

Vp(r̃ ,θ ) =
∞∑
1

ψn cos(nθ )
( r

r̃

)n

, r̃ > r, (43)

Vp(r̃ ,θ ) =
∞∑
1

ϕn cos(nθ )

(
r̃

r

)n

, r̃ � r, (44)

where it is imposed that Vp remains finite at the origin and at
very large distances becomes zero.

Now taking the condition of continuity for the potential, we
have at the interface xs (in the original coordinate system)

Vp(x+
s ) = Vp(x−

s ) + S
Q(t)

2πr(t)
,

and writing the surface perturbation as

S =
∞∑

n=1

sn(t) cos(nθ ), (45)

the coefficients of the series in (43) and (44) can be related by

ψn = ϕn + Q(t)

2πr
sn. (46)

Making use of the expressions (43)–(46), one can calculate
the electric field to δ order. We will need the normal
components of the electric field at both sides of the surface,
together with the jump condition (24), to find the charge
perturbation of (42). The normal components of the electric
field at the interface are

E+
ν = Q(t)

2π (r + δS)
+ δ

∞∑
1

(
ϕn + Q(t)

2πr
sn

)
n

r
cos(nθ ),

E−
ν = −δ

∞∑
1

ϕn

n

r
cos(nθ ); (47)

thus

� = −
∞∑

n=1

(
2ϕn + Q(t)

2πr
sn

)
n

r
cos(nθ ). (48)

The dynamics of the front will be changed by the perturba-
tion introduced. The curvature correction turns out to be

κ = r2 + 2rSδ − rSθθ δ + O(δ2)

[r2 + 2rSθδ + O(δ2)]3/2
= 1

r
− S + Sθθ

r2
δ + O(δ2)

(49)

(the subindex θ means the partial derivative with respect this
variable) and the normal component of the velocity

vN = dr(t)

dt
+ δ

∂S(θ,t)

∂t
, (50)

so the contour model equation (19) to first order gives

dr(t)

dt
+ δ

∂S(θ,t)

∂t

= −Q(t)

2πr
+ δS

Q(t)

2πr2
− δ

∞∑
1

(
ϕn + Q(t)

2πr
sn

)
n

r
cos(nθ )

+ 2ε1/2
√

α0 + δα1 − ε

(
1

r
− δ

S + Sθθ

r2

)
, (51)
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where we have written the Townsend function (10) up to first
order as α = α0 + δα1 + O(δ2). Now, we have

|E0 + δE1|e−1/|E0+E1δ|

≈ |E0|e−1/|E0| + δ sign(E0)E1

(
1 + 1

|E0|
)

e−1/|E0|

= α0 + δα1,

where, using (47),

E0 = Q(t)

2πr
, (52)

E1 =
∞∑

n=1

(
nϕn + (n − 1)

Q(t)

2πr
sn

)
1

r
cos(nθ ), (53)

so that
√

α = √
α0 + δ

α1

2
√

α0

= √
α0

[
1 + δ sign(Q(t))

E1

2|E0|
(

1 + 1

|E0|
)]

.

Taking into account (33) for the zero-order term, we get
from (51)

∂S

∂t
= S

Q(t)

2πr2
−

∞∑
1

(
ϕn + Q(t)

2πr
sn

)
n

r
cos(nθ )

+ ε

(
S + Sθθ

r2

)
+ ε1/2 α1√

α0
, (54)

and finally making use of the expansion (45) for the perturba-
tion S yields

dsn

dt
=

[
−1 + ε1/2 2πr

√
α0 sign(Q(t))
|Q(t)|

(
1 + 2πr

|Q(t)|
)]

n

r
ϕn

−
[

Q(t)

2πr2
(n − 1) + ε

r2
(n2 − 1) + ε1/2 (n − 1)

√
α0

r

×
(

1 + 2πr

|Q(t)|
)]

sn. (55)

In order to find the correction to the charge density we take
Eq. (23) and multiply it by r(θ,t). Then we use the curvature
expansion (49) written as

κ = 1

r(θ,t)
− Sθθ

r2
δ

[r = r(t) being the zero-order term in the position] and the
fact that

vN = dr(θ,t)

dt
.

Hence

∂(r(θ,t)σ (θ,t))
∂t

− r(θ,t)
Sθθ

r2
vNσ (θ,t) δ = − r(θ,t)

�
E−

ν − I (t)

2π
,

so that, at O(δ),

∂(r�)

∂t
+ Sθθ

r

Q(t)

2πr

dr

dt
= 1

�

∞∑
1

nϕn cos(nθ ). (56)

Making use of Eqs. (33), (45), and (48), we get

− d

dt

(
2nϕn + n

Q(t)

2πr
sn

)
= Q(t)

2πr2

dr

dt
n2sn + n

�
ϕn,

or after simplifying,

2
dϕn

dt
+ Q(t)

2πr

dsn

dt
= − Q(t)

2πr2

dr

dt
(n − 1)sn − I (t)

2πr
sn − 1

�
ϕn.

Finally, using (33) and (55),

2
dϕn

dt
+ Q(t)

2πr

[
−n

r
ϕn + ε1/2 2πr

√
α0 sign(Q(t))
|Q(t)|

×
(

1 + 2πr

|Q(t)|
)

n

r
ϕn − Q(t)

2πr2
(n − 1)sn

− ε

r2
(n2 − 1)sn − ε1/2 (n − 1)

√
α0

r

(
1 + 2πr

|Q(t)|
)

sn

]

= − Q(t)

2πr2

(
−Q(t)

2πr
− ε

r
+ 2ε1/2√α0

)
(n − 1)sn

− I (t)

2πr
sn − 1

�
ϕn,

and after rearranging the terms,

dϕn

dt
= 1

2

[
Q(t)

2πr2
n − ε1/2 n

√
α0

r

(
1 + 2πr

|Q(t)|
)

− 1

�

]
ϕn

+
{

Q(t)

2πr2

[
Q(t)

2πr
+ (n + 2)ε

2r

+ ε1/2√α0

(
πr

|Q(t)| − 1

2

)]
(n − 1) − I (t)

4πr

}
sn. (57)

Thus the time evolution of each particular mode has been
obtained and is governed by (55) and (57).

C. Special limits

First we study the limit of ideal conductivity. It corresponds
to � → 0, and hence, from (57), we can conclude that ϕn → 0.
Physically this means that in the limit of very high conductivity,
the electric field inside goes to zero (E−

ν → 0) as we approach
the behavior of a perfect conductor. If we consider that Q(t) =
Q0 is constant or its variation in time is small compared with
the evolution of the modes [which also implies I (t) → 0],
and the same for the radius of the front r(t) = r0, we can try
a solution sn = exp(ωnt), ϕn = 0, to (55), and get a discrete
dispersion relation of the form

ωn = − Q0

2πr2
0

(n − 1) − ε

r2
0

(n2 − 1)

−ε1/2 (n − 1)
√

α0

r0

(
1 + 2πr0

|Q0|
)

. (58)

Next we consider the limit of finite resistivity, but such that
the total charge is constant at the surface, or varies very slowly.
Writing (57) as

dϕn

dt
= − d

dt

(
Q(t)

4πr
sn

)
− Q(t)

4πr2

dr

dt
nsn − 1

2�
ϕn,
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we have now

dϕn

dt
= − Q0

4πr0

dsn

dt
− 1

2�
ϕn. (59)

For a small enough conductivity, � → ∞ so no extra charge
reaches the surface, we find ϕn = − Q0

4πr0
sn, and with sn =

exp(ωnt), (55) yields

ωn = − Q0

2πr2
0

(
n

2
− 1

)
− ε

r2
0

(n2 − 1)

− ε1/2√α0

r0

(
1 + 2πr0

|Q0|
)(

3n

2
− 1

)
. (60)

In a curved geometry we can see that the modes are
discrete. However, if we compare (58) and (60), for small
n and vanishingly small α0 there is a 1/2 factor discrepancy
in the dispersion curve between the two limits. The origin of
this prefactor was discussed for planar fronts in [20], and the
dispersion relation for planar fronts was obtained in the case
of constant charge in [9]. We get in this 2D curved case the
same factor 1/2 that we got for the planar case. On the other
hand, imposing constant potential at the surface gives a factor
of 1. The intermediate situations can be studied by solving the
system (55) and (57).

Another important consequence is that in both cases the
maximum growth corresponds to a perturbation with

n ∝ |Q0|/D, (61)

provided that the ε1/2 term can be neglected and Q0 is negative,
implying that the number of fingers increases with the net
charge and decreases with electron diffusion.

D. Numerical simulations

In order to test the analytical predictions, we have calculated
numerically the dispersion relation curves for the cases studied
previously, when � → 0, so we have a perfect conducting
plasma, and when � remains finite. We will outline the
numerical algorithms and present here the results.

We start for the case of finite resistivity. The 2D solution
for the potential problem can be written as

�(x) =
∫

∂


1

2π
log |x − x′|σ (x′) ds ′.

Note that the integration domain ∂
 is the curve manifold.
The electric field ends up being

E = −
∫

∂


1

2π

x − x′

|x − x′|2 σ (x′) ds ′.

In order to obtain the component in the normal direction Eν ,
we will multiply it by the normal pointing outside the plasma
region, i.e.,

n = (yβ, − xβ)√
x2

β + y2
β

,

where the subindex denotes the derivative with respect to the
curve parameter β. So we can write

Eν = −
∫

∂


1

2π

(x − x ′,y − y ′)
(x − x ′)2 + (y − y ′)2

(yβ, − xβ)√
x2

β + y2
β

× σ (x ′,y ′)
√

x ′ 2
β + y ′ 2

β dβ ′.

Now when approximating the integral as a discrete sum on the
interface, i.e., the E+

ν limit, some care must be taken. We need
the limit E+

ν on the interface. When x coincides with x′ there
is an extra contribution of half the pole, which is σ (x)/2. The
E−

ν can be obtained from the boundary condition (24), and
the curvature must be expressed in the appropriate coordinates
system.

The case of constant potential, which corresponds to � =
0, is treated numerically as follows. We have to fulfill the
condition ∫

∂


1

2π
log |x − x′|σ (x′) ds = V0,

V0 being a constant for any x belonging to ∂
. Discretizing
the domain in small segments Ai between points xi and xi+1

we can approximate the integral as

σ (xi)
∫

Ai

1

2π
log |xi − x′|ds

+
∑

j

i �=j

1

2π
log |xi − xj |σ (xj )|xj+1 − xj | = V0,

where xi is the mean point of the Ai segment. The self-
contribution of the segment to the integral is taken as∫

Ai

1

2π
log |xi − x′|ds =

∫ hi/2

−hi/2

1

2π
log |x| dx

= 1

2π
hi

(
log

hi

2
− 1

)
,

being hi the length of Ai . So we end with the equation

Mijσj = V01,

where 1 is the identity matrix, σj = σ (xj ), and

Mij =
{ 1

2π
hj log |xi − xj |, for i �= j,

1
2π

hi

(
log hi

2 − 1
)
, for i = j.

Due to the linearity of the problem, we can solve Aijσj = 1 and
rescale subsequently the solution in order to fulfill

∑
σjhj =

Q.
In the numerical simulations presented here, we will follow

the evolution of a total initial dimensionless charge Q = −10
distributed uniformly along the curve given by

x(θ ) = [1 + 0.05 cos(nθ )] cos(θ ),
(62)

y(θ ) = [1 + 0.05 cos(nθ )] sin(θ ),

where n gives the mode of the perturbation and θ is the curve
parameter. We assume that there is no input current, so j−

ν = 0
in (23), and then compute the exponential growth of each
mode for a small period of time in order to get the dispersion
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FIG. 3. Dispersion relation for the discrete modes of a perturba-
tion with initial value Q = −10 for different inverse resistivities 1/�.
The � are for 0, + for 5, ∗ for 10, � for 15, and � for 25. The case
of zero resistivity corresponds to �.

curve. In Fig. 3, for different values of the inverse of the
resistivity coefficient 1/� (or effective conductivity), we plot
the corresponding dispersion curves.

Note that the slope increases with the increase of the
conductivity of the plasma, the maxima moves to higher
modes, and for larger n’s the dispersion curves become
negative as predicted by (58) and (60). The slope around the
origin n = 1 is larger for the case of ideal conductivity, i.e.,
when the interface is equipotential.

IV. COMPARISONS WITH 2D POSITIVE
DISCHARGE EXPERIMENT

In this section we will make some estimations in order
to test the validity of the assumptions made in our contour
dynamical model. We will use the experimental data presented
at Ref. [21]. The experiment reported there consists in the
measuring of the potential and electric field distribution of a
surface streamer discharge on a dielectric material. For that, a
technique based on Pockels crystals have been applied in order
to obtain some temporal and spatial resolution of the discharge
(see the reference for details). However, a note of warning must
be given: A surface discharge is not a truly 2D discharge, due
to the fact that there is a vertical contribution of the electric
field, and the discharge has two different interfaces, the air and
the substrate, so the boundary conditions are not the same as
those presented so far in this paper. Nevertheless, and keeping
that in mind, we may try a quantitative estimation à la Fermi
from our results and compare it with the actual experiment.

Here is a brief account of the experiment. A discharge
is created on a dielectric surface using a positive tip and
branching is observed. Then the potential is measured using
Pockels crystals, laser pulses, and a CCD camera. The temporal
resolution is 3.2 ns and the electric field close to the tip reaches
values of 3 kV/mm, leaving behind a potential gradient of
0.5 kV/mm. At position r = 8 mm the front moves with an
estimated velocity from the pictures of 0.18 mm/ns (from the
charge density data, the front has a radius of 4 mm at 3 ns,
8 mm at 15 ns and 9 mm at 28 ns). The pictures show a sharp
interface for the charge distribution, so our model should be
able to give some quantitative predictions. Unfortunately, there

is only one discharge reported, so the estimations we are going
to make are very rough.

The experimental data give a characteristic front speed
U0 ≈ 0.1 mm/ns, and E0 ≈ 200 kV/m. In order to get an
estimation of the diffusion coefficient D we can make use of
the expression (19). We take

E+
ν ≈ 3 kV/mm

E0
≈ 1.5 and vN ≈ 0.185 mm/ns

U0
≈ 1.9,

so that D ≈ 0.05 is the number that we get. Note that from the
expression U0 = μeE0, we could find the experimental value
for the mobility μe for this discharge.

Now we can make a prediction. The maximum of the
dispersion relation will tell us the number of fingers one may
find in such experiments. We have calculated the dispersion
relation for two limit cases: the limit of ideal conductivity (58)
and the limit of infinite resistivity (60). These limits would give
lower and upper estimation values for the actual dispersion
relation. We expect that the experiment will lie in between
and be closer to the predictions given by the limit of infinite
resistivity, as the discharge is on a dielectric plate. But before
using these dispersion relations we need a further estimation
for the surface charge density. We can get the surface density
from the jump of the electric field across the interface. So the
dimensionless expression reads

σ0 ≈ (3 − 0.5) kV/mm

E0
at r0 = 8 mm.

In the dispersion relation expressions (58) and (60) we have to
make the substitution Q0/2πr0 = σ0 and find the maximum
for n. For the ideal conductivity case (58) yields a maximum
at n ≈ 76, and for the case of infinite resistivity (60), turns
out n ≈ 14. Counting the numbers of real fingers in the
experimental pictures at 15 ns, the number is around 20 (one
has to extrapolate the number as the pictures do not show the
whole discharge). This number is much closer to the lower
limit as we pointed out before, pointing in the direction that
the electrons on the dielectric surface, when moving through
the plasma, feel a much higher resistivity than in a conductor.

Although we do not expect to capture the whole physics
of the discharge with the contour model, some essential
ingredients for the early development of the front seem to
be well accounted for by it. The theoretical prediction made in
this section is a rather good one, despite all the approximations
made, and gives some insight about the parameters involved,
such as the mobility of the carriers, diffusion coefficient,
number of fingers, and so on.

V. CONCLUSIONS

We have presented the complete derivation of the contour-
dynamics model electric discharges introduced in [12]. The
model appears as the leading asymptotic description for
the minimal streamer model when the electron diffusion
coefficient is very small. It consists of two integro-differential
equations defined at the boundary of the plasma region: one
for the motion of the points of the boundary where the velocity
in the normal direction is given in terms of the electric field
created by the net charge there, and a second equation for
the evolution of the charge density at the boundary. This
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second equation is very similar to the Taylor-Melcher model
in electrohydrodynamics [13]. In the model the electric field
is determined by solving the Poisson equation with a given
surface charge density, leading to a singular integral of the
density.

Once our model has been deduced, we have computed
explicit solutions with cylindrical symmetry and investigated
their stabilities. The resulting dispersion relation is such
that the perturbation with the small mode number can grow
exponentially fast. In fact, both the number of modes become
unstable and the mode that becomes most unstable (the one
corresponding to the dispersion relation) depends critically
on the electric resistivity of the media. We have computed
analytically the dispersion relation and found that the number
of unstable modes grows with the inverse of the resistivity (the
conductivity) and the most unstable mode also increases with
it. In the limit of vanishing resistivity one can consider the
medium as a perfect conductor and therefore impose that the
potential is constant at the boundary. The dispersion relation
for the model with finite resistivity converges to this limit when
resistivity tends to zero.

We have implemented a numerical procedure to solve our
model in general situations. In order to develop the numerical
method, we needed to evaluate certain singular integrals that
appear when computing the electrical field. As one result
of the numerical method, the dispersion relations have been

computed and compared with the analytical results. As a
difference from our previous communication [12], we have
paid special attention to the effects of Townsend expression
for impact ionization (5) on the dispersion relation and the
cases of intermediate resistivities.

Finally, we have taken some experimental data from a
positive surface streamer discharge and compared them with
our model predictions. The number of fingers calculated from
our model is of the same order as the observed one in
the actual experiment. We have been able also to estimate
the diffusion coefficient from the data. We have shown that
the behavior of the carriers inside the plasma is closer to
the limit of high resistivity, so the importance of taking
into account the plasma resistivity is made clear. Thus, it is
proved that our contour model is able to capture essential
parts of the physics involved in the earlier development of the
streamer discharge, with an extra bonus: We can study more
complex geometries and general situations both analytically
and numerically. We are now in the process of completing the
fully 3D case and extending these results.
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