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Searching for the fastest dynamo: Laminar ABC flows
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The growth rate of the dynamo instability as a function of the magnetic Reynolds number R
M

is investigated
by means of numerical simulations for the family of the Arnold-Beltrami-Childress (ABC) flows and for two
different forcing scales. For the ABC flows that are driven at the largest available length scale, it is found that, as
the magnetic Reynolds number is increased: (a) The flow that results first in a dynamo is the 2 1

2 -dimensional flow
for which A = B and C = 0 (and all permutations). (b) The second type of flow that results in a dynamo is the
one for which A = B � 2C/5 (and permutations). (c) The most symmetric flow, A = B = C, is the third type of
flow that results in a dynamo. (d) As R

M
is increased, the A = B = C flow stops being a dynamo and transitions

from a local maximum to a third-order saddle point. (e) At larger R
M

, the A = B = C flow reestablishes itself as
a dynamo but remains a saddle point. (f) At the largest examined R

M
, the growth rate of the 2 1

2 -dimensional flows
starts to decay, the A = B = C flow comes close to a local maximum again, and the flow A = B � 2C/5 (and
permutations) results in the fastest dynamo with growth rate γ � 0.12 at the largest examined R

M
. For the ABC

flows that are driven at the second largest available length scale, it is found that (a) the 2 1
2 -dimensional flows

A = B, C = 0 (and permutations) are again the first flows that result in a dynamo with a decreased onset. (b)
The most symmetric flow, A = B = C, is the second type of flow that results in a dynamo. It is, and it remains,
a local maximum. (c) At larger RM , the flow A = B � 2C/5 (and permutations) appears as the third type of
flow that results in a dynamo. As R

M
is increased, it becomes the flow with the largest growth rate. The growth

rates appear to have some correlation with the Lyapunov exponents, but constructive refolding of the field lines
appears equally important in determining the fastest dynamo flow.
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I. INTRODUCTION

Magnetic dynamo is the process through which an elec-
trically conducting fluid amplifies and maintains magnetic
energy against Ohmic dissipation by continuously stretching
and refolding the magnetic field lines [1,2]. This process is
considered to be the main mechanism for the generation of
magnetic energy in the universe. It is present in the intergalactic
and interstellar medium, in accretion disks, and in the interiors
of stars and planets. Recently, it has also been realized in
different laboratory experiments [3–5]. The flows in these
examples vary in structure, and the generated magnetic fields
exhibit a large variety of structural and temporal behaviors. It
is then desirable to understand which properties of a flow are
important for the amplification of magnetic energy and how do
they effect the dynamical behavior of the magnetic field. This
question is of particular interest for the dynamo experiments
for which optimizing the flow is important for achieving a
dynamo at small energy injection rates [6].

In theoretical studies, various flows have been examined
analytically and numerically both in the laminar and in the
turbulent regimes. The Ponomarenko [7], the ABC [8–10],
the Roberts [11,12], the Taylor-Green [13], the cat’s-eye [14],
and the Archontis flows [15] are some of the flows that have
been shown to result successfully in dynamo action provided
that the magnetic Reynolds number R

M
(the ratio of the large-

scale velocity time scale to the large-scale diffusivity time
scale) is sufficiently large. The choice of flow for study was
motivated either by its similarity to astrophysical flows or
due to its simplicity that allowed analytical treatment or made
the investigation more tractable numerically. Other than this

practical motivation, there is no mathematical justification for
preferring one flow over another.

This lack of mathematical reasoning motivates this paper.
Across a family of flows of finite energy and vorticity, not all
members are as efficient in producing dynamo action. Then,
it is expected that a flow in this family exists that is optimal
for dynamo action. Finding and investigating the properties of
such an optimal flow can then reveal which mechanisms are
important for magnetic field amplification. How an optimal
flow is defined is described in the next section where the
general problem is formulated in detail.

II. FORMULATION

At the early stages of the dynamo, when the Lorentz force is
too weak to act back on the flow, the evolution of the magnetic
field is given by the linear advection diffusion equation,

∂tb + u · ∇b = b · ∇u + η∇2b, (1)

where b is the magnetic vector field, u is the velocity field,
and η is the magnetic diffusivity. The advection term on the
left hand side of Eq. (1) is responsible for the mixing of the
magnetic field lines. The first term on the right hand side
is the stretching term that is responsible for the increase in
the magnetic energy while the last term is responsible for
the destruction of magnetic energy due to diffusion. Since the
equation for the magnetic field is linear, it expected that, after
some transient behavior, the amplitude of the magnetic field
will grow or will decay at an exponential rate,

b ∼ b̃(x,t)eγ t , (2)
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where γ is the growth rate and b̃ is a bounded function in
time. For steady velocity fields that will be examined here, b̃
is either time independent or a periodic function of time.

The growth rate γ and its dependence on the flow
parameters is the primary interest in this paper. Given the
functional shape of u, the only control parameter in the system
is the magnetic Reynolds number R

M
that, in this paper, is

defined as

R
M

≡ U

ηku

. (3)

η is the magnetic diffusivity. U is the amplitude of the velocity
field that is defined as

U ≡ 〈u · u〉1/2, (4)

where the angular brackets stand for spatial average. ku is
the velocity inverse length scale that we define through the
vorticity of the flow w = ∇ × u as

ku ≡ 〈w · w〉1/2/U. (5)

Exploring the dependence of γ on R
M

has been the subject of
extensive research. For sufficiently small R

M
, the diffusion

term in Eq. (1) will dominate, and magnetic energy will
decrease exponentially with decay rate −γ ∼ UkuR

−1
M

(for
R

M
� 1). As R

M
is increased, the stretching term becomes

important, and above a critical value, a flow can become an
effective dynamo (γ > 0). This value of R

M
will be referred to

as the critical magnetic Reynolds number and will be denoted
as R

MC
. Finding the flow that minimizes R

MC
is of importance

for laboratory dynamo experiments on account of R
M

being
an increasing function of power consumption, which is an
increasing function of cost.

For large values of the magnetic Reynolds number, the
problem becomes increasingly complex with the number of
degrees of freedom involved increasing, such as R3/2

M
. Due to

this complexity, there is no general analytical way to estimate
the growth rate of a dynamo (with the exception of some
special cases). Nonetheless, antidynamo theorems [16,17],
developed in the last century, and upper bounds on the growth
rate [18–21] have been proven useful in excluding certain
classes of flows from giving dynamo action or restricting the
scaling of γ with R

M
. From the antidynamo theorems, two

important results that are relevant in this paper are mentioned
here.

First, flows with only two nonzero components of the
velocity field cannot result in a dynamo for any value of
R

M
[17]. Thus, for these flows, there is no critical Reynolds

number. In the present paper, we will refer to these flows
as two-dimensional (2D) flows (even if there is spatial
dependence in the third direction).

Second, time independent flows, for which all three compo-
nents of the velocity (ux,uy,uz) are nonzero but only depend
on two of the spatial components (say, x,y), can result in
a dynamo, but due to the absence of chaotic flow lines, the
dynamo growth rate will tend to a nonpositive value as R

M

tends to infinity [22,23]. For these flows, thus, it is expected
that

γ = o(1)Uku, (6)

where the symbol o(1) stands for smaller than order 1. This
dependence, however, can be a very slowly decreasing function
of R

M
[24]. These flows are referred to as 2 1

2 -dimensional
flows, and the resulting dynamo is referred to as a slow
dynamo.

However, besides these classes of flows, typical three-
dimensional flows, with a complex streamline topology, are
expected to be dynamos at infinitely large R

M
[25]. For such

flows, the growth rate will approach a value that will depend
only on the amplitude, length scale, and structure of the
velocity field and not on the magnetic diffusion η, i.e.,

γ = O(1)Uku, (7)

where the symbol O(1) stands for same order as 1. Such flows,
for which the dynamo growth rate tends to a positive value as
R

M
tends to infinity, are called fast dynamo flows.

With these restrictions in mind, a definition of an optimal
flow can be given. The choice of optimization, of course, will
depend on the application in mind. For example, an optimal
flow can be based on R

MC
or on γ leading to different answers.

Here, we will be restricted to the following questions: Given
a family of flows of fixed velocity amplitude U and length
scale ku, (i) which member has the smallest critical magnetic
Reynolds number R

MC
, (ii) given R

M
, which member has the

largest growth rate γ /(Uku), and finally, (iii) which flow leads
to the largest growth rate in the limit R

M
→ ∞. As shown

later, these questions do not have the same answer.
Finally, we need to restrict the family of flows that is going

to be investigated. Since the estimate of the growth rate γ

and R
MC

needs to be performed numerically, addressing the
questions above for a large family of flows is formidable even
for present day computing. Then, it is preferable to be restricted
to smaller families that, however, are good candidates for fast
dynamo action based on their properties.

For a fast dynamo, the role of Lagrangian chaos and
the helicity of the flow have been emphasized as important
ingredients. Lagrangian chaos, the exponential stretching of
fluid elements, is a necessary ingredient for a fast dynamo
[22,23]. However, it is not sufficient. Time dependent 2D flows
can result in chaos (positive Lyapunov exponent) but can be
excluded from dynamo flows based on the first antidynamo
theorem mentioned here. The reason for this behavior is that
the flow is required not only to exponentially stretch the
magnetic field lines, but also to arrange them in a constructive
way so that, when they are brought arbitrarily close, they can
survive the effect of diffusion. A quantitative measure of these
effects can be obtained by multiplying Eq. (1) by b, space
averaging, dividing by 〈b2〉, and finally, by using Eq. (2) to
obtain

γ + ∂t ln[〈b̃2〉] = 〈b · (∇u)b〉
〈b2〉 − η

〈(∇b)2〉
〈b2〉 . (8)

Performing a time average and using the fact that b̃ is bounded,
the last equation can be written as

γ = γs − γd, (9)

where γs is the time average of the first term on the right hand
side of Eq. (8) and expresses the injection rate of energy by
stretching, while γd is the time average of the second term
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and expresses the dissipation rate. A constructive flow then
has large γs and small γd . This can be obtained by the stretch-
twist-fold mechanism [26] that aligns the stretched magnetic
field lines so that they have the same orientation. It is expected
to be achieved most efficiently if the flow is helical.

Helicity is the other ingredient that is expected to improve
dynamo action. It is a measure of the lack of reflection
symmetry of the flow [2] and is related to the linking number of
the flow lines. Although, in general, it is not necessary [27], it
has been thought to improve dynamo action, and it is required
for α2 dynamos [28–30]. It is also considered important for the
generation of the large-scale magnetic fields that are observed
in the universe [31–34].

In this paper, we are going to restrict ourselves to a family
of flows that is both fully helical and is known to have chaotic
flow lines, namely, the ABC flows. The ABC flows include
a wide range of expected dynamo behaviors that covers 2D
flows and slow and fast dynamos. Particular members of this
family have been well studied for dynamo action, and this
allows for a comparison with previous results. This choice is
rather restrictive since it is not known a priori if the optimal
dynamo flow belongs in the family of ABC flows. However,
they provide a tractable set of flows to examine and a good
starting guess.

The ABC flows are reviewed in detail in the next section.

III. THE ABC FAMILY

The ABC flow is named after Arnold [8], Beltrami [9], and
Childress [10] and is explicitly given by

ux = A sin(kuz) + B cos(kuy),

uy = C sin(kux) + A cos(kuz), (10)

uz = B sin(kuy) + C cos(kux).

It is an incompressible periodic flow with four independent
parameters A, B, C, and ku. The flow has the property,

w = ∇ × u = kuu, (11)

for all values of A,B,C,ku. As a result, it is an exact solution of
the Euler equations. It has been studied both for its properties
as a solution of the Euler equation, its relation to chaos [35–37]
and for dynamo instability [38–41] but only for limited values
of the parameters. Here, it is attempted to uncover the dynamo
properties for the whole family.

With no loss of generality, we can restrict ourselves only to
flows of fixed wave number ku and fixed velocity amplitude
U = √

A2 + B2 + C2. With this restriction and property (11),
the energy of the flow E = 1

2U 2, the enstrophy of the flow,

� = 1
2 〈w · w〉 = 1

2k2
uU

2, (12)

and the helicity H of the flow,

H = 1
2 〈w · u〉 = 1

2kuU
2 (13)

have a fixed value.
For fixed kinetic energy, the parameters A,B,C live on the

surface of a sphere of radius U and can be parametrized using

the spherical coordinates ψ,φ,

A = U cos(ψ), (14)

B = U sin(ψ) cos(φ), (15)

C = U sin(ψ) sin(φ). (16)

Using the symmetries of the ABC flow (see Refs. [36,39]),
we can restrict the examined parameter space. The flow is
invariant under the transformations,

[A,z] → [−A,z − π/ku], (17)

[B,y] → [−B,y − π/ku], (18)

and

[C,x] → [−C,x − π/ku]. (19)

These symmetries allow restricting the investigation to only
positive values of A, B, and C and, thus, reduce the examined
parameter space to the range [0,π/2] for both angles φ and
ψ . Since there is no preferred direction between (x,y,z), the
growth rate is also going to be independent under permutations,
e.g., (B,C) → (C,B). More precisely, the flow is invariant
under the transformations,

[
(A,B,C)

(x,y,z)

]
→

⎡
⎣ (A,C,B)(

3π

2ku

− y,
3π

2ku

− x,
3π

2ku

− z

)
⎤
⎦, (20)

[
(A,B,C)

(x,y,z)

]
→

⎡
⎣ (B,A,C)(

3π

2ku

− x,
3π

2ku

− z,
3π

2ku

− y

)
⎤
⎦, (21)

[
(A,B,C)

(x,y,z)

]
→

⎡
⎣ (C,B,A)(

3π

2ku

− z,
3π

2ku

− y,
3π

2ku

− x

)
⎤
⎦. (22)

These symmetries allow interchanging the values of any of the
three parameters A,B,C, thus, a single numerical simulation
gives the growth rate for six points in the parameter range
ψ ∈ [0,π/2] and φ ∈ [0,π/2]. This additional information
was used to increase the number of measured values. Finally,
the change k → −k changes the sign of the helicity of the flow.
This change, however, does not alter the resulting growth rate
of the dynamo. Thus, only positive values of k are considered.

Depending on the values of the parameters A,B,C, the flow
can have eight stagnation points where all three components
of the velocity are zero. These points exist only if the square
of each the parameters A,B,C is smaller than the sum of
the square of the other two [36] (i.e., their squares can form
a triangle). The importance of the existence or absence of
stagnation points was emphasized in Ref. [15]. It was noticed
that the developed magnetic structures changed from from
cigar-shaped, in the presence of stagnation points, to ribbon-
shaped in their absence.

Figure 1 demonstrates the examined parameter space in the
spherical coordinates (ψ,φ). Some of the points in this graph
represent flows of special significance that are described in
what follows. For (ψ = π/2, φ = π/2), (ψ = π/2, φ = 0),
and (ψ = 0), two of the three parameters A,B,C are zero
(A = B = 0, A = C = 0, and B = C = 0, respectively). The
flow corresponding to these points is 2D, and thus, there is no
dynamo, γ < 0.
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FIG. 1. A sketch of the parameter space for the ABC family of
flows. RF marks the location of the Roberts Flow. The dashed lines
indicate the location where two of the three parameters (A,B,C)
are equal, and at their intersection, is the 1:1:1 flow. The gray lines
enclose the region where stagnation points exist.

For (ψ = π/2), we have A = 0, for (φ = π/2), we have
B = 0, and for (φ = 0), we have C = 0; for these values of
(ψ,φ) for which one of the three parameters A,B,C is zero,
the resulting flow is a 2 1

2 -dimensional flow and, thus, a slow
dynamo. The RF is a special flow in this subset for which
the two nonzero parameters are equal. It has been studied
for slow dynamo action in Refs. [11,12,24]. It corresponds
to the values (ψ = π/2,φ = π/4), (ψ = π/4,φ = π/2), and
(ψ = π/4,φ = 0), and in Fig. 1, it is marked as RF.

Flows that have two of the three parameters equal have
additional symmetries and as will be shown in Sec. IV, they
are important. These flows are located along the line φ =
π/4 for B = C, the line ψ = arctan[1/ cos(φ)] for A = B,
and the line ψ = arctan[1/ sin(φ)] for A = C. These lines are
shown by dashed lines in Fig. 1 and divide the space in six
compartments. Each of these compartments is equivalent to the
others due to the symmetries in Eqs. (20)–(22) . Thus, each
of these compartments will have the same number of maxima
and minima of the growth rate.

When all three parameters are equal, A = B = C, the flow
has the largest number of symmetries. This flow is the most
studied one in the literature, and it is going to be referred to as
the 1:1:1 flow. It is obtained for [φ = π/4, ψ = arctan(

√
2)]

and is located at the intersection of the dashed lines in the
diagram.

Finally, the region of the parameter space for which the
ABC flow has stagnation points is enclosed by the gray lines
in Fig. 1.

ABC flows are known to be chaotic [35–40]. Finite time
Lyapunov exponents provide a measure of chaos [42]. The
finite time Lyapunov exponent λτ (x0), for a point x0, is defined
as

λτ (x0) = 1

τ
ln

[ |δx(τ )|
|δx(0)|

]
, (23)

where |δx(τ )| is the distance of two particles that, at time
τ = 0, were placed infinitesimally close to x0. If the flow is
not ergodic, not all initial points x0 of a chaotic flow lead to

FIG. 2. (Color online) Color-scale plot of the finite time Lya-
punov exponent λτ in the ψ,φ plane. Bright colors imply large values
of the exponents, while black implies zero or close to zero values.
The contour lines correspond to the levels λτ = 0.02, 0.04, 0.06, and
0.08. The time of integration was τ = 2 × 104.

λτ > 0. Thus, to measure λτ of the flow, an ensemble of initial
points x0 needs to be considered out of which only those
that belong to the chaotic subset will lead to λτ > 0. Here,
λτ (x0) was calculated for the ABC flows and for 8000 initial
positions x0 distributed uniformly in the domain [0,2π )3. The
distribution function of the measured Lyapunov exponents was
constructed, and λτ of the chaotic subset was determined as
the location of the peak in the distribution function.

In Fig. 2, a color-scale plot of λτ is shown for the (ψ,φ)
plane, and in Fig. 3, the finite time Lyapunov exponents are
shown for φ = π/4. It is worth noting that the λτ of the most
symmetric flow 1:1:1 is a local minimum (see also Ref. [40]),
while the largest values of λτ appear for (φ = π/4, ψ �
0.155π ) and for (φ � 0.12π, ψ � 0.16π ) and the equivalent
points by symmetry.

IV. DYNAMO RESULTS

The advection diffusion equation (1) was solved in a
triple periodic domain of size L = 2π using a standard
pseudospectral method and a third order in time Runge-Kutta
[43,44]. The resolution used varied from 323 grid points for
small values of R

M
(�20) up to 2563 for the largest values

R
M

� 500. Each run was evolved for a sufficiently long time

FIG. 3. Plot of the finite time Lyapunov exponent λτ for φ = π/4.
The time of integration was τ = 106.
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until a clear exponential increase in the magnetic energy was
observed, and the growth rate was calculated by fitting.

The last parameter that needs to be defined is the ratio of
the box size L over which the magnetic field is allowed to
evolve in, to the period of the velocity field 2π/ku. Due to the
periodicity, the product kuL can only be integer multiples of
2π . Here, we are going to examine two cases kuL = 2π where
the two lengths are equal and kuL = 4π where the magnetic
field can evolve on a larger scale.

A. ABC, ku L = 2π

First, the case kuL = 2π is presented. In Fig. 4, color-scale
images of the measured growth rate are shown for six different
values of R

M
. Each figure corresponds to 200 different dynamo

simulations. By using 20 different values of ψ in the range
[0,π/2] and 10 for φ in the range [0,π/4], the symmetries in
Eqs. (20)–(22) were used to fill in the values of the growth rate
on the whole domain and on a denser grid. In each panel, bright
colors correspond to larger growth rates. The thick white lines
show the location of zero growth rate. The thin black lines
indicate where the growth rate is 0.05Uku. The dashed black
lines, as in Fig. 1, show the location on which two of the
three parameters A,B,C are equal. Finally, it is noted that
the simulations in these runs were performed on 323 and 643

grid-point meshes.
As RM is increased, the first flows that result in positive

growth rates are the ones with two of the three parameters
equal, while the third is equal to zero. This can be seen in
the top left panel of Fig. 4 for R

M
= 10 where most of the

FIG. 4. (Color online) Color-scale images of the growth rate in the ψ,φ plane for kuL = 2π and for six different magnetic Reynolds
numbers. Bright colors indicate larger growth rates. The thick white lines are the contour lines’ zero growth rate. Thin black lines are the
contour lines of growth rate γ = 0.05Uku. The dashed lines (as in Fig. 1) indicate the location at which two of the three parameters A,B,C are
equal.
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parameter domain has a negative growth rate except the small
bright regions at the end of the dashed lines. These flows
correspond to a RF and are slow dynamos as discussed in the
previous section. Thus, although they are slow, at small R

M
,

they are the most efficient at producing a dynamo (i.e., the
fastest).

The next flows that become unstable are the flows for which
two of the three parameters are equal but smaller than the third.
Thus, they lie on the dashed lines in the graph opposite the RF.
This can be seen in the right top panel of Fig. 4 that shows
the growth rate for R

M
= 14.3. In terms of the angles, they

correspond to the values (ψ � 0.17π, φ = π/4) and (ψ �
0.38π, φ = π/4 ± 0.12π ). The exact location of these new
maxima is shifting slowly away from the center as the magnetic
Reynolds number is increased. Note that this flow is very
close to the flow for which the maxima for the Lyapunov
exponents in Figs. 2 and 3 were found. It is also close to
the flow A = 5, B = C = 2 that was investigated in detail in
Ref. [15]; for this reason, this flow is going to be referred to as
the 5: 2: 2 flow. At this value of the Reynolds number, the RF
is still the fastest dynamo in the family.

As the magnetic Reynolds number is increased further, the
most symmetric flow 1:1:1 also results in a dynamo. This is
shown in the middle left panel of Fig. 4 for R

M
= 20. At this

value of R
M

, the 1:1:1 is a local maximum, but with a smaller
growth rate than the 5: 2: 2 flow and smaller than the RF that
is still the fastest.

As RM is increased further, the 1:1:1 flow stops being a
local maximum and transitions to a third-order saddle point
(monkey saddle point). This can be seen in the middle right
panel for which R

M
= 25. The local maximum of the 1:1:1

flow, which was present at RM = 20, splits into three local
maxima that move along the dashed lines away from the 1:1:1
case whose growth rate has decreased. The growth rate for the
5:2:2 flow and the RF continues to increase.

For RM = 33.3 (shown in the bottom left panel), the three
local maxima that were initially located close to the 1:1:1 flow
have moved sufficiently away that the 1:1:1 flow stops being a
dynamo. This corresponds to the no-dynamo window that was
observed early on in Ref. [38].

After a further increase in R
M

, the 1:1:1 flow becomes a
dynamo again (although not a local maximum anymore but
still a saddle point). For R

M
= 100 shown in the bottom right

panel, most of the parameter space results in dynamo action,
with the only exception being where the small areas are close
to the 2D flows (ψ = π/2, φ = π/2), (ψ = π/2, φ = 0), and
(ψ = 0). The growth rate of the RF has started to decrease,
and the fastest dynamo is given by the 5:2:2 flow. At this value
of R

M
, the topography of the growth rate in the parameter

space has become much more complex, with new local maxima
appearing between the RF and the 5:2:2 flow. This increase in
complexity with R

M
has also been observed in 2 1

2 -dimensional
flows parametrized by the wave number in the invariant
direction [14].

For larger values of R
M

, grids larger than 643 are needed,
and it is computationally too expensive to cover the whole
parameter domain. Instead, the investigation will be limited
to flows that lie along the dashed lines where most of the
maxima are located. In Fig. 5, we show the growth rate for
three different values of the magnetic Reynolds number with

FIG. 5. Nondimensional growth rate as a function of ψ for φ =
π/4 and for three different magnetic Reynolds numbers. The vertical
dotted line marks the location of the 1:1:1 flow.

the smallest value being equal to the value used in the last panel
of Fig. 4. The 5:2:2 flow results in the fastest dynamo at the
largest value of R

M
= 1000. At this value of R

M
, the 5:2:2 peak

has moved to ψ � 0.16π . Furthermore, for R
M

> 500, two
new local maxima appear close to the 5:2:2 flow for slightly
smaller and slightly larger values of ψ . The local maximum,
which, at small values of R

M
, was located at the 1:1:1 flow,

appears to return close to the 1:1:1 point, and thus, the most
symmetric flow comes close to a local maximum again. Finally,
the slow decrease in the growth rate of the RF can be observed.

In Fig. 6, the two rates γs (dashed line, triangles) and γd

(solid line, diamonds), defined in Eq. (9), are shown for the
largest examined R

M
= 1000. The difference between the two

curves gives the growth rate. The ratio of the two curves shows
the percentage of the injected energy that is dissipated. Thus,
a constructive flow (in the sense that it aligns magnetic field
lines pointing in the same direction) is expected to have a
small value of γd compared to γs . The flows close to the 5:2:2
flow (ψ = 0.16π ) that have the largest growth rates are more
efficient not only due to the larger stretching rate γs that does
not vary a lot, but also due to the relatively small value of γd . In

FIG. 6. The rates γs (dashed line, triangles) and γd (solid line,
diamonds) defined in Eq. (9) for the kuL = 2π case and for R

M
=

1000. The vertical dotted line marks the location of the 1:1:1 flow.
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the range ψ = 0.1π to ψ = 0.25π , half of the energy injected
by stretching goes to magnetic field amplification. For values
of ψ out of this range, only a small fraction of the injected
energy goes to field amplification while the rest goes to the
small scales where it is dissipated.

Beyond the φ = π/4 symmetry line, other local maxima
of the growth rate were detected, although it was not feasible
to cover the entire parameter space. Here, it is just mentioned
that a local maximum was observed at (ψ = 0.2π,φ = 0.1π )
with a growth rate close to the 5:2:2 flow γ � 0.12.

B. ABC kL = 4π

The case kuL = 4π is examined in this section. Despite
the fact that the flow is the same as in the kuL = 2π case,
the results are different due to the additional space in which the
magnetic field is allowed to evolve. The extra space gives rise
to new modes that can develop with different growth rates.
Although the modes of the kuL = 2π case still are present
and grow at the same rate, they are not necessarily the fastest.
Considering that, in a numerical simulation, only the fastest
growing mode is observed, in the kuL = 4π case, the observed
mode will then be, at least, as fast as the kuL = 2π case.

As before, the first flows that result in a dynamo are the
slow dynamos of the RF for which two of the three parameters
A,B,C are equal and the third is zero. This case is shown in
the right panel of Fig. 7 for R

M
= 2.5. Note that, in this case,

the dynamo instability appears at much smaller values of R
M

.
It is also remarkable that the mode, whose growth rate peaks

for the RF, appears to continuously extend all the way to the
1:1:1 flow that is a saddle point at this stage.

As R
M

increases further, the 1:1:1 flow becomes a dynamo
whose growth rate is a local maximum in the (ψ,φ) plane.
This is shown in the top right panel of Fig. 7 that corresponds
to RM = 10. Note also that this is contrary to the kuL = 2π

case for which the 5:2:2 flow was the second flow to result in a
dynamo. In the kuL = 4π case and for this value of R

M
, there

is no observed local maximum close to the 5:2:2 flow.
As R

M
is further increased, the growth rate of the 1:1:1

flow is increased. At R
M

= 25, the 1:1:1 flow exceeds the RF
in growth rate, and it is the fastest dynamo for all ABC flows.
This can be seen in the bottom left panel of Fig. 7. This is
somehow surprising since this flow was never the fastest in the
kuL = 2π case.

At even larger R
M

, however, the growth rate of the 1:1:1
ceases to increase while the 5:2:2 becomes a local maximum
and obtains comparable values with the 1:1:1 flow. This is
shown in the bottom right panel of Fig. 7.

The growth rate for larger values of R
M

was calculated only
along the symmetry line φ = π/4. It is shown as a function of
ψ and for three different values of R

M
in Fig. 8. The smallest

value of R
M

corresponds to the results of the bottom right panel
of Fig. 7. As the magnetic Reynolds number is increased, the
growth rate of the 1:1:1 flow is decreased while, at the same
time, the growth rate of the 5:2:2 flow is increased. At the
largest examined value of R

M
, the fastest dynamo is given by

the 5:2:2 flow with a growth rate γ /(kuU ) = 0.16, which is
larger than its growth rate in the kuL = 2π case.

FIG. 7. (Color online) Color-scale images of the growth rate in the ψ,φ plane for kuL = 4π and for four different magnetic Reynolds
numbers. Bright colors indicate larger growth rates. The thick white lines are the contour lines’ zero growth rate. Thin black lines are the contour
lines of growth rate γ = 0.05Uku and γ = 0.1Uku. The dashed lines (as in Fig. 4) show the location at which two of the three parameters
A,B,C are equal.
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FIG. 8. The growth rate as a function of ψ and for φ = −π/4 for
kuL = 4π and three different Reynolds numbers. The vertical dotted
line marks the location of the 1:1:1 flow.

As in the previous section, in Fig. 9, we plot the two growth
rates γs (dashed line, triangles) and γd (solid line, diamonds)
for R

M
= 500. In this case, the the ability of the 5:2:2 flow to

align field lines reducing dissipation is even more pronounced.
Only one fifth of the injected energy is cascading to the
dissipated scales while the rest is going in the amplification of
the magnetic field. Unlike the kuL = 2π case, the 1:1:1 flow is
also being more constructive with less than half of the energy
going to dissipation.

It is also worth comparing the general behavior of the
growth rate with the results in the previous section. Although
the fastest dynamo flows appear at the same location, their
growth rates are different, thus, it is not the same dynamo
modes that are observed in the two cases. Also, in the
kuL = 4π case, the dependence of the growth rate on the
flow at the large R

M
is less complex than in the kuL = 2π case

with less local maxima and a smoother, in general, behavior.
These differences indicate that the box size plays an important
role in the dynamo behavior.

V. SUMMARY AND CONCLUSIONS

In this paper, the entire family of ABC flows was examined
for dynamo action. The dynamo growth rate was calculated
as a function of the magnetic Reynolds number R

M
and for

two length scales kuL = 2π and kuL = 4π . The questions

FIG. 9. The rates γs (dashed line, triangles) and γd (solid line,
diamonds) defined in Eq. (9) for the kuL = 4π case and for R

M
=

500.The dotted vertical line marks the location of the 1:1:1 flow.

that this paper was attempting to answer were: (i) which
flow has the smallest critical magnetic Reynolds number R

MC
,

(ii) given R
M

, which flow has the largest growth rate γ /(Uku),
and (iii) which flow leads to the largest growth rate in the
limit R

M
→ ∞. Although these questions can be posed for a

larger family of flows, the ABC flows constitute a first step in
obtaining some understanding.

For this, perhaps, restrictive family of flows, the answer
to the first question is a simple one: The RF results in a
dynamo for the smallest value of R

M
. This is true for both the

kuL = 2π and the kuL = 4π cases. Thus, in small Reynolds
numbers, a well organized flow can do much better than a
rapidly stretching (chaotic) flow.

At larger Reynolds numbers, new dynamo modes became
unstable, and a number of bifurcations are observed that lead
to a complex topography of the growth rate. As R

M
was

increased, this complexity was further increased, and more
local maxima appeared. This was particularly true for the
kuL = 2π case, while for the kuL = 4π case, a smoother
behavior was observed.

Inspecting the growth rate for a large number of flows as
performed in this paper also gives a wider perspective on the
dependence of magnetic eigenmodes of the flow on R

M
. Some

of the observed dynamo modes of a given flow can be related
(by continuous transform) to the modes of different flows. For
example, for small values of R

M
, the slowest decaying mode

of the 1:1:1 flow is related to the dynamo mode of the RF (see
Fig. 7 top left panel). Thus, the various bifurcations that can
be observed by looking at the growth rate of a single flow can
be interpreted as shifting or enlargement of local maxima in
this wider point of view. The no-dynamo window of the 1:1:1
flow is such an example, which is the outcome of splitting and
shifting of the initial maximum at the 1:1:1 point.

Finally, for relative large R
M

, the 5:2:2 flow (ψ �
0.16π, φ = π/4) has the fastest growing mode (from the
examined flows) in both cases (kuL = 2π and kuL = 4π ).
However, if this continues to be true, even larger values of
the magnetic Reynolds number cannot be concluded from the
present data. R

M
= 1000 is still far from the R

M
→ ∞ limit

as can be seen from the finite value of the growth rate of the
RF, which is a slow dynamo. Furthermore, as noted at the end
of Sec. IV A, flows that were not on the φ = π/4 symmetry
line were found with growth rates similar to the 5:2:2 flow. The
increased complexity of the growth rate as R

M
increases makes

it harder to estimate the fastest dynamo flow. If this continues,
then the location of the fastest flow in the (ψ,φ) plane might not
converge to a single point in the limit R

M
→ ∞ and question

(iii) might not even have an answer.
On the other hand, the Lyapunov exponents, whose value

does not depend on R
M

, do show some clear maxima, which
gives hope that a fastest dynamo flow in the R

M
→ ∞ limit

exists. However, although a correlation of the growth rate
with the Lyapunov exponents is observed, it is definitely not
sufficient to explain the dependence of the observed growth
rates, at least, not at the examined values of R

M
. In particular, it

is observed that the flow with the largest growth rate is close to
the flow with the largest Lyapunov exponent. Nevertheless, the
general dependence of the growth rate and of the Lyapunov
exponent on the flow is quite different, with local maxima
appearing at different locations.
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In addition, it was found that the 5:2:2 flow that leads to
the fastest growing mode besides having a large stretching rate
was also very efficient at organizing the magnetic field lines as
to minimize the magnetic energy dissipation. Furthermore, at
the examined values of R

M
, the kuL = 2π and the kuL = 4π

cases showed significant differences, although the magnetic
field lines were advected by the same flows. Thus, the growth
rate cannot be determined by the stretching statistics of the
flow alone. If these differences cease to exist at larger R

M
is a

question for future papers.
Besides investigating larger R

M
, there are many other

obvious extensions of this paper. First, it would be interesting
to extend these results to a larger family of flows, which also
includes nonhelical flows. Harmonic velocity fields could be
such a generalization. The fastest dynamo flow in such a large
family could possibly be obtained by an optimization routine.

A differently oriented approach would consider turbulent
dynamos. In this case, instead of prescribing the flow, a body
force would be prescribed, and the flow would be allowed to
evolve dynamically. In such a study, different limits of the

kinetic Reynolds number Re would lead to different results. In
the limit 1 � Re � R

M
, dynamo growth rates depend on the

small velocity scales and are possibly universal. In the other
limit 1 � R

M
� Re, it has been shown that the large-scale

flow plays an important role especially for R
M

near its threshold
value [45–47].

Finally, the properties of dynamos beyond the linear regime,
where our understanding is much more limited, is also a
problem of considerable interest. At the nonlinear stage, both
the saturation levels of the magnetic energy and the involved
length scales (large- or small-scale dynamo) depend strongly
on the large-scale properties of the flow. Thus, a systematic
study of a large number of flows can be helpful in that respect.

These issues are going to be pursued in another paper.
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