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Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability
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Effects of Darrieus-Landau (DL) instability on the structure and propagation of turbulent premixed flame fronts
are considered. By first hypothesizing separation of time scales of instability and turbulence, we estimate whether
the instability can develop in the presence of turbulence of given flow rms-velocity and integral length scale. As
a result, we modify the standard turbulent premixed combustion regime diagram by introducing new boundaries,
limiting the domain where the instability influences the global flame shape and speed. Based on this analysis, a
“turbulence-induced DL cutoff” as a function of turbulence and instability parameters is introduced, which when
combined with a turbulent flame speed without DL instability yields the turbulent flame speed accounting for the
instability. The consumption turbulent flame speed for no DL instability is formulated from the spectral closure of
the G equation, thus accounting for the scale-dependent “turbulent” nature of the problem. Finally, an analytical
form of the turbulent flame speed is derived, which is found to agree well with the corresponding experimentally
measured turbulent flame speed from literature over wide ranges of normalized turbulence intensities and length
scales.
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I. INTRODUCTION

A turbulent flow is characterized by its turbulence intensity,
measured by the turbulent root-mean-square (rms) velocity
Urms, the integral turbulence length scale λI , the kinetic
energy budget over various length scales, dissipation, higher
moments, etc., while a premixed flame is described by its
unstretched laminar propagation speed SL and the thermal
flame thickness δL, estimated conventionally as δL = Dth/SL,
where Dth is the thermal diffusivity of the fresh gas. Depending
on the scaled values Urms/SL and λI/δL, turbulent burning
proceeds in several regimes, with different properties and
applications for each regime, as shown in the celebrated
turbulent combustion regime diagram in Fig. 1 (see, for
example, [1–3]).

While the regime diagram provides a useful classification
of the possible modes of turbulent combustion, there are
processes and factors that are expected to be important in
turbulent combustion but have not been integrated into the
diagram. One such process is wrinkling of the embedded
flamelets due to intrinsic flame-front cellular instabilities,
particularly the omnipresent hydrodynamic, Darrieus-Landau
(DL) instability caused by the density jump across the
flamelets. At issue here is the role of thermal expansion
on the structure and dynamics of the flamelets, recognizing that
the majority of turbulent flame theories were developed within
the Landau limit of an infinitely thin flame front of either zero
or small thermal expansion, for near-unity expansion factor
� ≡ ρu/ρb, such that the flame does not influence the external
turbulent flow and is also hydrodynamically stable [4–8]. In
reality, thermal expansion is typically as large as � = 5−8, so
the flame front modifies the turbulent flow and is also subjected
to the hydrodynamic instability [9–12].

Only a few theoretical works have accounted for both
turbulence and DL instability [13–17]. In particular, the theory
of Bychkov and co-workers [17], based on renormalization
[5,8] with scale-invariant flame and turbulence properties,
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predicts a monotonic increase in the global flame speed with
the turbulence intensity, and as such does not describe the
possibility that turbulence can also reduce or even suppress
DL instability. Indeed, subsequent numerical simulation [18]
demonstrated a nonmonotonic dependence of the global flame
speed on the turbulence intensification, showing that weakly
turbulent flames, with say Urms/SL < 0.5, can actually prop-
agate statistically slower than the corresponding corrugated
laminar flame.

The present work aims to further examine the effects
of turbulence on the development of DL instability and
consequently, the turbulent flame structure and propagation
speed. Using the hypothesis of separation of DL instability and
turbulence time scales, we shall assess whether the instability
can develop in the presence of turbulence of given intensity
and integral length scale. We shall subsequently modify the
regime diagram of Peters [1] by introducing new boundaries
that delineate the influence of the instability on the global flame
morphology and speed. We shall then propose an expression
for the turbulent flame speed based on the concept of a
turbulence-induced DL cutoff, superposed on the turbulent
flame speed without DL instability. To derive an expression
for the turbulent flame speed in the absence of DL instability, a
spectral formulation of the G equation proposed by Peters [19]
is considered. The turbulent flame speed is then obtained
as a functional of the average flame surface dissipation. A
simplified analytical result from a physically realizable case is
obtained, and is found to agree well with experimental results
over a wide range of turbulence intensities and length scales.

The paper consists of three technical sections. The basic
formulation and the modified regime diagram are given in
Sec. II, while the formulas for a turbulent flame speed are
derived in Sec. III.

II. INTERACTION OF DARRIEUS-LANDAU
INSTABILITY AND TURBULENCE

We consider a premixed flame propagating in a homoge-
nous isotropic turbulent flow, focusing on the interaction
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FIG. 1. Turbulent combustion regimes diagram [1].

between turbulence and DL instability over all time and length
scales. Consequently, we assume unity Lewis number Le = 1,
so as to suppress the diffusional-thermal instability. We
further assume that homogeneity and isotropy of turbulence
is unaffected by flame propagation such that the constant
energy cascade model for homogenous isotropic turbulence
as proposed by Kolmogorov can be adopted, recognizing
nevertheless that such properties can actually be affected
by the embedded flamelets. For example, the inducement of
anisotropy through the preferential increase in the normal
velocity component in crossing the flame due to thermal
expansion is expected.

A. Role of Darrieus-Landau instability

Here we briefly recall the basic ideas behind DL instability,
which is caused by thermal expansion in the process of burning,
and is inherent to all premixed gaseous flames [10–12].

Within the Landau limit of an infinitely thin flame front,
δL = 0, the dispersion relation for the growth rate of DL
instability takes the form [11]

σ
(k)
DL = X (�) SLk, (1)

where

X (�) = �

� + 1
[(� + 1 − �−1)1/2 − 1], (2)

with X ≈ 1.25−1.75 for typical � = 5−8. According to
Eq. (1), a flame is absolutely unstable against perturbations
of any wave number. Under the first-order approach of small,
but finite flame thickness, δLk � 1, the dispersion relation
extends to [20]

σ
(k)
DL = X (�) SLk (1 − k/kc) , (3)

where the cut-off wave number kc, related to the DL cut-off
wavelength λc = 2π/kc, is given by

kcδL =
[
hb + 3� − 1

� − 1
Mk − 2�

� − 1

∫ �

1

h(ϑ)

ϑ
dϑ

+ (2 Pr −1)

(
hb −

∫ �

1 h(ϑ)dϑ

� − 1

)]−1

. (4)

Here the function h(ϑ) describes the temperature depen-
dence of the transport coefficients, with h(1) = 1, h(�) = hb,
and Mk is the Markstein number related to the Zel’dovich and
Lewis numbers as [21,22]

Mk = �

� − 1

∫ �

1

h(ϑ)

ϑ
dϑ − Ze

2

Le − 1

� − 1

×
∫ �

1

h(ϑ)

ϑ
ln

(
ϑ − 1

� − 1

)
dϑ. (5)

Because the present analysis is restricted to the unity Lewis
number, Eq. (5) is reduced to

Mk = �

� − 1

∫ �

1

h(ϑ)

ϑ
dϑ. (6)

We have λc ∝ δL, with λc/δL ≈ 20−100 for typical hydro-
carbon flames.

According to the Pelce-Clavin dispersion relation (3),
all small-scale perturbations with λ < λc are suppressed by
thermal conduction, while large-scale perturbations with λ >

λc grow exponentially until nonlinear (Huygens) stabilizing
effects become important [23]. Consequently, DL instability
can be balanced by thermal and nonlinear stabilizations
leading to steady propagation of a corrugated, though laminar
flame front. Such a flame front has been widely studied
analytically [24–26] and computationally [27–29], and the
global propagation velocity has been found to be as large as
SDL ≈ (1.5−1.8)SL for � = 5−8, which agrees well with the
analytical formula [26]

SDL

SL

= 1 + 4� (� − 1)2

�3 + �2 + 3� − 1
I
λc

λ

(
1 − I

λc

λ

)
≈ 1 + � (� − 1)2

�3 + �2 + 3� − 1
, (7)

where I = Int (λ/2λc + 1/2).
If the characteristic length scale of the flame front is very

large, exceeding some secondary cut-off value λ2c, then the
global steady flame becomes unstable again because the flame
front behaves as a set of small “quasiplanar” segments. The size
of these segments, however, exceeds λc, so they are unstable
and become curved [23]. Computational studies [27–29] yield
λ2c/λc ≈ 4−4.5. It has been suggested that DL instability
leads to self-similar (say, fractal-like) flame behavior on very
large scales, λ � λc. Then the cut-off wavelength plays the
role of the inner cutoff for the fractal cascade, and the
propagation velocity of a fractal-like flame front of scale λ

can be estimated as

SDL (λ) ≈ SL (λ/λc)D ≈ S2c (λ/λ2c)D , (8)

where S2c = S2c(λ2c) is the propagation velocity of a steady
corrugated flame of scale λ2c, Eq. (7), and D is the
fractal excess. According to various analytical, computa-
tional, and experimental results [29–32], D ≈ 0.25−0.33 for
� = 5−8.

The suggested general features regarding Darrieus-Landau
instability are therefore (a) DL instability does not develop on
small scales, λ < λc; (b) it leads to a steady corrugated laminar
flame front, Eq. (7), on intermediate scales, λc < λ < λ2c;
and (c) the flame dynamics can assume a self-similar nature,
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FIG. 2. The global flame velocity resulting from the DL instabil-
ity versus the length scale of the flow for � = 7 and D = 1/3.

Eq. (8), on very large scales, λ � λc, or at least λ > λ2c.
These three trends are presented in Fig. 2, where the global
flame velocity is plotted versus the length scale of the flow.

B. Separation of instability and turbulence

To investigate the regimes in which the effect of instability
is relevant in the presence of turbulence, we first suggest
that in strong turbulence, large-scale coherent structures can
potentially prevent DL instability to develop and corrugate the
flame front. We therefore propose that the instability corrugates
the flame in the presence of external turbulence if the
characteristic instability growth rate is much greater than the
characteristic turbulence eddy frequency. Since our knowledge
about nonlinear coupling between various instability modes at
realistic thermal expansion is quite limited, within the present
formulation the above criterion implies that the characteristic
linear, coherent instability growth rate σ

(k)
DL is much greater

than the turbulence eddy frequency ω
(k)
turb that is of the same or

smaller wave number, k. Hence, DL instability is sustained in
turbulence if

σ
(k)
DL � ω

(k)
turb, (9)

where σ
(k)
DL can be estimated by Eq. (3), assuming it is locally

valid corresponding to the local laminar flamelet structure.
To justify the above criterion, we consider the flame surface

as an initially quasiplanar flamelet, which is simultaneously
affected at time t = 0 by two single coherent modes related to
DL instability and turbulence, both of wave number k. Within
the linear approximation, the increase in the flame surface area
due to the instability is given by

f
(k)
DL = A exp

(
σ

(k)
DLt

)
, (10)

while the turbulence eddy can be considered to provide an
oscillatory disturbance in the form

f
(k)
turb = 1 + (k/kI )−m sin

(
ω

(k)
turb t

)
. (11)

Here the amplitude A depends on the initial conditions and
can be taken as A ∼ 1, kI = 2π/λI is the integral turbulence
wave number, and the power factor m can be chosen as
m = 5/6 considering the Kolmogorov model. Figure 3

FIG. 3. Exponential instability Eq. (2) (solid), and oscillatory
turbulent Eq. (3) (dashed) processes.

presents Eq. (10), as solid, and Eq. (11), as dashed lines. We
see that the instability can grow unaffected by the turbulence
eddy if f

(k)
DL > f

(k)
turb, which is equivalent to relation (9).

It is noted that in order to invoke time-scale separation
between these two processes, interaction of the instability
and turbulence at the same wave numbers k is considered.
This is justified as follows. Wave numbers smaller than k

smooth out the effects of the instability, but the corresponding
values of ω

(k)
turb are also smaller. Wave numbers larger than k

can further corrugate an existing DL-corrugated flamelet at
finer scales, since they are related to higher ω

(k)
turb, but with

amplitudes decreasing as a power law. Hence, statistically,
the most relevant wave number of the eddy to interact with
the instability such that corrugation by the instability can be
suppressed at wave number k is k itself or wave numbers
smaller than k, to justify the time-scale separation assumption.

Assuming a constant energy transfer rate, we estimate the
eddy turnover time τ

(k)
turb = 2π/ω

(k)
turb as

τ
(k)
turb = u2

(k)

ε
=

(
λI

Urms

) (
k

kI

)−2/3

, (12)

where u2
(k) ≡ U 2

rms(λ/λI )2/3 characterizes the kinetic energy
of an eddy of size λ = 2π/k, and ε ≡ U 3

rms/λI is the mean
dissipation rate. This is obtained by the cascade model, where
the energy transfer rate across all scales in the inertial subrange
is constant and equal to that of the final dissipation [33]. In this
work, for simplicity, the integral length scale and that of the
largest eddies are assumed to be identical, while in reality they
can be related by an O(1) proportionality factor differing from
unity. Equations (3), (9), and (12) yield the following criterion
for the instability development in the presence of turbulence:

Urms

SL

< X (�)

(
k

kI

)1/3 (
1 − k

kc

)
∀k > kI . (13)

This condition can be alternately expressed through a
nondimensional parameter

β = min
∀k>kI

{
ω

(k)
turb

σ
(k)
DL

}
= min

kc>k>kI

{
Urms

XSL

(
kI

k

)1/3 (
1− k

kc

)−1
}

.

(14)

Then the criterion above states that the instability develops,
with at least one perturbation mode: k, if β < 1. The parameter
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FIG. 4. The function ϕ(k), Eq. (15) versus k in the events of
kI � kc/4 < kc (dashed) and kI � kc/4 (solid).

β varies nonmonotonically with k, as demonstrated in Fig. 4
through the function

ϕ = (k/kI )1/3 (1 − k/kc) , (15)

with the dashed and solid lines relating to the domains
of kc/4 < kI < kc and kI � kc/4, respectively. Within the
domain of kc/4 < kI < kc, i.e., λc < λI < 4λc, Eq. (14) yields

β = Urms

XSL

(
1 − λc

λI

)−1

, (16)

while in the other domain, kI � kc/4, i.e., λI � 4λc, Eq. (14)
predicts a self-similar formula

β = 44/3

3X

Urms

SL

(
λc

λI

)1/3

. (17)

The result (17) resembles the turbulent Karlovitz number
Ka = (Urms/SL)3/2(δL/λI )1/2. According to Eq. (17), β ∝
Ka2/3. Clearly, the transition between the trends given by
Eqs. (16) and (17) occurs at the scale 4λc. With β = 1 and
λI = 4λc, we find the transitional turbulence intensity

Urms,T = 3
4 X (�) SL, (18)

which is about SL for typical � = 5−8.
We next observe two interesting effects, common for both

turbulent and laminar flames. First, the transitional scale 4λc,
relevant to turbulent combustion, well fits the secondary cut-off
wavelength λ2c ≈ (4−4.5)λc of the laminar DL instability,
discussed in Sec. II A. Second, Eq. (17) states that

Urms = (3Xβ/44/3)SL(λI/λc)1/3 ∝ (λI/λc)1/3. (19)

Then, estimating the turbulent flame speed in the form
ST ∝ Urms [1,19], which is relevant for high turbulence
intensities [8,15,17], we find ST ∝ (λI/λc)1/3. This agrees
with the laminar corrugated flame speed at large scales,
Eq. (8). Since the estimate ST ∝ Urms is not necessarily
accurate, in Sec. III we discuss an alternate formula for the
turbulent flame speed.

We note that a parameter similar to Eq. (17) has also
been considered by Bychkov [15] within the renormalization
formulation of strongly turbulent combustion, although the
related parameter β̃ = (Urms/SL)(λI/λc)1/3 does not contain
the DL-related coefficient 41/3/3X(�), which is about unity.
Consequently, it supports the present formulation, suggesting
that at large scales the value Ka2/3 rather than Ka is a
key quantity for turbulent combustion. Furthermore, we
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FIG. 5. Modified turbulent combustion regimes diagram.

demonstrate here that the DL parameters such as thermal
expansion have to be included in the formulation.

Using the above results, in Fig. 5 we have modified the
regime diagram of Fig. 1 by including the bold, solid curve
β = 1, which determines whether DL instability can develop
in the presence of turbulence. Thus the instability develops in
the domain below this curve for β < 1. The segment of the
curve, AB, with λc < λI < 4λc, is given by Eq. (16), indicating
that the instability develops at weak turbulence, with Urms <

XSL(1 − λc/λI ). As for the self-similar domain, Eq. (17),
with λI � 4λc, here the turbulence intensity should exceed
(3XSL/44/3)(λI/λc)1/3 to suppress DL instability.

It is noted that Boughanem and Trouve [14] also introduced
an instability domain based on comparing stretch induced by
the instability and turbulence. The deduced regime separation
curve, however, monotonically increases to high Urms/SL,

with decreasing λI /δL, hence the limiting, well-established
case of the DL cutoff for laminar flames, i.e., Urms/SL → 0,
is not captured. In a recent work by Creta et al. [34] the
Sivashinsky equation was solved in the presence of flow
perturbations simulating weak turbulence. It was found that at
high turbulence intensity the effect of instability is completely
shadowed, thus offering conceptual substantiation of the
present approach.

C. Turbulence-induced DL cutoff

It is suggested above that turbulence does not allow DL
instability to develop in the domain with β > 1, i.e., above
the line β = 1 in Fig. 5, while the instability can occur in the
domain below it, where β < 1. Nevertheless, even in the latter
case, the effect of DL instability is modified by turbulence as
compared to the laminar case. Here we estimate the extent of
such moderation in terms of the turbulence scale and intensity.

To arrive at such an estimate, we introduce the concept of a
turbulence-induced DL cutoff, λ̃c, determined by the integral
turbulence length, λI , taken at β = 1. As a result, we have
the turbulence-induced DL cutoff as a function of the laminar
DL cutoff and the turbulence intensity, λ̃c = λ̃c(λc,Urms), in
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the form

λ̃c

λc

=
⎧⎨⎩

(
1 − 3

4
Urms

Urms,T

)−1
, Urms � Urms,T

4
(

Urms
Urms,T

)3
, Urms > Urms,T

, (20)

with the transitional turbulence intensity Urms,T given by
Eq. (18). Equation (20) states that λ̃c = λc in the absence of
turbulence, Urms = 0, but the turbulence-induced DL cutoff
grows with turbulence intensification. This means that in-
creasing turbulence intensity limits the instability development
to large scales, thereby moderating the entire effect of the
instability.

Because the characteristic time of the instability devel-
opment is much shorter than that of turbulence, for the
present formulation we superpose both effects, considering
their contributions to the flame corrugation separately. It is
noted that while a theory of the DL evolution of a laminar,
initially planar flame segment, discussed in Sec. II A, includes
the energy release through � and the laminar thermochemical
flame properties through λc, it does not include parameters
of the external flow. We therefore propose that the partial
contribution from the effects of DL instability on the turbulent
flame speed still has the same functional form as that in
the laminar case, with λc replaced by λ̃c, assuming that all
influences of turbulence on the development of DL instability
are exhausted by modifying the DL cutoff. For instance, if we
know the role of laminar DL instability in the form SDL,lam =
SLfDL(λc), then we can describe its turbulent counterpart as

SDL,turb = SLfDL(λ̃c). (21)

Here fDL(λ̃c) ≡ 1 if λI < λ̃c, i.e., the instability is sup-
pressed by turbulence and thermal stabilization. If λ̃c < λI <

4λ̃c, then fDL can be estimated by modifying Eq. (7),

fDL(λ̃c) ≈ 1 + 4� (� − 1)2

�3 + �2 + 3� − 1
I

λ̃c

λI

(
1 − I

λ̃c

λI

)
,

I = Int(λI/2λ̃c + 1/2), (22)

or even by the approximation in Eq. (7), which does not include
scale dependence,

f̃DL ≈ 1 + � (� − 1)2

�3 + �2 + 3� − 1
. (23)

Finally, in the domain of primary interest, λI � 4λ̃c, i.e.,
λI � λ̃2c, we have

fDL(λ̃c) ≈ (λI/λ̃c)D ≈ (λI/λ̃c)1/3,

SDL,turb ≈ SL(λI/λ̃c)1/3. (24)

This approach can also be supported by its qualitative
similarity to the classical filtering formulation, widely adopted
in large eddy simulations (LES), which yields the full
consideration of large-scale flows, with subgrid modeling on
small, subfilter scales. Indeed, the laminar DL cutoff λc can be
treated as an “effective hydrodynamic flame thickness,” since
the internal flame structure has to be accounted for λ < λc,
while the flame sheet approach can be adopted for λ � λc.
Consequently, λ̃c resembles a “filter size,” with “subgrid
modeling” according to Eq. (20), and it is reasonable to assume
a similar functional dependence for laminar and turbulent DL
instability flame speeds.

As a result, we have developed a model which accounts for
the moderation of the DL effects due to turbulence, based on
the concept of a laminar flamelet with a turbulence-induced
DL cutoff. This model has the following features: it reproduces
pure laminar effects in the absence of turbulence, Urms = 0;
it shows the reduction in the DL effects with turbulence
intensification; and it shows no effect of DL instability above
the boundary β = 1 in the modified regimes diagram (Fig. 5).

We emphasize that the quantity SDL,turb incorporates only
partial contributions from DL instability. It is not the global
turbulent flame speed ST , which should also include pure
kinematic and dynamical features of flame-flow interaction
as derived in Sec. III. A general expression for ST is expected
to have the form

ST = SDL,turbfT = SLfDL(λ̃c)fT , (25)

where fT is the turbulent flame speed contribution without
considering DL instability, which will be discussed in the
next section. Regarding the nature of ST /SL to be obtained,
the concept of a turbulence-induced DL cutoff yields self-
similarity in small Urms/SL if λI � 4λ̃c and a statistically
steady front when λ̃c < λI < 4λ̃c, i.e., in moderate Urms/SL.
However, the range of λ̃c < λI < 4λ̃c is the domain where β

is only slightly less than unity, and hence an uncertain zone
in the modified regime diagram in Fig. 5 regarding its form
and existence in the context of the current study. As such, in
this paper we extrapolate the concept of self-similarity in the
entire regime of λI � λ̃c. This is justified as self-similarity and
is observed in the secondary instability, i.e., in DL-corrugated
flames. In the turbulent case, at moderate Urms/SL the flame
surface is already corrugated by turbulence. Hence it is
reasonable to expect that DL instability, if prevailing in this
region, is governed by self-similarity.

III. TURBULENT FLAME SPEED

The propagation of either laminar or turbulent premixed
flames in complex flow geometries has often been analyzed
using the G equation [10]. For the turbulent flame speed, the
G equation along with the flame surface density equation or
the progress variable approach, namely, the Bray-Moss-Libby
model, have been used in the framework of Reynolds-averaged
Navier-Stokes (RANS) equation formulations [35–38]. How-
ever, a RANS model with k − ε type closures cannot consider
the scale-dependent evolution of global properties; in general,
the multiscale nature of turbulence in premixed combustion
has been considered only in very few analytical studies. In
particular, Peters [19] proposed a spectral closure of the G
equation on the basis of dimensional arguments and extended
that in [39] to include effects of the velocity field induced by
gas expansion. A more rigorous but complicated approach was
adopted by Collins and co-workers [40,41] by using the Eddy
Damped Quasi Normal Markovian (EDQNM) approximation,
which is one of the statistical closure theories for nonreacting
turbulence. All these approaches utilize the turbulent flame
surface spectra with dissipation arising from flame properties
such as the flame speed and the Markstein length, δM = δL Mk,
with the Markstein number Mk given within the approach of
unity Lewis number by Eq. (6). In nonreacting turbulent flows
in pipes, it has been recently shown that the energy spectrum
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can predict global properties such as the friction factor [42].
Hence, by this recent example and many others, it is recognized
that a physics-based derivation of any global property in a
turbulent flow, including the turbulent flame speed, needs to
consider the scale dependency of the problem.

A. Spectral closure of G equation

To analyze the turbulent flame speed without considering
DL instability, we use the spectral closure of the G equation
proposed by Peters [19]. Although the closure is based on
simple dimensional arguments, it has been shown by Direct
Numerical Simulation (DNS) [43] and experiments [44] that
the scalar spectrum function agrees well with the spectrum
derived by spectral closure of the G equation [19]. The G
equation takes the form

∂G

∂t
+ V · ∇G = [SL − SLδMκ + δMn · ∇v · n] |∇G| , (26)

with G describing the flame surface accounting for stretch
effects, κ being the local curvature, and n being the flame
surface normal.

A statistically planar premixed flame front, propagating in
mean in the z direction in a homogeneous isotropic turbulent
flow, can be described as G(x,y,z,t) = z(t) + g(x,y,z,t) such
that large gradients due to mean propagation in the z direction
are removed from g. The scalar autocorrelation function
for g is given by R(r,t) ≡ 〈g(x,t)g(x + r,t)〉. The statistical
quantity R is assumed to be isotropic, and hence is a function
of r only. Then the transport equation of the autocorrelation
function R(r,t) can be obtained from Eq. (26) by invoking
conditions of local homogeneity as

∂R

∂t
+ 2

∂ 〈ui(x + r,t)g(x,t)g(x + r,t)〉
∂ri

+ 2SLS1 + 2DLS2 + 2δMS3 = 0, (27)

where

S1(r,t) = −〈g(x + r,t)σ ′(x,t)〉, σ = |∇G| ,

S2(r,t) =−
〈
g(x + r,t)

(
∂2G(x,t)

∂x2
i

−∂ ln σ (x,t)

∂xj

∂G(x,t)

∂xj

)′〉
,

S3(r,t) = −
〈
g(x + r,t)

(
∂vi(x,t)

∂xj

σi(x,t)σj (x,t)

σ (x,t)

)′〉
. (28)

The second term in Eq. (27) is due to convective transport,
while the quantities S1, S2, and S3 given by Eq. (28) describe
kinematic restoration, scalar dissipation, and strain-scalar co-
variance, respectively [19]. It was shown by DNS calculations
[39] that the last term (S3) in Eq. (28) is of minor importance
in the corrugated flamelets regime.

The quantity R can be written as a Fourier series

R (r,t) =
∑

k

R̂ (k,t) exp (ik · r) . (29)

Then the scalar spectrum function is defined as [33]

�(k̄,t) =
∑

k

δ(k̄ − k)R̂(k,t), (30)

where k̄ is a continuous wave-number variable and δ is the
Dirac delta function. Integrating Eq. (30) over a sphere in
Fourier space, with a surface boundary S(k), we remove the
directional dependence of k, arriving at the scalar spectrum
function �(k,t) in the form

�(k,t) =
∮

�(k,t)dS(k) = 4πk2R̂(k,t). (31)

Following the same procedure for all other terms in Eq. (27),
we obtain the transport equation for �(k,t),

∂�(k,t)

∂t
− T (k,t) + 4πk2[2SLŜ1(k,t) + 2DLŜ2(k,t)] = 0,

(32)

where T (k,t) stands for the integrated-within-S(k) Fourier
transform for the collective transport terms in Eq. (28), while
Ŝ1(k,t) and Ŝ2(k,t) are the integrated-within-S(k) Fourier
transforms for the kinematic restoration and scalar dissipation,
respectively. The transport terms of the Fourier transforms of
the transport equation for � were closed by Peters [19], similar
to those closed by Pao [45] for a passive scalar in homogenous
isotropic turbulence, by the gradient transport assumption and
dimensional consistency such that

T (k,t) = −∂W (k,t)

∂k
, W (k,t) = C−1

s ε1/3k5/3�(k,t). (33)

The coefficient C−1
s is a universal constant of the scalar

spectrum similar to the Kolmogorov constant in the energy
spectrum. The last terms in Eq. (32) are closed on the basis of
dimensional consistency as

8πk2Ŝ1 = c1C
−1
s k�, 8πk2Ŝ2 = c2C

−1
s k2�, (34)

with the modeling constants c1 and c2. Then Eq. (32) can be
analytically integrated as

�(k) = BH k−5/3 exp{−3c1 (LGk)1/3} exp
{−3

4c2(LCk)4/3
}
,

(35)

where B is the integration constant and H = H (k − kI ) is a
function determined from initial conditions. Here H is chosen
to be a Heaviside step function, i.e., H = 0 if k < kI and
H = 1 otherwise, in such a manner that � is independent of
time. Substituting the Gibson scale LG = (SL/Urms)3λI and
the Corrsin scale LC = (D3

L/ε)1/4 into Eq. (35), we finally
obtain

� (k) = BH (k−kI )k−5/3exp

[
−3c1 (2π)1/3

(
Urms

SL

)−1(
k

kI

)1/3]
× exp

[
−3

4
(2π )4/3 c2

(
Urms

SL

)−1 (
kI

kM

) (
k

kI

)4/3]
,

(36)

with the “Markstein” wave number kM = 2π/δM =
2π/δL Mk. Thus in the final form of the scalar spectrum, the
universal −5/3 power k dependence is retained, arising from
the kinetic energy transfer between the flow and the flame,
and resulting in folds of different length scales, in addition to
two exponentially decaying dissipation terms resulting from
the kinematic restoration and finite curvature limitation due to
finite flame thickness.
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B. Approximation of the turbulent flame speed

By definition from [6], the turbulent flame speed of a
corrugated flame front, scaled by the unstretched laminar flame
speed, is given by

ST,0/SL = 〈|∇G|〉 = 〈
√

(∇ 〈G〉 + ∇g) · (∇ 〈G〉 + ∇g)〉
= 〈

√
1 + ∇g · ∇g + 2 (∂g/∂z)〉 (37)

as 〈G〉 = z, so ∇〈G〉 = k̂. It is recognized that this definition
is not limited by flame folding, and hence g can be a
multiple-valued function [6]. Moreover, according to [39],
the G equation formulation adopted here is valid in both
the corrugated flamelets regime as well as the thin reaction
zone regime. For mathematical tractability, local effects of the
laminar flame speed are neglected but could be included in
future studies when exact joint correlations of curvature and
strain with |∇G| are known. It can be argued that constant
laminar flame speed is a valid assumption when Le = 1 as
ST,0/SL should be mostly independent of strain and curvature
since both are nearly symmetric, zero-centered distributions
in strong turbulence [46]. To summarize, although the effect
of strain and curvature may not affect the global burning
rate through variation of local flame speed for Le = 1, they
do affect the total flame surface area, and hence should be
considered in the governing equation of the surface evolution
as in Eq. (27).

The term ∂g/∂z is identically zero when g is single valued
in {x,y}, i.e., g = g(x,y,t). Clearly comparing the orders
of the gradient-squared and z-derivative terms, the latter is
important only when ST,0/SL∼ 1–2, which is expected at very
weak turbulence. But then the flame surface is expected to be
single valued in {x,y}, and hence the last term is identically
zero. Furthermore, it has been shown from DNS [41] that the
z-derivative term can be neglected without loss of generality
as its contribution to the turbulent flame speed, arising from
multiple crossing of the flame surface in the z direction, is
negligible. Consequently, Eq. (37) reduces to

ST,0/SL = 〈
√

1 + ∇g · ∇g〉. (38)

The quantity g can be considered as a random function
such that 〈g〉 = 0 and 〈∂g/∂xi〉 = 0. Determining the turbulent
flame speed then poses a mathematical difficulty, since ST,0/SL

is averaged over the square root containing the square of ∇g.
For ∇g · ∇g � 1, the quantity ST,0/SL can be approximated
as

ST,0/SL = 〈
√

1 + ∇g · ∇g〉 ≈ 〈
1 + 1

2∇g · ∇g
〉

= 1 + 1
2 〈∇g · ∇g〉 , (39)

which has been widely adopted. This approach is restricted to
only very weakly corrugated fronts, say, with ST,0/SL < 2.
There exists no simple approximation for ST,0/SL in the
opposite limit of ∇g · ∇g � 1. However, considering g

as a one-dimensional random function, with the derivative
obeying the Gaussian distribution, Corrsin and Phillips [47]
obtained an analytical expression for the contour length of
a curve L = 〈

√
1 + (dg/dx)2〉, with the standard deviation

σ1 =
√

〈(dg/dx)2〉 in the form

L = exp
(
1/4σ 2

1

)
2
√

2πσ1

{
K0

(
1

4σ 2
1

)
+ K1

(
1

4σ 2
1

)}
, (40)

where Kv is the modified Bessel function of the second kind.
Figure 6 compares contour length of a function with Gaussian
gradient and that of a sine function with same variance. The
nature of the functions immediately provides insights into a
simple, generalized approximation for such sine and Gaussian
processes that hold without the restriction of ∇g · ∇g � 1.
As a result, we approximate ST,0/SL by

ST,0/SL = 〈
√

1 + ∇g · ∇g〉 ≈
√

〈1 + ∇g · ∇g〉. (41)

It is evident that approximation (41) holds without any
assumption for ∇g · ∇g � 1. Indeed,

ST,0/SL = 〈
√

1 + ∇g · ∇g〉 ≈ 〈
1 + 1

2∇g · ∇g
〉

= 1 + 1
2 〈∇g · ∇g〉 ≈

√
〈1 + ∇g · ∇g〉. (42)

But even without any restriction on the magnitude of the
approximation error for sine and Gaussian processes, it is
always less than 25% for the one-dimensional case, as evident
from Fig. 6.

For a more general two-dimensional case, with g obeying a
Gaussian distribution, a contour length obviously becomes an
area ∼ST,0/SL, and we have verified numerically in the present
study that the approximation error monotonically grows with
increasing σ , before saturating to a constant error of about
15%. Experimental and DNS evidence from [48,49] suggests
that the quantity ∂g/∂xi follows a nearly Gaussian distribution.
There is also experimental evidence suggesting that the lower
moment, i.e., g, as well as the higher moment, i.e., curvature,
follow the Gaussian distribution in strong turbulence as shown
in [1] and [48], respectively. On the other hand, it can be argued
that turbulent velocity derivative probability density functions
(PDFs) are inherently non-Gaussian, and their distributions
display exponential tails. Such non-Gaussianity forms the
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 Gaussian and Approximation 1

FIG. 6. Contour length i.e., the functional 〈√1 + ∇g · ∇g〉 vs.
standard deviation when (i) the gradient of g is Gaussian, (ii) g is a
sine function, (iii) Approximation 1 given by

√〈1 + ∇g · ∇g〉, (iv)
Approximation 2 given by 1 + 1

2 〈∇g · ∇g〉, and (v) Percentage error
involved between (i) and (iii) with regard to (i).
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very basis for nonlinear energy transfer, and in nonreacting
fluid turbulence the passive scalar gradient squared quantities
are typically distributed as log normal instead of Gaussian
[50]. Moreover, for a material surface in nonreacting fluid
turbulence, ∇g · ∇g shows a log-normal distribution, and
hence the exact distribution of the quantity is debatable as
to whether it is Gaussian or log normal. It is shown below that
the approximation of Eq. (41) holds even for the log-normal
distribution with standard deviations that are possible in
practical flow situations.

Let us consider the approximation for the turbulent flame
speed with ∇g · ∇g following a log-normal distribution.
Substituting Z = ∇g · ∇g into Eq. (38), we find the ratio
ST,0/SL to be given by the expectation E[�], where � =√

1 + Z, and Z follows a log-normal distribution with its
natural logarithm having the mean μ and the standard deviation
σ . Consequently,

ST,0

SL

=E [�] = 1√
2πσ 2

∫ ∞

0

√
1+Z

1

Z
exp

{
− (ln Z−μ)2

2σ 2

}
dZ.

(43)

The integral in Eq. (43) can be decomposed as

E[�] = 1√
2πσ 2

[∫ 1

0

√
1 + Z

1

Z
exp

{
− (ln Z − μ)2

2σ 2

}
dZ

+
∫ ∞

1

√
1 + Z

1

Z
exp

{
− (ln Z − μ)2

2σ 2

}
dZ

]
≈ 1√

2πσ 2

[∫ 1

0

(
1+ Z

2

)
1

Z
exp

{
− (ln Z − μ)2

2σ 2

}
dZ

+
∫ ∞

1
Z1/2 1

Z
exp

{
− (ln Z − μ)2

2σ 2

}
dZ

]
. (44)

Substituting Y = ln Z and following the Mellin trans-
form of the log-normal PDF [51], which gives E[Zs] =
exp(sμ + s2σ 2/2), and the related integrals from 0 to 1 and
from 1 to ∞, we obtain

E[�] = 1

2
erfc

(
μ

σ
√

2

)
+ 1

4
exp

(
μ + σ 2

2

)
erfc

(
σ 2 + μ

σ
√

2

)
+ 1

2
exp

(
μ

2
+ σ 2

8

)
erfc

(
−σ 2 + 2μ

σ2
√

2

)
. (45)

As shown in Fig. 7, this expression is well approximated
by

E [�] ≈
√

1 + exp(−σ 2/4) exp(μ + σ 2/2)

=
√

1 + exp(−σ 2/4)E [Z]. (46)

In the same figure, the expectations, E [�] = 〈√1 + Z〉,
for numerically generated random variable Z, with log-normal
distributions over a range of mean and standard deviations,
are compared to the analytical expression and the proposed
approximation, with good agreement demonstrated. This has
been validated by the numerical integration of Eq. (43) as
well. Now, for a log-normal distribution the variance is
given by

σ 2 = ln{1 + var[Z]/E[Z]2} ≈ ln[K], (47)
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[1+exp(−σ2/4)*E[Z]]0.5

FIG. 7. (Color online) Plot of the exact expectation versus
approximation. Symbols: Numerically generated log-normal distri-
bution and black line: analytical expression for 0.1 < μ < 5 and
σ1 < σ < 5. Both μ and σ are independently varied.

where K is the flatness of the distribution of ∂g/∂xi , consider-
ing the contribution by the cross terms 〈(∂g/∂xi)2(∂g/∂xj )2〉
to be the same as that of 〈(∂g/∂xi)4〉. For either fluid turbulence
or a passive scalar in turbulent flow field, it is known that K

increases with Rλ in contrary to Kolmogorov’s self-similarity
hypothesis [50] and is attributed to intermittency. Intermittency
of a premixed flame surface is not a well-known topic, but
even if we assume the flatness K to be that as found for a
passive scalar in nonreacting turbulence, for very high Rλ ∼
103 (where Rλ is the Taylor-scale Reynolds number), which
are around an order of magnitude beyond any experimental
measurements for the turbulent flame speed so far, we have
K ∼ 30 [52]. Hence exp(−σ 2/4) = 0.43 and for all prac-
tical purposes 0.43 � exp(−σ 2/4) < 1. Furthermore, since
exp(−σ 2/4) is within the square root, the effective correction
is ∼ exp(−σ 2/8). Thus the maximum error introduced is
35%, which allows this term to be neglected for the sake of
simplicity. It can, however, be retained for larger Rλ and can
be estimated alternatively as shown below, but in that case the
intermittency effects on the flame itself need to be explored
further. In all of the formulations in this paper, this exponential
term is not retained and is assumed unity unless otherwise
stated.

An alternative estimation of σ 2 can be obtained fol-
lowing Kolmogorov’s refined similarity hypothesis of 1961
[53], where the log-normal distribution of dissipation was
considered. Following [53], the standard deviation of the
logarithm of the scalar dissipation rate was proposed as
σ 2

ln(χ)r
≈ μθ ln(L0/r), where L0 and r are the larger (∼integral

length scale) and the smaller scales, respectively, while μθ

is a universal constant according to [53]. Gibson [54] found
that μθ is indeed a universal constant, ∼0.44 in oceanic and
galactic scales, where Rλ is so large that turbulence is truly
“universal.” As has been shown above, for all practical reacting
flows encountered, exp(−σ 2/4) ∼ 1 is probably a good choice
as then it avoids the complications with intermittency. But for
very large Rλ, where the correction is nontrivial, intermittency
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can be considered in a similar manner to that as in [53,54] on
the passive scalar g field by proposing(

σ 2
ln(∇g·∇g)

)
max

≈ μg ln (λI /δL) ⇒ exp(−σ 2/8)

= (λI/δL)−μg/8 ∼ (λI /δL)−0.055 . (48)

No estimate on μg is known so far, and hence the
universal constant found in [54] is substituted in Eq. (48).
The introduction of intermittency and hence, departure from
Kolmogorov’s self-similarity hypothesis, is apparent as the
nonlinear averaging of Z = ∇g · ∇g introduces higher mo-
ments.

In summary, by this approximation we have essentially
circumvented a closure problem of averaging a nonlinear func-
tional by neglecting higher moments. Gaussian distribution
yields constant flatness and hence a constant error. For the
log-normal distribution, omission of higher moments could be
allowed for weak to moderate intermittency levels of the flame
surface dissipation, but for strong intermittency that might
be encountered in extreme Reynolds numbers, a correction is
proposed in Eq. (48). As such, the approximation is justified
in the framework of the two possible distributions considered.

C. Turbulent flame speed through spectral closure

The Fourier transform of the scalar autocorrelation function
R(r,t) ≡ 〈g(x,t)g(x + r,t)〉 is given by [33]

R̂(k,t) = F̂k {R(r)} δk(−k) = 〈ĝ(k,t)ĝ(k′,t)〉δk(−k′)

= 〈g(k,t)ĝ(−k,t)〉 = F̂k {R(r)} , (49)

where

δk(−k′) =
{

1 if k = k′
0 if k �= k′ (50)

is the Kronecker delta function and the operator F̂k determines
the coefficient of the Fourier mode of the wave vector k.
Consequently,

R (r,t) =
∑

k

R̂ (k,t) exp(i k · r)

=
∫ +∞∫

−∞

∫
�(k̄) exp(i k̄ · r) dk̄, (51)

where k̄ is the continuous wave-number variable and �(k̄) =∑
k R̂(k,t)δ(k̄ − k) is the spectrum function tensor. Hence,

R(0,t) = ∫+∞∫
−∞

∫
�(k̄)dk̄. The Fourier transform of g1 = ∇g is

ĝ1 (k) = F̂k

{
∂g

∂xj

j
}

=
〈
j
∂g

∂xj

exp(ik · x)

〉
= i kj ĝ(k)j. (52)

Now we shall apply the above method to the quantity
g1(x,t). In particular, we introduce the autocorrelation func-
tion of g1 in the form R1(r,t) = 〈g1(x,t)g1(x + r,t)〉, with
R1(0,t) = 〈g1(x,t)g1(x,t)〉. Similar to Eq. (49) and accounting
for Eq. (52), we write

R̂1 (k,t) = 〈ĝ1 (k,t) ĝ1 (−k,t)〉
= 〈{ikj ĝ (k,t) j}{−ikj ĝ (−k,t) j}〉
= 〈kjkj ĝ (k,t) ĝ (−k,t)〉 = kj kj R̂ (k,t) , (53)

with R1(0,t) = ∫+∞∫
−∞

∫
�1(k̄)dk̄, where

�1 (k) =
∑

k

R̂1 (k,t)δ(k̄ − k)

=
∑

k

kjkj R̂ (k,t)δ(k̄ − k) = k̄j k̄j� (k) . (54)

Equations (53) and (54) state

R1 (0,t) = 〈∇g · ∇g〉 =
∫ ∞∫

−∞

∫
kj kj�(k) dk

=
∫ ∞

0
k2�(k,t) dk =

∫ ∞

0
k2�(k) dk, (55)

as � is independent of time, which leads to

ST,0/SL = 〈
√

1 + ∇g · ∇g〉 ≈
√

〈1 + ∇g · ∇g〉

=
√

1 +
∫ ∞

0
k2� (k) dk =

√
1 +

∫ ∞

kI

k2� (k) dk.

(56)

For numerical calculations the integral was evaluated up to
10kF , where kF = 2π/δL is the wave number corresponding
to the flame thickness. The quantity � in Eq. (56) is given by
Eq. (36), with the phenomenological constants B, c1, and c2,
which can be determined from experiments or direct numerical
simulations. For the present study, the value B is chosen in such
a manner that the turbulent flame brush thickness is equal to
the integral length scale, i.e.,

δT ≡ 〈g2〉1/2 =
(∫ ∞

kI

� (k)dk

)1/2

= λI (57)

at the maximum Urms in the corrugated flamelets regime for
given λI and δL. It was shown by DNS calculations [55] that the
condition 1 < δT /λI < 1.5 holds over the range of normalized
turbulence intensity, 0.5 < Urms/SL < 17. The coefficients
c1 and c2 are chosen as 0.2 and 2, respectively, under the
assumption that dissipation due to flame thickness provides an
order of magnitude greater effect than that due to kinematic
restoration. Such an assumption is justified, for instance, by
DNS of a premixed hydrogen flame in homogenous isotropic
turbulence with reduced chemistry [56]. It was found that while
determining the turbulent flame surface as a fractal structure,
the lower cutoff for departure from self-similarity depends on
the flame thickness or the Markstein length and not on the
Gibson scale, which is only possible if the first exponential
term in Eq. (35) is weak. The reason could be that the gas
expansion velocity nearly cancels out the effects of kinematic
restoration having the same dimensional dependence, k� in
Eq. (32), as shown by DNS calculations [39], and therefore the
effective dissipation is provided by the flame thickness alone.
Thus the dissipation effect due to flame thickness is expected
to dominate over that due to effective kinematic restoration
given by the Gibson scale because of the strong gas expan-
sion effects. Thus the thermal expansion effects implicitly
enter into the no DL instability formulation for ST,0/SL as
well.
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FIG. 8. (Color online) Spectra of � (a) and k2� (b) versus k with
fixed λI /δL = 103 and at Urms/SL = 0.1, and 1–10 with increments
of 1 in each plot.

Returning to the discussion on the turbulent flame speed
and brush thickness, we note the following interesting feature
regarding the quantities ST,0/SL and δT . Similar to the kinetic
energy K and the dissipation rate ε in flow turbulence, the
quantities δT and ST,0/SL form the pairs as the zeroth and
second moments of the energy spectrum and flame surface
spectrum, respectively. Although a square root is involved in
the turbulent flame speed expression, the similarity between
(δT ,ST,0/SL) and (K, ε), emerging from their definitions, is
observed in their respective integrands, and hence in the spectra
presented in Figs. 8(a) and 8(b).

Figures 8(a) and 8(b) show, respectively, the spectra of �

and k2� versus k for various Urms/SL. It is clear from Fig. 8(a)
that for small Urms/SL no −5/3 power dependence is observed,
and the spectrum is dominated by exponentially decaying
dissipation effects. As expected, the −5/3 dependence
emerges for higher Urms/SL, and the spectra in Figs. 8(a) and
8(b) appear to saturate. This leads to a rapid saturation of the
flame brush thickness and to the experimentally well-known
nonlinear “bending” behavior of the turbulent flame speed.

The bending is also clearly inherent in the nonlinear
expression for the turbulent flame speed. The dominance of
the higher wave numbers in the k2� spectrum in Fig. 8(b) also
indicates that fine-scale turbulence controls the total flame
surface area generated, and thus the necessity of very high
spatial resolution for experimental or numerical determination
of turbulent flame speed. Also for the same reason it could be
conjectured that the large scatter in the turbulent flame speed
data is inherent in the definition, for being second moment it
requires an order of magnitude larger sample space than that
would be required for convergence of statistic δT .

To superpose the effects of DL instability on ST,0 derived in
Eq. (56), i.e., on the turbulent flame speed without accounting
for the effect of DL instability, which could be considered
to be proportional to area AT , we take a step back into the
Damköhler derivation on the basis of mass conservation

ST,0/SL = AT /A0, (58)

where AT is the turbulent flame surface area without con-
sidering DL instability and A0 is the projected area. Thus in
the event of no DL instability, when the effect of turbulence
is the only mechanism of flame surface corrugation, and
g = g(x1,x2), we find

ST,0

SL

= 1

A0

∫
A0

∫ √
1+∇g · ∇g dx1dx2

= A0〈
√

1+∇g · ∇g〉
A0

= 〈
√

1+∇g · ∇g〉. (59)

However, when DL instability competes with turbulence
providing an additional corrugation mechanism, the projected
area, over which the integral in Eq. (59) is taken, should
be replaced by ADL,turb. Physically, this implies that turbu-
lence is generating surface area over an already increased
area produced by the instability. Considering SDL,turb/SL =
ADL,turb/A0, with SDL,turb given by Eq. (24), we obtain the
expression for ST accounting for DL instability. Consequently,

ST

SL

= 1

A0

∫ ∫
ADL,turb

√
1+∇g · ∇g dx1dx2

= ADL,turb

A0
〈
√

1 + ∇g · ∇g〉 = SDL,turb

SL

〈
√

1 + ∇g · ∇g〉,
(60)

where Eq. (24) should be substituted for SDL,turb, which thus
emerges as a correction superposed on the expression for
the turbulent flame speed obtained without considering DL
instability. Figure 9 presents the plot of ST,0/SL [Eq. (59)],
and ST /SL [Eq. (60)], with SDL,turb given by Eq. (24), which
means that self-similarity is adopted for all λI � λ̃c. These
results were obtained by numerical integration of Eqs. (56)
and (60), while the exact analytical forms for special cases
will be presented in the next section. These scaled flame
speeds versus Urms/SL for various λI/δL = 102,103,104 are
shown in Fig. 9. For small Urms/SL � 1, the quantity ST,0/SL

shows a quadratic behavior inherent in its definition, Eq. (56),
and is in accordance with the Clavin-Williams theory where
a weakly perturbed periodic flow is considered [4]. In a
different viewpoint by Kerstein and Ashurst [7] and Mayo and
Kerstein [57], weak turbulence is considered white noise which
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FIG. 9. (Color online) Scaled turbulent flame speed without and
with DL instability, ST,0/SL and ST /SL,respectively, versus the scaled
turbulent intensity Urms/SL for various λI /δL = 102,103, and 104.

yields a U
4/3
rms dependence for the turbulent burning velocity.

Since white noise is uncorrelated with a flat spectrum, which
is far from the model adopted here even for weak turbulence,
recovery of the Clavin-Williams result is reasonable in the
present work. For higher Urms/SL, the value ST,0/SL increases
almost linearly, to a final bend resembling a power law with
a subunity exponent. With increasing λI at a given Urms/SL,
the quantity ST,0/SL monotonically increases simply due to
the increased scale separation, which increases the area
under the k2� spectrum. Superimposing the correction for
DL instability on ST,0, we find ST /SL, which collapses on
ST,0/SL at large Urms/SL, when corrugation by DL instability
is destroyed by turbulence, and as expected from the modified
regime diagram in Fig. 5. However, at small and moderate
Urms/SL it is clearly seen that the hydrodynamic instability,
in its domain of influence, can amplify the turbulent flame
speed by more than a factor of 2, depending on the scale
separation. The flat regions and cusps of the ST /SL curve
occur due to the assumption that the instability vanishes
sharply at the corresponding regime boundary, i.e., when
λI = λ̃c, while in reality such a transition could be much
smoother.

D. Analytical form of turbulent flame speed for c1 = 0

Here we derive the exact form of the turbulent flame speed
ST,0/SL for the particular case of c1 = 0. As discussed in
Sec. III C, the coefficient for the k� term is expected to be
small, as the kinematic restoration and gas expansion terms
both scale as k� in the Fourier space but with opposite signs,
which was also shown by DNS [39]. Hence, the limit of c1 = 0
is indeed a case of physical interest, and as it removes the first
exponential term of Eq. (36), the integration of Eq. (55) can
be performed analytically. Specifically, Eq. (36) with c1 = 0
can be rewritten as

� (k) = Bk−5/3 exp(−�k̃4/3) (61)

for k̃ � 1, and � = 0 otherwise, with k̃ ≡ k/kI and

� = 3

4
(2π )4/3 c2

(
Urms

SL

)−1 (
kI

kM

)
= 3

4
(2π )4/3 c2 Mk

(
Urms

SL

λI

δL

)−1

. (62)

We next evaluate the constant B in Eq. (61). This can be
done only for large Urms/SL, when the turbulent flame brush
thickness is about the integral length scale, δT ∼ λI . It has been
shown by DNS [55] that the ratio δT /λI quickly saturates to
∼1.4 at moderate Urms/SL and stays constant at large Urms/SL,
which is also evident from Fig. 8(a), demonstrating saturation
of the area under the corresponding �(k) curves for large
Urms/SL. It is noted that the error from approximating δT = λI

(a prefactor of 1.4) and that from Eq. (41), i.e., averaging
under the square root (a prefactor of 0.75), tend to cancel out
each other, which allows the overall approximation constant
to be near unity. To avoid ambiguity, hereafter we set Urms/SL

to achieve its maximum possible value within the corrugated
flamelets regime to evaluate B. At the boundary of this regime,
KaδL

= 1, we have

(Urms/SL)max = (λI/δL)1/3. (63)

With the result (63), Eq. (62) becomes

� = �∗ = 3
4 (2π )4/3 c2 Mk (λI/δL)−4/3 . (64)

With (Urms/SL)max ∼ O(10) and c2 ∼ Mk ∼ O(1), we evalu-
ate �∗ from Eqs. (63) and (64) as �∗ ∼ O(10−3). Then the
flame brush thickness is given by

δ2
T ≡

∫ ∞

kI

� (k) dk = Bk
−2/3
I

∫ ∞

1
k̃−5/3 exp(−�∗k̃4/3) dk̃

= 3

2
Bk

−2/3
I {exp(−�∗) −

√
π�∗ erfc(

√
�∗)}

≈ 3

2
Bk

−2/3
I exp(−�∗) ≈ 3

2
Bk

−2/3
I . (65)

Substituting Eq. (65) into Eq. (57), we find

B = 2
3k

2/3
I λ2

I = 8
3π2k

−4/3
I . (66)

Consequently, the scalar spectrum function [Eq. (61)] becomes

� (k) = 8
3π2k−3

I k̃−5/3 exp(−�k̃4/3), (67)

and Eqs. (56) and (67) state the generalized formula for the
scaled turbulent flame speed,

ST,0

SL

=
√

1 +
∫ ∞

kI

k2�(k) dk

=
√

1 + 8π2

3

∫ ∞

1
k̃1/3 exp(−�k̃4/3) dk̃

=
√

1 + 2π2

� exp �
, (68)

with � given by Eq. (62). In systems of practical relevance,
λI /λL ∼ O (10) − O(103), Urms/SL ∼ O (1) − O(10), and
c2 ∼ Mk ∼ O(1). Hence, Eq. (62) typically yields � � 1, or
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at least � < 1. In the event of � � 1, we have exp (�) ∼ 1,
and Eq. (68) is reduced to

ST,0

SL

= π

(
2

�

)1/2

= 25/6π1/3

(3c2 Mk)1/2

(
Urms

SL

λI

δL

)1/2

∼
(

Urms

SL

λI

δL

)1/2

. (69)

Retaining the exponential term, the exact analytical form is
given by(

ST,0

SL

)2

=1 +
(

25/3π2/3

3c2 Mk

)(
Urms

SL

)(
λI

δL

)
× exp

[
3

4
(2π )4/3c2 Mk

{
−

(
Urms

SL

)−1(
λI

δL

)−1}]
.

(70)

The power law of Eq. (69) for the scaled turbulent flame
speed is revealing as it can be scaled as

√
ReT considering

unity Schmidt number. The same scaling was obtained by
Damköhler in the 1930s [1] but for thin reaction zones with
the argument that when fine-scale turbulence penetrates the
preheat zone, diffusivity of the laminar flame is replaced
by the turbulent diffusivity, while the chemical time scale
remains the same [1,12]. Simple algebra then yields the√

ReT dependence. In contrast, our analysis is valid in both
the corrugated flamelet and thin reaction zone regimes. We
nevertheless note that the associated global length scale for a
turbulent flame is the turbulent flame brush thickness δT rather
than the laminar flame thickness δL, since δT is the scale to be
affected by the turbulent transport. In particular, any average
scalar gradient spans over δT instead of δL, and hence δT has
to be used to define the turbulent diffusivity. Consequently, to
replace the diffusivity of a laminar flame with the turbulent
diffusivity for a turbulent flame, it is only necessary that
turbulent eddies penetrate the flame brush thickness, which
is always the case. It is noted that the turbulent diffusivity is a
purely convective flow property and is not related to molecular
diffusion, hence its associated length or time scales should
be the convective instead of diffusion scales. This scaling
of

√
(Urms/SL)(λI/δL) is also reported in some experimental

correlations, summarized in detail in the review by Driscoll [2]
and hence suggests the general validity of the analytical results
obtained herein.

Another feature to be explored is the pressure dependence.
Increasing pressure reduces the flame thickness, and hence
new wave numbers become accessible for flame wrinkling.
Thus the increased scale separation should amplify the
scaled turbulent flame speed at higher pressures as has been
observed experimentally [58,59]. To incorporate the pressure
dependence we can write

δL,p

δL,p0
=

(
p

p0

)−α

, (71)

where the subscripts p0 and p denote the standard atmospheric
and modified pressures, respectively. Based on the numerical
simulations with detailed chemical kinetics [60], the exponent

in Eq. (71) has been reported as α = 0.58 for methane-air
flames at ϕ = 0.9, Le = 1. Consequently,

λI

δL,p

= λI

δL,p0

δL,p0

δL,p

= λI

δL,p0

(
p

p0

)α

, (72)

and Eq. (62) becomes

� = 3

4
(2π )4/3 c2 Mk

(
Urms

SL

λI

δL,p0

)−1 (
p

p0

)−α

, (73)

with the counterpart of Eq. (69), � � 1, being(
ST,0

SL

)2

= 25/3π2/3

(3c2 Mk)

(
Urms

SL

λI

δL,p0

) (
p

p0

)α

, (74)

while the exact form, Eq. (70), becomes(
ST,0

SL

)2

= 1 +
(

25/3π2/3

3c2 Mk

) (
Urms

SL

) (
λI

δL,p0

) (
p

p0

)α

× exp

[
3

4
(2π )4/3 c2 Mk

{
−

(
Urms

SL

)−1(
λI

δL,p0

)−1

×
(

p

p0

)−α }]
. (75)

The results (74) and (75) are compared to the experi-
mental data [58,59] in Figs. 10(a) and 10(b). Kobayashi and
co-workers [58,59] have reported the combustion consumption
speeds over a wide range of scaled turbulence intensities,
pressures, and length scales in a Bunsen configuration for
methane-air mixtures at the equivalence ratio φ = 0.9, where
Le = 1.0 with respect to the inert and Le ≈ 0.96 with respect
to mixture-averaged properties. Moreover, the authors of [59]
measured the flame surface area at the progress variable
〈c〉 = 0.1 contours, which typically resides within the inner
core of the jet and hence is mostly uncontaminated by large-
scale shear layer structures. Consequently, direct comparison
to the present analysis is possible, as the derived turbulent
flame speeds are essentially consumption speeds in nearly
homogenous isotropic turbulence. It is further noted that all
the experimental conditions fall outside the instability domain
in Fig. 5, and hence ST,0/SL should be sufficient to describe
the reported data. Figure 10(a) then shows the comparison
in a log-log plot with abscissas and ordinates in the same
convention as that in [58,59] to highlight the slopes of the
data sets at constant pressure ratios and the dependence on
pressure. The constants used for evaluating the analytical
expression for all the data sets are c2 = 1.5, Mk = 2, α = 0.58,
λI = Lgeometric/2.5, and δL,p0 = 0.5 mm. The ratio of the
geometric to integral length scales is assumed to be 2.5
such that λI/δL,p0 exactly corresponds to the values specified
in [59]. It is seen that good quantitative agreement exists for
the slopes and the shift due to pressure, despite the large
scatter in the experimental data. Figure 10(b) is a counterpart
of Fig. 10(a) in a linear plot, but with the abscissa being√

(Urms/SL)(λI/δL,p), i.e., the right-hand side of Eq. (69) is
used as an independent variable. Considering the large scatter,
it is seen that the data largely collapse onto a straight line, hence
indicating good agreement between the proposed theoretical
expression and experimentation. It is interesting to note that in
the experiments of [58] and according to a general belief,
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FIG. 10. (Color online) (a) Log-log plot of normalized turbulent
flame speed versus normalized turbulent intensity times normalized
pressure to compare analysis with experimental data from Kobayashi
et al. [58,59]. Symbols: Experiment; Lines: Analytical expression
with corresponding color: Eq. (70). (b) Plot of normalized turbulent
flame speed versus right-hand side of Eq. (69) to collapse the
experimental data on a straight line. Legends are the same in both (a)
and (b).

the increase in the turbulent flame speed with pressure is
attributed to DL instability. We note, however, that all the
experimental conditions are outside the DL-affected regime
according to the diagram in Fig. 5, and concurrently Eqs.
(69) and (70) show the explicit dependence of the turbulent
flame speed on the flame thickness, the decrease of which
facilitates the increased turbulent flame speed very similar to
that in the case of DL instability, where the cutoff is an explicit
function of the flame thickness. Moreover, it can be readily
shown that the dimensional turbulent flame speed ST,0 ∼
(Urms)0.5(p/p0)0.08, i.e., ST,0, has negligible dependence on
pressure when SL ∼ (p/p0)−0.5 as assumed in [58]. This
negligible dependence of ST,0 on pressure is also consistent
with the dimensional turbulent flame speed results presented
in [58].

The discrepancy at small Urms/SL is inherent as the self-
similar inertial range description of Kolmogorov’s theory,
and subsequently Pao’s theory, is valid at moderate to large
Reynolds numbers. However, even at moderate Reynolds

numbers, when viscous dissipative effects cause a sharper
falloff for the kinetic energy spectrum, the error introduced
by osculating the corresponding flame spectrum is partly
accounted for by flame dissipation mechanisms, and hence the
leading-order contribution is captured. It is noted that both de-
cays are exponential terms as in the flame spectrum of Eq. (36)
or the model spectrum of Pope [33] for fluid turbulence.
Finally, it is emphasized that all the results presented in this
section are obtained with the approximation of Eq. (41). This
approximation holds well for all moderate to large Rλ, which
are practically encountered in turbulent premixed combustion.
For extreme Rλ, the approximation error can also be accounted
for following Kolmogorov’s refined similarity hypothesis [53].
In that case the normalized turbulent flame speed should scale
as ST /SL ∼ (Urms/SL)0.5(λI/δL)0.5−μg/4, i.e., a deviation from
(λI/δL)0.5 scaling may be observed.

IV. SUMMARY

In this investigation we have estimated conditions in
which DL instability could compete with turbulence to induce
corrugation of a flame front. The limiting condition at which
turbulence can completely suppress corrugation of the flame
surface due to DL instability has been characterized by a di-
mensionless parameter β Eq. (14), shown to be the ratio of the
instability and turbulence time scales at a given length scale,
which exceeds unity. Such a boundary has been presented
in the traditional turbulent combustion regime diagram for
identification of zones where the instability effects should
be considered while predicting global turbulent premixed
combustion properties such as the turbulent flame speed. In
this regard, the concept of a turbulence-induced DL cutoff was
introduced, a function of which evolved as a correction on
the turbulent flame speed without considering DL instability.
The turbulent flame speed in the absence of DL instability
was derived from the spectral closure of the G equation, thus
considering the multiscale nature of turbulence-the central
feature of turbulent flows. Superimposing the correction by
DL instability consideration on the DL-stable turbulent flame
speed, we present the final form of the normalized turbulent
flame speed as a function of the normalized turbulence
intensity. Finally, an analytical expression for the turbulent
flame speed is obtained by realistically setting one of the
dissipation mechanisms to be negligible. The analytical ex-
pression is found to agree closely with the experimental data
from Kobayashi and co-workers [58,59] over a wide range
of normalized turbulence intensity and pressure. At large
normalized turbulence intensities, the normalized turbulent
flame speed is found to scale as

√
(Urms/SL)(λI/δL), which is

an observed experimental correlation in other configurations
as well.
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