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Subensemble decomposition and Markov process analysis of Burgers turbulence
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A numerical and statistical study is performed to describe the positive and negative local subgrid energy fluxes
in the one-dimensional random-force-driven Burgers turbulence (Burgulence). We use a subensemble method to
decompose the field into shock wave and rarefaction wave subensembles by group velocity difference. We observe
that the shock wave subensemble shows a strong intermittency which dominates the whole Burgulence field,
while the rarefaction wave subensemble satisfies the Kolmogorov 1941 (K41) scaling law. We calculate
the two subensemble probabilities and find that in the inertial range they maintain scale invariance, which
is the important feature of turbulence self-similarity. We reveal that the interconversion of shock and rarefaction
waves during the equation’s evolution displays in accordance with a Markov process, which has a stationary
transition probability matrix with the elements satisfying universal functions and, when the time interval is much
greater than the corresponding characteristic value, exhibits the scale-invariant property.
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I. INTRODUCTION

One of the most important features of turbulence is the
energy flux or the energy cascade, which has two transfer
directions: from large to small scales—(positive) energy flux—
derived by Kolmogorov for three-dimensional (3D) turbulence
[1], and from small to large scales—negative or inverse
energy flux—proposed by Kraichnan for two-dimensional
turbulence [2]. These two physical processes exist in most
turbulence fields at the same time from a local point of
view, as suggested by Kraichnan [3]. Typically, in Burgers
turbulence (abbreviated as “Burgulence” by Frisch and Bec
[4]), a simplified approximation of the Navier-Stokes equation,
the positive and negative local energy fluxes correspond to
shock waves and rarefaction waves, respectively. Now, the
forced Burgulence has been at the center of studies that allowed
unifying different branches of physics and mathematics [5].
Revealing the property of the local energy fluxes is one of the
most fundamental problems in turbulence.

In 1939, the Dutch scientist J. M. Burgers introduced a
one-dimensional (1D) model for pressureless gas dynamics
[6], famously known as the Burgers equation,
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which is widely studied in statistical physics, cosmology,
and hydrodynamic turbulence today. In the 1950s, Hopf [7]
and Cole [8] demonstrated mathematically that the Burgers
equation can be integrated explicitly. Later, Meecham and
Siegel [9] and Hosokawa and Yamamoto [10] numerically
investigated this model with random initial values using the
Wiener-Hermite expansion and Hopf theory, respectively.
However, its dynamic behavior is fundamentally different
from the Navier-Stokes dynamics because of the absence of
the pressure term and the local interactions only in x space.
To model the pressure, Jeng [11] imposed a random force
f (x,t) on the right-hand side of Eq. (1) and found that the
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numerical velocity field satisfied quasi-Gaussian distribution
and the energy spectrum E(k) ∝ k−2.

Soon after, many important efforts were devoted to the
study of the solutions of Burgulence arising from random
initial conditions or a random forcing. For the solution of the
inviscid Burgers equation with random initial data, Avellaneda
and Weinan [12], whose work inspires us to consider Markov
process in this paper, rigorously proved some statistical
properties for velocities, shock strengths, and rarefaction
intervals. For the random forcing, based on renormalization
group methods, Forster, Nelson, and Stephen [13] proposed a
widely spread, white-in-time random, and zero mean formula
in spectral space,

〈f̂ (k,t)f̂ (k′,t ′)〉 = 2(2π )2Dk−1δ(k + k′)δ(t − t ′), (2)

where the circumflex denotes the Fourier representation.
In 1995, Chekhlov and Yakhot [14] numerically stud-

ied the random-force-driven Burgers equation again, where
the viscous term was replaced by a hyperdissipation form
ν(−1)p+1∂2pu/∂x2p, and a special group of random forcing
parameters was employed. They obtained the remarkable result
that the dynamics of the forced equation became more similar
to that of Kolmogorov turbulence with a long inertial range,
where the energy flux was a constant as the viscosity goes to
zero and the energy spectrum satisfied Kolmogorov’s k−5/3 law
[15], but the scaling law was different from Kolmogorov 1941
(K41) prediction p/3 [16] and indicated that the higher order
correlation functions were still dominated by shocks. Recently,
abundant numerical, statistical, and theoretical investigations
on forced Burgulence, including the field theory results
deduced by Polyakov [17], were reported [17–27], in which
many features such as asymmetry probability distribution,
anomalous scaling law, and strong intermittence are discussed
deeply.

Here, we focus on the statistical scaling behavior and
Markov process evolution of Burgulence’s shock and rarefac-
tion waves, which correspond to the positive and negative
sub-grid-scale energy fluxes, respectively. Section II sketches
the Burgulence fields generated using Chekhlov and Yakhot’s

026326-11539-3755/2011/84(2)/026326(9) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.026326


ZHI-XIONG ZHANG AND ZHEN-SU SHE PHYSICAL REVIEW E 84, 026326 (2011)

method [14]. In Sec. III, a subensemble decomposition is used
to distinguish the shock wave from the rarefaction wave at
different scales. Two different scaling laws are shown, which
evinces that the shock wave ensemble has a strong intermit-
tency which dominates the Burgulence intermittency, while
the scaling behavior of the rarefaction wave ensemble satisfies
K41 theory. In Sec. IV, after certifying the scale invariance
of subensemble probabilities, we reveal the interconversion of
shock and rarefaction waves during the equation’s evolution
displays in accordance with a Markov process, which has
a stationary transition probability matrix with the elements
satisfying universal functions and, when the time interval
is much greater than the corresponding characteristic value,
exhibits the scale-invariant property. At last, the effects of the
random forcing parameter y are represented in Sec. V.

II. DIRECT NUMERICAL SIMULATION FOR
BURGULENCE

Using the Fourier-Galerkin pseudospectral method de-
scribed in Ref. [14], the direct numerical simulation (DNS)
for constructing the Burgulence field is sketched as follows.
As the governing equation of the velocity signal u(x,t), the
random-force-driven Burgers equation is written as

∂u

∂t
+ 1

2

∂u2

∂x
= ν(−1)p+1 ∂2pu

∂x2p
+ f, (3)

where p = 6 and ν = 9.0 × 10−40, which are set mainly
to obtain a long inertial range. To apply the Fourier-
Galerkin pseudospectral method, periodic boundary condi-
tions ∂nu(0,t)/∂xn = ∂nu(2π,t)/∂xn, n = 0,1, . . ., are im-
posed on the computational domain x ∈ [0,2π ].

Then, the random force satisfying Eq. (2) in Fourier space
is given as

f̂ (k,t) =
⎧⎨
⎩

Af |k|−y/2σk√
�t

k < kc,

0 k � kc,

(4)

where σk is the Gaussian random function with |σk|2 = 1,
and other parameters are chosen to be Af = √

2 × 10−3 and

FIG. 1. Velocity signal of the Burgers equation at t = 300 (solid
line) and t = 0 (dotted line, the initial field).

FIG. 2. Energy spectrum averaged in t ∈ [100,300] (solid line).
A dotted line with slope −5/3 is also plotted.

y = 1. The force cutoff kc is chosen well inside the dissipation
range of the energy spectrum, with kc = 3895. The time step
is set as �t = 5.0 × 10−5.

When implementing the algorithm, the initial field is
given by a sine function, u(x,0) = 0.08 sin(x). The temporal
discretization includes two second-order schemes: the Runge-
Kutta scheme for restarting and the stiffly stable Adams-type
scheme with the explicit formulation

û(k,t+�t) = û(k,t) + 3
2�tĝ(k,t) − 1

2�tĝ(k,t − �t), (5)

where ĝ(k,t) = f̂ (k,t) − ik[û2](k,t)/2 − νk2pû(k,t).
During the computation, the spatial discretization is based

on the pseudospectral method with the nonlinear [û2] com-
putation in the conservative form and dealiasing procedure
based on the 2/3 rule. The spectral resolution employed here
is N = 12288 including the dealiased modes, and the random
force generated at different computing time is nonrepeating.

As results, the velocity field at t = 300 and the average
energy spectrum with t ∈ [100,300] are shown in Figs. 1 and 2,
respectively. In the plots, the typical fractal-like and sawtooth
structures in the velocity field and the Kolmogorov k−5/3

spectrum with a long inertial range are reproduced, which
conform well to the results in Ref. [14]. Here, we want to
point out that the statistical features of shock and rarefaction
waves depend on the random forcing much more than the
initial data.

III. SUBENSEMBLE DECOMPOSITION AND
CORRESPONDING SCALING LAW

In the traditional generalized opinion, the shock and
rarefaction waves in 1D Burgulence can be defined though the
speed difference δu(x,l) = u(x + l/2) − u(x − l/2), where
x + l/2 and x − l/2 are the starting and ending locations of
the corresponding structure. If δu(x,l) > 0, the structure is
regarded as a rarefaction wave. On the contrary, if δu(x,l) < 0,
the structure is a shock wave. From Burgers’ results [28] on
the distribution of the separations between rarefaction intervals
and the Markovian nature of the equation solution, the set of
shock locations, which have no thickness (l → 0), is expected
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to be countable and discrete. In his case, the structure of shocks
depends crucially on the similarity properties of the random
initial data. However, in the random-force-driven Burgulence,
under the unceasing action of random forcing, the effect on the
initial data of the statistical features of shock and rarefaction
waves becomes smaller and smaller. From Fig. 1 we can see
that the Burgulence field has typical fractal characteristics,
since there are shocks in any arbitrary scale rarefaction wave.

Now, we introduce the concept of group velocity difference
(GVD), denoted as h(x,l), to identify “new” shock and
rarefaction waves from a filtered field point of view. In
mathematics, the GVD h(x,l) can be written as the difference
of local integrations,

h(x,l) = 2

l

∫ l/2

0
u(x + l′)dl′ − 2

l

∫ 0

−l/2
u(x + l′)dl′. (6)

Moreover, h(x,l) has an equivalence definition as

h(x,l) = 1

l

∫ l

0
δu(x,l′)dl′ = δũ(x,l/2), (7)

where the tilde denotes a box filtering. Through the sign of
h(x,l), the fluctuation structures in the whole field can be
divided into two subensembles, namely,

J ∈
{

A h(x,l) � 0,

B h(x,l) < 0.
(8)

Here, J marks the structure style; A and B denote the
rarefaction wave and shock wave subensembles, respectively.
Figure 3 is a sketch of this definition: if its right half group
or average velocity is larger or less than the left one, the
structure in [x − l/2,x + l/2] with l denoted as the interval
size or structure scale is regarded as an element of subensemble
A or B.

Without doubt, this decomposition is in accord with the
common comprehension about the positive and negative
local energy fluxes or the energy cascade. Following Eyink’s
definition [29], we represent the local energy flux in Burgu-

FIG. 3. A sketch for the definition of subensembles A (rarefaction
wave) and B (shock wave) using an enlarged segment in Fig. 1 (solid
line). The heavy horizontal lines in small boxes state the local group
or average velocities.

lence as �(x,l/2) = −(ũ2 − ũ2)∂ũ(x,l/2)/∂x. Approxima-
tively, there is �(x,l/2) ≈ −2(ũ2 − ũ2)h(x,l)/l, which means
that when h(x,l) < 0, �(x,l/2) > 0, the energy cascade
is forward, from large to small scales; when h(x,l) � 0,
�(x,l/2) � 0, the energy cascade is reversed, from small to
large scales.

Then, based on above subensemble decomposition, we can
investigate the scaling behaviors in each different subensem-
ble, respectively. Following the traditional method, we define
the statistical moment function of h(x,l) as

Zp(l) = 〈|h(x,l)|p〉, (9)

where 〈·〉 stands for the ensemble average. From 20 000
statistical stable velocity fields obtained in the previous section
with equal time interval and t ∈ [100,300] (without special
explanation, all statistics in this paper are measured from
the same 20 000 velocity fields), Zp(l) for subensembles A
and B are measured and plotted in Figs. 4 and 5 with l/δ =
2,4, . . . ,1024 and p = 1,2, . . . ,8 [where δ is the physical
resolution equal to 2π/(2N/3) in DNS]. The plots reveal that
both subensembles satisfy good absolute scaling law in an
inertial range,

Zp(l) ∝ lζp . (10)

From Figs. 4 and 5, we can see both subensemble A and
subensemble B have the same inertial range: the slope of the
line in the log-log plot of Fig. 4 is growing gradually with
order number p increasing from 1 to 8, but the slopes of
lines in Fig. 5 no longer change after a certain order number
p ≈ 3. Furthermore, we plot out these scaling exponents for
subensemble A, subensemble B and the whole field without
decomposition in Fig. 6. It is distinctly clear that the scaling
behaviors in subensembles A and B are very different from
each other.

For subensemble A, the scaling behavior is very approxi-
mative to the K41 theorem [16] with

ζp,A(l) = p/3, (11)

FIG. 4. Structure function for subensemble A (solid line) at
different scales l/δ = 12,16, . . . ,1024.
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FIG. 5. Structure function for subensemble B (dotted line) at
different scales l/δ = 12,16, . . . ,1024.

which means subensemble A has a conspicuous Gaussian
property with little intermittence. For subensemble B, an
anomalous scaling law is observed:

ζp,B (l) = p/3, p < 3; ζp,B (l) ≈ 0.92, p > 3. (12)

Evidently, it is more like the typical anomalous scaling law
in the Burgers equation and different from either K41 theory
[16] or the SL94 model [30]. The scaling exponents in the
whole field with ζp(l) ∼ 0.95 when p > 3 are close to those
in subensemble B, since the statistical moment function Zp(l)
of subensemble B is much larger than that of subensemble A
at the same order number p, which can be confirmed through
comparing Fig. 4 with Fig. 5. So it is surprisingly explicit
that subensemble B—shocks—dominate the intermittency of
Burgulence.

As background, the typical anomalous scaling in the
Burgers equation was obtained in Ref. [14], where the scaling
exponents ζp of the ordinary velocity structure functions,

FIG. 6. Exponents of structure function for subensemble A (solid
squares), subensemble B (open squares), and the whole field (solid
circles). The dashed and dotted lines correspond to ζp = p/3 and
ζp = 1, respectively.

defined by Sp(l) = 〈|v(x + l) − v(x)|p〉 ∝ lζp , were found to
be almost independent of p (ζp = 0.91 at p = 4,6,8). It is also
noted that Mitra et al. [27] argued that, in the stochastically
forced Burgers equation, they found an artifact in which
logarithmic corrections can appear disguised as anomalous
scaling and concluded that bifractal scaling is likely. In fact,
the probability distribution function (PDF) of h(x,l) in A
and B have different properties and the PDF of h(x,l) in B
also have algebraic tails, similar to the results discussed in
Refs. [19,22,26].

The above results signal that, through subensemble de-
composition, the difference between shock and rarefaction
waves within the same dynamical system—Burgulence—can
be clearly revealed from corresponding statistical scaling
behaviors. In other words, the two kinds of self-organization
processes, the positive and negative local energy fluxes, in
Burgulence have extremely different states: one has little
intermittence, but the other has strong intermittence; one has
Gaussian properties, but the other does not. When they are
mixed together, one of them may be obscured in the whole
system behavior, which is witnessed by the scaling law shown
in Fig. 6.

IV. MARKOV PROCESS EVOLUTION BETWEEN
TWO SUBENSEMBLES

Based on the subensemble definition above, we employ the
Markov process analysis to describe the transition between
the positive and negative local energy fluxes. For a velocity
field u(x,t) at fixed t with x ∈ [0,2π ], it is easy to count the
probability of subensembles at structure scale l:

PA(l,t) = P (h(x,l,t) � 0|x ∈ [0,2π ]), (13)

PB(l,t) = P (h(x,l,t) < 0|x ∈ [0,2π ]). (14)

Obviously, PA(l,t) + PB(l,t) = 1, and if subensembles A and
B have the same probability, we have PA(l,t) = PB(l,t) = 0.5.
But the truth of the matter is quite different.

In fact, PA(l,t) is distinctly greater than PB(l,t) at the statis-
tical equilibrium state of Burgulence, in which the probabilities
rarely change after time t = 100, though they are fluctuating
with time going forward. Figure 7 shows the time-averaged
probabilities of subensembles A and B at different scales
with error bars marked by the standard deviations. Here, the
time-averaged probabilities are 〈PA(l)〉 = ∫ te

t0
PAdt/(te − t0)

and 〈PB(l)〉 = ∫ te
t0

PBdt/(te − t0), where t0 = 100, te = 300.
The plot illustrates that the probabilities are independent of l

at a large scale range 10 < l/δ < 600:

〈PA(l)〉 = 0.575, 〈PB(l)〉 = 0.425.

Namely, the probabilities satisfy scale invariance in the inertial
range, which is the important feature of self-similarity and is
the basis of the Markov process analysis below.

The Markov process, named after Russian mathematician
Andrey Markov [31], is a time-varying random phenomenon
for which a specific property (the Markov property) holds. The
most famous Markov process is the Markov chain. In the real
world, many processes belong to the Markov process, such
as the Brownian motion of particles in a liquid, the animal
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FIG. 7. Time-averaged probabilities for subensemble A (squares)
and subensemble B (dots) at different scales. The corresponding error
bars are also plotted.

number change in a forest, the number of people infected by a
disease, the number of people waiting for a bus in a station, the
transition of free electrons in an atomic nucleus, population
growth, some courses of inheritance, and so on. After Markov,
many famous theorists in probability, statistics, mathematics,
and physics have made important improvements on relative
studies, such as Kolmogorov [32], Ito [33], Feller [34], Dynkin
[35], Dvoretzky [36], and Hunt [37].

The Markov chain [38] is a sequence of stochastic variables,
X1,X2,X3, . . . , with their range as a state space gathering
all possible values, where Xn denotes the state at time tn. A
stochastic process has the Markov property if the conditional
probability distribution of the future state Xn+1 depends only
upon the present state Xn; that is, given the present, the future
does not depend on the past. This feature can be written with
a probability form:

P (Xn+1 = x|X0,X1,X2, . . . ,Xn) = P (Xn+1 = x|Xn).

During the Burgers equation evolution under the action
of random forcing, the energy cascade at point x with fixed
scale l changes between positive and negative directions.
The transition appearing as the interconversion of shock and
rarefaction waves is a kind of Markov process. Figure 8
shows a sketch about this feature in the Eulerian sense.
There are totally four kinds of structure style transitions
between A and B: A � A, A � B, B � A, and B � B.
The key quantities to describe the Markov process are so-called
transition probabilities, defined as

PAA(l,t1,δt) = P (h(x,l,t2) � 0|h(x,l,t1) � 0),

PAB(l,t1,δt) = P (h(x,l,t2) < 0|h(x,l,t1) � 0),

PBA(l,t1,δt) = P (h(x,l,t2) � 0|h(x,l,t1) < 0),

PBB(l,t1,δt) = P (h(x,l,t2) < 0|h(x,l,t1) < 0),

(15)

where the time interval is δt = t2 − t1.
For PAB ≡ 1 − PAA and PBA ≡ 1 − PBB , we need to only

focus on two variables defined in Eqs. (15), such as PAA and
PBB . Through statistical counting, we found that the transition
probabilities are independent of the reference time point t1

FIG. 8. Transitions between subensembles A and B from t1 to t2
with fixed structure scale in the Eulerian sense.

but depend only on the time interval δt at the stable state
(t1 > 100). The time averages of PAA and PBB at different
scale l and time interval δt are defined as

〈PAA(l,δt)〉 = 1

te − t0

∫ te

t0

PAA(l,t ′,δt)dt ′, (16)

〈PBB(l,δt)〉 = 1

te − t0

∫ te

t0

PBB(l,t ′,δt)dt ′, (17)

where t0 = 100 and te = 300. Figure 9 shows that when
δt = 163 in the inertial range, like the probability of A and
B, the four time-averaged transition probabilities are scale
invariant, too. In fact, for a small time interval δt , the transition
probability scale invariance is untenable.

Figures 10 and 11 display the changing of 〈PAA(l,δt)〉
and 〈PBB(l,δt)〉, respectively, with different time interval δt

at different scales. Though the transition probability scale
invariance is broken at a fixed small δt , we can see that all
of the transition probabilities possess the similarity wherein

FIG. 9. Time average of the transition probabilities: 〈PAA(l,δt)〉
(solid squares), 〈PAB (l,δt)〉 (solid circles), 〈PBB (l,δt)〉 (open
squares), and 〈PBA(l,δt)〉 (open circles).
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FIG. 10. Time average of the transition probabilities 〈PAA(l,δt)〉.
The dotted line corresponds to 〈PAA〉 = (1 + 〈PA〉)/2.

they gradually converge toward 1 when δt → 0 and toward a
constant when δt → +∞. As a simple explanation, the value
〈PAA(l,δt → 0)〉 ≈ 1 or 〈PBB (l,δt → 0)〉 ≈ 1 indicates the
time is too short to change the structure style from one to the
other.

To inspect the transition probability similarity, let us
introduce the Chapman-Kolmogorov equation, which is often
used to describe a Markov chain:(

PA(l,t2)

PB(l,t2)

)
=

(
PAA(l,t1,δt) PBA(l,t1,δt)

PAB(l,t1,δt) PBB (l,t1,δt)

) (
PA(l,t1)

PB(l,t1)

)
.

(18)

Considering in the inertial range 10 < l/δ < 600,

PA(l,t1) ≈ PA(l,t2),

PB(l,t1) ≈ PB(l,t2),

PAB(l,t1,δt) = 1 − PAA(l,t1,δt),

PBA(l,t1,δt) = 1 − PBB(l,t1,δt),

FIG. 11. Time average of transition probabilities 〈PBB (l,δt)〉. The
dotted line corresponds to 〈PBB〉 = (1 + 〈PB〉)/2.

FIG. 12. Characteristic time of transition probabilities 〈PAA〉
(solid squares) and 〈PBB〉 (open squares) at different structure scale
l. The dotted line has a slope of 1.

and, using the time-average form, we can derive a simple
equation replacing Eq. (18):( 〈PA(l)〉

〈PB(l)〉
)

=
( 〈PAA(l,δt)〉 1 − 〈PBB (l,δt)〉

1 − 〈PAA(l,δt)〉 〈PBB(l,δt)〉
) ( 〈PA(l)〉

〈PB (l)〉
)

.

(19)

Figures 10 and 11 also tell us that when δt → +∞,
〈PAA(l, + ∞)〉 ≈ 〈PA(l)〉 and 〈PBB(l, + ∞)〉 ≈ 〈PB (l)〉,
which is just right—a group solution of Eq. (19). Similarly,
〈PAA(l,0)〉 ≈ 1 and 〈PBB(l,0)〉 ≈ 1 make up another group
solution of Eq. (19). Meanwhile, the speeds of the transition
matrices going to the above two special solutions are different
at different structure scales.

Here, we define a so-called characteristic time δt∗(l)
to normalize 〈PAA(l,δt)〉 and 〈PBB(l,δt)〉, respectively. For
example, the characteristic time δt∗(l) is equal to the hor-
izontal ordinate value of crossing points between the line
〈PAA〉 = (1 + 〈PA〉)/2 and the lines 〈PAA(l,δt)〉 in Fig. 10.
The measured characteristic times at different l/δ are shown
in Fig. 12 and markedly satisfy line functions with slope close
to 1 in the inertial range,

δt∗(l) = Ct (l/δ)α, 10 < l/δ < 600, (20)

where α ≈ 1 and Ct is a system parameter.
Using the data in Fig. 12, we redraw Figs. 10 and 11 as

Fig. 13, where the horizontal ordinates are replaced by δt/δt∗.
Clearly, all the transition probabilities, 〈PAA〉 and 〈PBB〉,
collapse together as two curves with specific lower bounds,
which satisfy the function

〈Pββ(l,δt)〉 = [1 − 〈Pβ(l)〉]( 1
2

)δt/δt∗(l) + 〈Pβ (l)〉, (21)

where β represents A or B. In the plot, some points departing
from the curves are those out of the inertial range.

So based on the stationary transition probability matrix,
〈Pββ(l,δt)〉 ≈ Pββ(l,δt), a collapsed Markov chain [39] has
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FIG. 13. Transition probabilities 〈PAA(l,δt/δt∗)〉 (top) and
〈PBB (l,δt/δt∗)〉 (bottom). The solid lines correspond to Eq. (21).

been built in fact. The probability 〈Pβ〉 in Eq. (21) is found
to depend mainly on the random force f (x,t), especially the
spectral exponent y in Eq. (5).

V. EFFECTS OF RANDOM FORCING PARAMETER y

In order to probe the effects of random forcing on the Bur-
gulence field, we carried out five DNS cases with parameters
y = 0.25, 0.5, 0.75, 1.0, and 2.0 in Eq. (5), respectively, and
the other computation conditions were set identically as in
the case y = 1.0 discussed above. Using the subensemble
decomposition method explained in Sec. III, we obtained some
statistical results for each case, shown in Table I.

Figure 14 shows the energy spectra of the five Burgulence
fields. In the plot, the slopes of the log-log plot of energy
spectra in the inertial range are monotone decreasing functions
of y, which deviates from Yakhot’s prediction, E(k) ∝
k−5/3+2/3(d−y), deduced in Ref. [40], where the dimension
d = 1. When y is large, e.g., y = 2.0, the velocity field is close
to a decaying Burgulence field with energy spectrum slope −2,
which means the random forcing effect can be ignored. On the
other hand, when y becomes smaller, the random forcing is
bigger, the velocity field seems more like white noise, and
the energy spectrum is flatter. Furthermore, a demonstrable
proposition is that, when the energy spectrum becomes flatter
and flatter, the entire average local energy flux at the same scale
refers less and less to the total kinetic energy, which indicates
that the relative difference between the average positive and
negative local energy fluxes is smaller. So when y is small
enough, the phenomenon of the whole field being dominated
by shock is no longer apparent.

TABLE I. DNS cases and statistical quantities for Burgulence
with different parameter y.

Case y E(k) Slope of ζp,A 〈PA〉
1 0.25 ∝ k−1.209 0.137 0.523
2 0.50 ∝ k−1.402 0.200 0.537
3 0.75 ∝ k−1.545 0.273 0.556
4 1.00 ∝ k−1.657 0.334 0.575
5 2.00 ∝ k−2.005 0.630 0.664

FIG. 14. Energy spectrum averaged in t ∈ [100,300] (solid line)
with y = 0.25, 0.5, 0.75, 1.0, and 2.0, respectively. The slopes are
plotted in the inset, in which the dotted line show Yakhot’s prediction.

Another important and interesting result is that all of the
exponents for subensemble A exhibit linear scaling behaviors,
and the slopes of ζp,A vs p form a monotone increasing
function of y within inertial range,

ζp,A ≈ yp

3
,

which is shown in the inset of Fig. 15. At the same time, we
can see from Fig. 15 that the scaling behaviors of subensemble
B in all of the five cases are anomalous. The exponents of
subensemble B converge toward a different constant with
different y at high orders p. Thus the shock waves, the positive
energy fluxes, dominate the intermittency of Burgulence, but
the domination level is lower when y is small, in which case the
scaling behaviors of subensembles A and B are close together.
By the way, the total kinetic energy is at a high level with
the same other conditions, though the relative energy fluxes

FIG. 15. Exponents of structure function for subensemble A
(solid lines) and subensemble B (dashed lines) with y increasing in
the direction of the arrow. The horizontal dotted line and the inclined
oblique dotted line correspond to constant 1 and p/3, respectively.
The inset shows the slopes of ζp,A vs y.
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FIG. 16. Transition probabilities 〈PAA(l,δt/δt∗)〉 (top) and
〈PBB (l,δt/δt∗)〉 (bottom) with y = 0.75. The solid lines correspond
to Eq. (21).

are small at small y, when the field receives its statistical
equilibrium.

At last, following the Markov analysis in Sec. IV, we
obtained the collapsed time-averaged transition probabilities
〈PAA(l,δt/δt∗)〉 and 〈PBB (l,δt/δt∗)〉 shown in Fig. 16 for the
case y = 0.75. In this case, the relationship of Eq. (21) still
holds with new different parameters, which mainly correspond
to the characteristic times and the subensemble probabilities.
Considering the comparison among the five cases, we can
conclude that the smaller y is, the more the random forcing
dominates the Burgulence field; and the smaller the probability
of subensemble A is, the smaller the characteristic time is
involved in changing from one state to another.

VI. CONCLUSION AND DISCUSSION

This paper presents a description of the transition between
the positive and negative local energy fluxes, or the shock and
rarefaction waves, from the angle of subensemble decompo-
sition. Using the concept of GVD, we divide the Burgulence
field into subensembles A and B, corresponding to rarefaction
waves and shock waves. These two subensembles possess
probability scale invariance in the inertial range and show

the K41 scaling law and typical Burgers anomalous scaling
law, respectively, which correspond to two different energy
flux or cascade processes. Furthermore, we investigate the
interconversion between A and B through Markov process
analysis and find the elements of the transition probability ma-
trix in the stationary Chapman-Kolmogorov equation, Eq. (19),
fit a universal form at different scales, namely Eq. (21),
which offers an uncomplicated probabilistic description for
the structure evolution and exhibits some additional properties
of nonlinear dynamic self-organization in Burgulence.

Since similarities exist between 1D Burgulence and 3D
Navier-Stocks turbulence, the statistical analysis method pro-
posed here can be applied to 3D turbulence, too. In the 3D
case, the local energy flux can be defined as [29]

�(x,l) = −∂〈ui〉l
∂xj

τij = −∂〈ui〉l
∂xj

(〈uiuj 〉l − 〈ui〉l〈uj 〉l),

where 〈·〉l denotes the average at scale l. If the integral energy
flux is nonzero, the distribution of local energy fluxes is
asymmetric about zero, and the scaling behaviors may be
different in the two subensembles, corresponding to positive
and negative signs of �(x,l), respectively.

Another important issue is introducing the Lagrangian
description to study the Markov process of subensemble
transition process, which displays a similar and more physical
visualized pattern, we think. In addition, the two kinds
of different cascade properties indicate that a large eddy
simulation may be erected based on the subensemble de-
composition idea. Beyond statistical theory, the concept itself
of ensemble or subensemble decomposition in the sense of
self-organization [41] offers a simple hydrodynamic training
ground for developing mathematical tools to study not only
turbulence but also multistructure, multiscale, multistate, or
Lagrangian problems.
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