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Transient two-layer thin-film flow inside a channel
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The flow of two superimposed Newtonian layers in a channel is investigated numerically in this study.
The two-layer film flows inside a long channel due to a pressure gradient. The scaled conservation equations for
two-layer incompressible Newtonian film flow are first introduced. The weighted residual approach first proposed
byAmaouche et al. [Phys. Fluids 19, 084106 (2007)] is used for finding the suitable weight functions before
depth averaging. Subsequently, a linear stability analysis of thin-film equations for two-layer Poiseuille flow is
carried out. The formulas which give the asymptotic stability with respect to long-wave perturbations obtained
with Navier-Stokes equations [J. Non-Newtonian Fluid Mech. 71, 1 (1997)] are recovered with our averaging
equations. In order to mimic the disturbance effect on the coextrusion flow, the steady flow, which is simply the
uniform flow of two layers of fluid inside a channel, is then perturbed at inception. Following a finite difference
based scheme, two types of boundary conditions are considered at the channel inception, namely a Dirac-type
pulse and periodic forcing. The perturbation takes the form of a wave packet which may or may not be amplified
as it moves downstream, depending on the values of the parameters involved in the problem. Furthermore,
Gaster’s relation is used to calculate the spatial growth rate of perturbation. The values obtained from this relation
are in good quantitative agreement with those coming from the numerical simulations of thin-film equations.
Then, our averaging equations also describe the nonlinear behavior of the interfacial instabilities occurring for
the Poiseuille flow of two thin layers.
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I. INTRODUCTION

The flow of two superimposed Newtonian layers is exam-
ined theoretically in this study. The fluid density is assumed
to be uniform over the flow domain, but the viscosity in each
layer can be different. Although the flow of a single-layer
film inside a channel has been extensively investigated in the
literature, less work has been devoted to multilayered films
in the framework of thin-film approximation. One reason for
the intense interest in thin-film flows is the wide variety of
natural and industrial applications of such flows [1]. The
multilayer configuration is mostly related to the industrial
coextrusion process and coinjection molding [2]. The fluids
used in coextrusion processes are mostly polymeric. Some
important applications of coextrusion of the polymers can
be found in markets related to alcohol-free beverages, fruit
juices, functional drinks, noncarbonated water, food, etc. The
standard is being set by smaller, high quality products for
outdoor and fitness activities in user-friendly and secure plastic
packages. In addition, plastic bottles and containers provide
significant added values such as light weight, transportability,
and recyclability. The beverage industry profits from multi-
layer packaging (coextrusion) through increased shelf life as
well as taste and aroma protection, so that the products stay
fresh without the use of preservatives.

In a coextrusion process, polymers are first melted in
screw extruders separately and then flow simultaneously in the
extrusion die. In some processing conditions wavy interfaces
between the different polymer layers, due to the flow instability
of the system in the die, are observed in the final product.

*Corresponding author: rkhayat@uwo.ca

The thickness irregularity of each layer results in altered
mechanical and optical properties. From the theoretical point
of view, the occurrence of such interfacial instabilities has been
analyzed by looking at the temporal stability of the two-layer
plane Poiseuille flow. Earlier studies focused on Newtonian
fluids both theoretically [3–9] and experimentally [10,11].
Joseph et al. [12] carried out a linear stability analysis for the
flow of two immiscible fluids of different viscosities and equal
density in a pipe. They showed that the volume ratio, related to
the fluid thicknesses, is a crucial factor on the interface shape
and stability. The Couette flow of two superposed viscous
fluids in an infinite region was later studied by Hooper and
Boyd [13]. They showed that the flow was always unstable
due to short wavelength instabilities. Hooper [14] also showed
that introducing a thin layer of viscous fluid next to the
channel walls would have a destabilizing effect. Thereafter,
the instability of two cocurrent superposed viscous fluids in a
channel was examined by Hooper and Grimshaw [15]. They
found that the interface may or may not be stable. In the latter
case, the interface evolves to another steady state. Shankar
and co-workers then looked at the stability analysis of a single
and multilayer viscous flow past a deformable viscoelastic
layer in two successive papers [16,17] to see how viscous
layers adjacent to a wall can influence the stability of the
lower viscoelastic layer.

The parameters controlling the stability of multilayer flow
are the viscosity ratio, the thickness or flow rate ratio, and
elasticity ratio in the case of the non-Newtonian fluids [18–
23]. Thickness profiles and pressure drops across ducts and
channels in two- and three-layer flows have been measured and
estimated in early studies [24–26]. These studies were either
motivated to reduce the pressure drop or to study the interface
deformation in the form of encapsulation of the viscous fluid
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FIG. 1. Schematic illustration of two-layer thin-film flow in a
channel. Dimensional notations are used.

by the fluid of low viscosity. The viscosity ratio is found to
be the most important parameter as it affects the thickness and
pressure drop.

Recently, Alba et al. [27] examined the steady flow of
the two-layer thin Newtonian film theoretically. The film
was assumed to emerge out of a channel and flow over a
straight plate. Although the thin-film formulation reduces
the pressure to its hydrostatic part, thus eliminating the
momentum equation in the transverse direction from the
problem, the dimension of the problem remains the same as in
the original equation. At moderately high Reynolds number,
inertia is better accounted for through the “boundary-layer”
(BL) approximation, which includes the effect of transverse
flow. The major difference between the original Navier-Stokes
equations and the BL equations is the hydrostatic variation of
pressure across the film depth. As a result, only the transverse
momentum equation is eliminated, but the convective terms
are retained in the remaining equations, and the number of
boundary conditions is reduced. However, the solution of BL
equations remains essentially as difficult to obtain as that of
Navier-Stokes equations [28].

Film flow configuration is first introduced in Sec. II, and
the scaled conservation equations for two-layer incompressible
Newtonian film flow as well as the depth-averaged equations
are discussed. In Sec. III, the stability of two-layer Poiseuille
flow is investigated. Sec. IV examines the influence of
boundary conditions at inception using a finite difference
analysis. Two types of boundary conditions are considered,
namely a Dirac-type pulse and periodic forcing. In Sec. V,
Gaster’s criterion [29] for computing the spatial growth rates
is applied to the linear stability formulation. The predictions
based on Gaster’s criterion are then compared with those
obtained through the numerical solution of the reduced
model.

II. PROBLEM FORMULATION

In this section, the film flow configuration is introduced, and
the scaled conservation equations for two-layer incompressible
Newtonian film flow as well as the depth-averaged equations
are discussed. The general form of the boundary and initial
conditions is also outlined.

A. Thin-film equations

Consider the two-layer pressure-driven flow of incompress-
ible Newtonian fluids moving inside a channel. Figure 1
displays schematically the flow configuration in the (X, Y)

plane. Layers 1 and 2 are taken to correspond to the lower
and upper layer, respectively, with H(X, T) being the height
of the interface. The two layers have the same density, ρ,
and different viscosities, μ1 and μ2. At inception (X = 0),
the interface height is H0 and layers 1 and 2 have mean flow
velocities U01 and U02, respectively. The mean flow velocity
in the channel is denoted by U0.

Reference scales are conveniently introduced in terms of
the geometric and flow parameters of the mean flow and the
lower layer. In this case, the channel thickness D is taken as
the length scale in the depthwise direction, and U0 is taken
as the velocity scale streamwise. Consequently, the length
scale in the streamwise direction is denoted by L, which is
typically much larger than the channel thickness (L � D).
The time scale is then defined as L/U0. Assuming each layer
to be thin, the following similarity parameters emerge in the
problem, namely, the Reynolds number Re, Froude number Fr,
thickness-to-length ratio ε, the height ratio RH , and viscosity
ratio Rμ. More explicitly,

Re = ρU0D

μ1
, Fr = U 2

0

Lg
, ε = D

L
, RH = D

H0
, Rμ = μ2

μ1
,

(2.1)

where g is the gravitational acceleration acting in the negative
Y direction. The velocity scale is taken to correspond to
Poiseuille flow in the channel, which, in this case, is given
by

U0 = −dP

dX

×H 2
0

[
R4

H + (Rμ − 1)
(
4R3

H − 6R2
H + 4RH + Rμ − 1

)]
12μ2(RH + Rμ − 1)RH

,

where dP
dX

is the steady-state constant pressure gradient. It is
assumed that the temperature of the two fluid layers is kept
constant inside the channel. In a real coextrusion process the
cooling circuit will not be activated until the coextrusion flow
reaches a steady regime inside the multimanifold die. Once a
steady state is attained the extruded films are directed out of
the die by a roll and cool down over a chilling path located
after the roll. Therefore, during the coextrusion process the
temperature of the melts does not vary much and since the
viscous dissipation is also small (low shear rate in the system)
we may neglect the energy equation in this context. In the
industrial process of the coextrusion of polymers [for instance,
polypropylene (PP) and high-density polyethylene (HDPE)],
the Reynolds number is very small due to the high viscosities of
polymers. Consequently, the shear rate will also be very small
(often in the range of 1 × 10−5/s to 0.1/s). The polypropylene
and high-density polyethylene in this range of shear rate do
not show a shear thinning behavior and act like a Newtonian
fluid. Moreover the elasticity effects are also negligible in
this case. Due to the presence of strong viscous forces in the
coextrusion process, the flow can be assumed to be weakly
inertial [Re = O(1)]. The conservation equations for thin-film
flow are obtained in dimensionless form, with terms of O(ε2)
and higher being excluded. In this case, the relevant equations
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for the problem are

∂u1

∂x
+ ∂v1

∂y
= 0,

∂u1

∂t
+ u1

∂u1

∂x
+ v1

∂u1

∂y
= − 1

εRe

∂p1

∂x
+ 1

εRe

∂2u1

∂y2
, (2.2)

∂p1

∂y
= −Reε2

Fr
,

for layer 1, and

∂u2

∂x
+ ∂v2

∂y
= 0,

∂u2

∂t
+ u2

∂u2

∂x
+ v2

∂u2

∂y
= − 1

εRe

∂p2

∂x
+ Rμ

εRe

∂2u2

∂y2
, (2.3)

∂p2

∂y
= −Reε2

Fr
,

for layer 2. Here u, v, and p are the dimensionless velocity com-
ponents in the x and y directions, and pressure, respectively,
with subscripts corresponding to each layer. Note that εU0

and μ1U0

εD
are taken as depthwise velocity scale and pressure

scale, respectively. Equations (2.2) and (2.3) can be solved
subject to initial and boundary conditions at t = 0 and x =
0, respectively. Upon neglecting higher order terms in ε, the
dynamic conditions at the interface reduce to

p1 (x,y = h,t) = p2 (x,y = h,t) ,

∂u1

∂y
(x,y = h,t) = Rμ

∂u2

∂y
(x,y = h,t) , (2.4)

where h(x, t) represents the dimensionless height of the
interface. The kinematic condition at the interface is given
by

vi (x,y = h,t) = ∂h

∂t
+ ∂h

∂x
ui (x,y = h,t) , (i = 1,2) . (2.5)

No-slip and no-penetration conditions at the walls are
assumed, so that

u1 (x,y = 0,t) = u2 (x,y = 1,t) = v1 (x,y = 0,t)

= v2 (x,y = 1,t) = 0. (2.6)

The continuity of flow across the interface leads to

u1 (x,y = h,t) = u2 (x,y = h,t) . (2.7)

In this case, assuming no mass transfer across the interface
leads to

v1 (x,y = h,t) = v2 (x,y = h,t) . (2.8)

At inception (x = 0), the height of the interface is assumed
fixed, so that

h (x = 0,t) = 1

RH

. (2.9)

It is useful to introduce the parameter, RQ, as the ratio of
the steady flow rate of layer 2, Qs

2, to the steady flow rate of
layer 1, Qs

1. In this case,

Qs
1 = 1

RURH − RU + 1
, Qs

2 = RU (RH − 1)

RURH − RU + 1
, (2.10)

where RU is the ratio of the mean velocity of layer 2 to the
mean velocity of layer 1. Thus,

RQ = Qs
2

Qs
1

= RU (RH − 1),

RU = (RH − 1)
[
R2

H + 2RH (2Rμ − 1) − Rμ + 1
]

Rμ

(
3R2

H − 2RH + Rμ − 1
) . (2.11)

B. Pressure elimination

Integrating the y-momentum equations in (2.2) and (2.3)
simply gives the hydrostatic pressure distribution across the
channel film, or

p1 = −Reε2

Fr
y + p1|y=0,

p2 = −Reε2

Fr
(y − h) + p2|y=h. (2.12)

The pressure in layer 1 is related to the wall shear stress,
as seen upon evaluating the x-momentum equation at the wall
to give

∂p1

∂x

∣∣∣∣
y=0

= ∂2u1

∂y2

∣∣∣∣
y=0

. (2.13)

Using the dynamic condition at the interface, and noting
from Eq. (2.12) that the streamwise pressure gradient is
independent of y, one arrives at

∂p1

∂x
= ∂p2

∂x
= ∂2u1

∂y2

∣∣∣∣
y=0

. (2.14)

Now, the x-momentum equations in (2.2) and (2.3) become

εRe

(
∂u1

∂t
+ u1

∂u1

∂x
+ v1

∂u1

∂y

)
= − ∂2u1

∂y2

∣∣∣∣
y=0

+ ∂2u1

∂y2
,

(2.15)

for layer 1, and

εRe

(
∂u2

∂t
+ u2

∂u2

∂x
+ v2

∂u2

∂y

)
= − ∂2u1

∂y2

∣∣∣∣
y=0

+ Rμ

∂2u2

∂y2
,

(2.16)

for layer 2. Finally, conservation of mass dictates that∫ h

0
u1dy +

∫ 1

h

u2dy = 1 + f (t) , (2.17)

where f (t) represents the time-dependent variation over the
steady-state flow rate with a zero average value in time. This
term is introduced to make direct numerical computations in
a rigorous way in the last section. Indeed, the initial flow
rate of the first layer will be perturbed, whereas its initial
thickness is fixed. For linear analysis, both first layer flow rate
and thickness are perturbed and then the total scaled flow rate
is unitary.

A useful relation is obtained upon integrating the continuity
equation in layer 1 and using the kinematic condition (2.5),
namely

∂h

∂t
+ ∂q

∂x
= 0, (2.18)

where q = ∫ h

0 u1dy is the flow rate in layer 1.
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III. REDUCED PROBLEM

The problem is now reduced to a two-equation model by
using the weighted residual method similarly to Quil and
Manneville [30] for falling thin film of Newtonian fluid and
Amaouche et al. [31]. The method consists of projecting the
velocity field in each layer onto a basis of functions which
satisfies the no-slip condition at the walls.

A. Velocity field expansion

The streamwise velocity components are expanded in
powers of ε as

ui (x,y,t) = u
(0)
i + εu

(1)
i + O(ε2), i =1,2. (3.1)

The transverse velocity component in each layer is then
determined upon using Eq. (3.1) and integrating the continuity
equation, to give

v1 (x,y,t) = −
∫ y

0

∂u1

∂x
dy = −

∫ y

0

∂u
(0)
1

∂x
dy − ε

∫ y

0

∂u
(1)
1

∂x
dy

+O(ε2), (3.2a)

v2 (x,y,t) = v1 (x,y = h,t) −
∫ y

h

∂u2

∂x
dy = v1 (x,y = h,t)

−
∫ y

h

∂u
(0)
2

∂x
dy−ε

∫ y

h

∂u
(1)
2

∂x
dy + O(ε2). (3.2b)

Substituting expansions (3.1) back into the x-momentum
equations (2.15) and (2.16) indicates that the leading order
solutions, u

(0)
1 and u

(0)
2 , are maximum of degree 2 in y, or

u
(0)
i (x,y,t) = Ai (x,t) y2 + Bi (x,t) y + Ci (x,t) , i =1,2.

(3.3)

The coefficients are yet to be determined. By suitable choice
of weight functions we do not need to calculate u

(1)
1 and u

(1)
2

(see later). However, additional assumptions are made on the
first-order corrections u

(1)
i ,∫ h

0
u

(1)
1 dy = 0 and

∫ 1

h

u
(1)
2 dy = 0, (3.4)

in order to simplify the choice of weight functions. These
assumptions mean that the flow rates in each layer are
accurately approximated by the zero order approximation of
expansion (3.1). This assumption has an influence only on the
terms u

(1)
1 and u

(1)
2 , which are not important for the first-order

effect described by our thin limit equations. Moreover, these
assumptions simplify the approach of Amouache [31] which
needs the computations of 14 additional unknowns. It is worth
noting that by setting conditions (3.4), we are restricting
the solutions to a subset of all the possible ones. However,
these solutions matter when one wants to consider first-order
velocity terms too (second-order accurate method). In this
study, we are interested in first-order accuracy. Therefore, the
assumptions made on the integrals are justifiable.

It is not difficult to show from conditions (2.4), (2.6), and
(2.7), and Eq. (2.17), that

A1 = − 3

2h3

[(Rμ − 1)q + 3Rμ(1 + f )]h2 + [2(1 − 2Rμ)h − 1]q

(Rμ − 1)h2 + (2 − Rμ)h − 1
,

B1 = 3

h2

[Rμ(1 + f ) + (Rμ − 1)q]h2 + [2h(1 − Rμ) − 1]q

(Rμ − 1)h2 + (2 − Rμ)h − 1
,

C1 = 0, (3.5)

A2 = − 3

2h

[(4 − Rμ)(1 + f ) + (Rμ − 1)q]h2 − 4(1 + f )h+(3 − 2h)q

(Rμ − 1)h4 + (4 − 3Rμ)h3 + 3(Rμ − 2)h2 + (4 − Rμ)h − 1
,

B2 = 3

h

[(1+f )(2 − Rμ) + (Rμ − 1)q]h3 − 2(1 + f )h+(2 − h)q

(Rμ − 1)h4 + (4 − 3Rμ)h3 + 3(Rμ − 2)h2 + (4 − Rμ)h − 1
,

C2 = − 3

2h

2[(2 − Rμ)(1 + f ) + (Rμ − 1)q]h3 + [(Rμ − 4)(1+f ) + (1 − Rμ)q]h2+q

(Rμ − 1)h4 + (4 − 3Rμ)h3 + 3(Rμ − 2)h2 + (4 − Rμ)h − 1
.

The depthwise velocity component to leading order is then
obtained from Eqs. (3.2) and (3.3), to become

v
(0)
1 (x,y,t) = −∂A1

∂x

y3

3
− ∂B1

∂x

y2

2
, (3.6a)

v
(0)
2 (x,y,t) = v

(0)
1 (x,y = h,t) − ∂A2

∂x

(
y3 − h

3

)

− ∂B2

∂x

(
y2 − h

2

)
− ∂C2

∂x
(y − h). (3.6b)

B. Weighted residual approach

Now that the dependency of the leading order streamwise
velocity components on y is established, the x-momentum
equations (2.15) and (2.16) can now be integrated with
respect to y. Significant simplification is made if, before the
integration, we multiply the x-momentum equations by some
suitable weight functions, g1 (x,y,t) and g2 (x,y,t), say, which
will be defined in such a way that the averaged equations are
no longer dependent on the first-order terms in the velocity
field expansion. Projecting the x-momentum equations (2.15)
and (2.16) with respect to y and summing them results in
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∫ h

0

⎡
⎣εRe

(
∂u

(0)
1

∂t
+ u

(0)
1

∂u
(0)
1

∂x
+ v

(0)
1

∂u
(0)
1

∂y

)
+ ∂2u

(0)
1

∂y2

∣∣∣∣∣
y=0

+ ε
∂2u

(1)
1

∂y2

∣∣∣∣∣
y=0

− ∂2u
(0)
1

∂y2
− ε

∂2u
(1)
1

∂y2

⎤
⎦ g1dy

+
∫ 1

h

⎡
⎣εRe

(
∂u

(0)
2

∂t
+ u

(0)
2

∂u
(0)
2

∂x
+ v

(0)
2

∂u
(0)
2

∂y

)
+ ∂2u

(0)
1

∂y2

∣∣∣∣∣
y=0

+ ε
∂2u

(1)
1

∂y2

∣∣∣∣∣
y=0

− Rμ

∂2u
(0)
2

∂y2
− εRμ

∂2u
(1)
2

∂y2

⎤
⎦ g2dy. (3.7)

Thus, to first order, the correction u
(1)
i of the leading velocity

field would appear only through the diffusive terms

(∫ h

0
g1dy +

∫ 1

h

g2dy

)
∂2u

(1)
1

∂y2

∣∣∣∣∣
y=0

and ∫ h

0

∂2u
(1)
1

∂y2
g1dy + Rμ

∫ 1

h

∂2u
(1)
2

∂y2
g2dy.

One can then eliminate the explicit effects of this correction
from Eq. (3.7) with appropriate choice of the weight functions
gi . Hence, a fully consistent first-order model would include
only the leading-order velocity field. In the following, the
contribution of terms of order ε2 will be neglected, which
renders the model fully consistent up to first order with respect
to ε. Moreover, with a suitable choice of the weight function gi

one can eliminate the first-order contribution of the correction
altogether . Clearly, in this case, one sets

∫ h

0
g1dy +

∫ 1

h

g2dy = 0. (3.8)

In this case, Eq. (3.7) becomes

∫ h

0

[
εRe

(
∂u

(0)
1

∂t
+ u

(0)
1

∂u
(0)
1

∂x
+ v

(0)
1

∂u
(0)
1

∂y

)
− ∂2u

(0)
1

∂y2
− ε

∂2u
(1)
1

∂y2

]
g1dy

+
∫ 1

h

[
εRe

(
∂u

(0)
2

∂t
+ u

(0)
2

∂u
(0)
2

∂x
+ v

(0)
2

∂u
(0)
2

∂y

)
− Rμ

∂2u
(0)
2

∂y2
− εRμ

∂2u
(1)
2

∂y2

]
g2dy = 0. (3.9)

Using double integration by parts and with the aide of the no-slip condition equation (2.6), the first-order diffusive terms are
rewritten in the form∫ h

0

∂2u
(1)
1

∂y2
g1dy + Rμ

∫ 1

h

∂2u
(1)
2

∂y2
g2dy = g1 (x,h,t)

∂u
(1)
1

∂y

∣∣∣∣∣
y=h

− g1 (x,0,t)
∂u

(1)
1

∂y

∣∣∣∣∣
y=0

+ Rμg2 (x,1,t)
∂u

(1)
2

∂y

∣∣∣∣∣
y=1

−Rμg2 (x,h,t)
∂u

(1)
2

∂y

∣∣∣∣∣
y=h

− u
(1)
1 (h)

∂g1

∂y

∣∣∣∣
y=h

+ Rμu
(1)
2 (h)

∂g2

∂y

∣∣∣∣
y=h

+
∫ h

0
u

(1)
1

∂2g1

∂y2
dy + Rμ

∫ 1

h

u
(1)
2

∂2g2

∂y2
dy. (3.10)

Thus, the elimination of the explicit contribution of the first-order correction is possible upon first recalling the dynamic
condition (2.4) and velocity continuity (2.7) across the interface. In this case, relation (3.10) becomes

∫ h

0

∂2u
(1)
1

∂y2
g1dy + Rμ

∫ 1

h

∂2u
(1)
2

∂y2
g2dy = −g1 (x,0,t)

∂u
(1)
1

∂y

∣∣∣∣∣
y=0

+ Rμg2 (x,1,t)
∂u

(1)
2

∂y

∣∣∣∣∣
y=1

+ [g1 (x,h,t) − g2 (x,h,t)]
∂u

(1)
1

∂y

∣∣∣∣∣
y=h

− u
(1)
1 (h)

(
∂g1

∂y

∣∣∣∣
y=h

− Rμ

∂g2

∂y

∣∣∣∣
y=h

)
+

∫ h

0
u

(1)
1

∂2g1

∂y2
dy + Rμ

∫ 1

h

u
(1)
2

∂2g2

∂y2
dy. (3.11)

Clearly, the following conditions can now be set to eliminate the dependency of the solution on u
(1)
1 and u

(1)
2 , namely

∂g1

∂y

∣∣∣∣
y=h

− Rμ

∂g2

∂y

∣∣∣∣
y=h

= 0,

g1 (x,h,t) = g2 (x,h,t) , (3.12)

g1 (x,0,t) = g2 (x,1,t) = 0.
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If gi are chosen as polynomials in y, then they must be of at least second degree. Otherwise, conditions (3.12) lead to gi = 0
for any y. In this case, gi are given as

gi(x,y,t) = Di(x,t)y2 + Ei(x,t)y + Fi(x,t), (3.13)

where Di , Ei , and Fi are unknown functions of x and t. Conditions (3.8) and (3.12) provide five of the six equations to determine
the coefficients Di , Ei , and Fi . In this case,

g1 = [y2 − 2
(Rμ − 1)h2 + 2(1 − Rμ)h − 1

(Rμ − 1)h2 + 2(1 − 2Rμ)h − 1
hy]D1,

g2 = [(Rμ − 1)h2 − 2h + 3]y2 − 2[(Rμ − 1)h3 − h + 2]y + 2(Rμ − 1)h3 − (Rμ − 1)h2 + 1

(h − 1)2[(Rμ − 1)h2 + 2(1 − 2Rμ)h − 1]
h2D1. (3.14)

The value of D1 will turn out to be immaterial. Indeed,
Eq. (3.11) reduces to an expression containing only the
perturbation flow rates, namely,∫ h

0

∂2u
(1)
1

∂y2
g1dy + Rμ

∫ 1

h

∂2u
(1)
2

∂y2
g2dy

= D1

∫ h

0
u

(1)
1 dy + RμD2

∫ 1

h

u
(1)
2 dy, (3.15)

which is null thanks to assumptions (3.4). Finally, Eq. (3.8)
reduces to∫ h

0

[
εRe

(
∂u

(0)
1

∂t
+ u

(0)
1

∂u
(0)
1

∂x
+ v

(0)
1

∂u
(0)
1

∂y

)
− ∂2u

(0)
1

∂y2

]
g1dy

+
∫ 1

h

[
εRe

(
∂u

(0)
2

∂t
+ u

(0)
2

∂u
(0)
2

∂x
+ v

(0)
2

∂u
(0)
2

∂y

)

−Rμ

∂2u
(0)
2

∂y2

]
g2dy = 0. (3.16)

Substituting Eqs. (3.3), (3.5), and (3.14) into Eq. (3.16) along
with the use of kinematic condition (2.18) results in the
following system of equations:

∂h

∂t
+ ∂q

∂x
= 0,

R1
∂h

∂t
+ R2

∂h

∂x
+ R3

∂q

∂t
+ R4

∂q

∂x
+ R5 = 0, (3.17)

where the superscript (0) is dropped for convenience. Here the
coefficients R1,R2,...,R5 are explicit functions of q, h, and f
and are given in Appendix A. Please note that the equations
are rescaled so that ε no longer appears in Eq. (3.17). In other
words, the independent variables of the problem, x and t, have
been replaced by εx and εt, respectively. It is worth mentioning
that the accuracy of Shkadov’s approach [32] is of order
1, whereas the current method results in an O (ε) accuracy.
The reason is that the weight functions are simply unity in
Shkadov’s approach. Amaouche et al. [31] also showed that the
depth-averaging method with unity weight functions cannot
predict the onset of linear instability correctly.

IV. LINEAR STABILITY ANALYSIS

The stability of steady two-layer Poiseuille flow is investi-
gated in this section using the system of equations (3.17). The

steady state is obtained upon setting the time derivatives to
zero, leading to a nonlinear system of equations for q and h,
which may have multiple solutions. The simplest steady flow
corresponds to the Poiseuille profile in each layer and a flat
interface. The stability of this two-layer Poiseuille flow will
be analyzed in this work. The steady state is governed by

hs = 1

RH

, qs = 1

RURH − RU + 1
, (4.1)

as qs = Qs
1. Imposing a small perturbation on the steady state

leads to

h = hs + h̃, q = qs + q̃. (4.2)

Substituting Eq. (4.2) into Eq. (3.17) leads to the following
linearized system of equations:

∂h̃

∂t
+ ∂q̃

∂x
= 0,

Rs
1
∂h̃

∂t
+ Rs

2
∂h̃

∂x
+Rs

3
∂q̃

∂t
+ Rs

4
∂q̃

∂x
+ ∂R5

∂h

∣∣∣∣
s

h̃+ ∂R5

∂q

∣∣∣∣
s

q̃ = 0,

(4.3)

governing the perturbations. The coefficients Rs
1,R

s
2,...,R

s
5 are

the same as R1,R2,...,R5 given in Appendix A except in this
case, q and h are replaced by their corresponding steady-state
values from Eq. (4.1) and f(t) has been set equal to zero. The
perturbations are assumed to be periodic in x, so that

h̃ = h̄eiαx+σ t , q̃ = q̄eiαx+σ t , (4.4)

where h̄ and q̄ are constants. Substituting Eq. (4.4) into
Eq. (4.3) leads to a dispersion relation which is quadratic in σ :

D(σ,α,RH ,Re,Rμ)

=
∣∣∣∣ σ iα

Rs
1σ + Rs

2iα + ∂hR
s
5 Rs

3σ + Rs
4iα + ∂qR

s
5

∣∣∣∣= 0. (4.5)

If the real part of any of the σ roots is positive, the flow is
linearly unstable. Yih [3] pointed out that the interfacial mode
is neutrally stable when the fluids have the same viscosity
Rμ = 1. In a later study, Yiantsios and Higgins found that the
interfacial mode is also neutrally stable when Rμ = (RH − 1)2

[6]. These results are also found with dispersion relation (4.5)
as there are eigenvalues with zero real part,

σ = −6iα
RH − 1

R2
H

and σ = −3

2
iα, (4.6)
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FIG. 2. Stability diagram in the (RH ,Rμ) plane in the long
wavelength limit (α → 0). The black and white regions show that
the Poiseuille profile is unstable or stable, respectively.

for Rμ = 1 and Rμ = (RH − 1)2, respectively (the other
eigenvalue has a negative real part). Moreover, the long-wave
analysis (α → 0) can be classically made by expanding the
eigenvalue around α = 0,

σ = −iα (c0 + αc1 + · · ·) , (4.7)

This expansion is put in the relation (4.5) and the cancella-
tion of the first terms of the polynomial in α gives equations
allowing the computation of the two coefficients. It is found
that c0 is real and c1 purely imaginary:

c1 = iRe(Rμ − 1)[Rμ − (RH − 1)2]F (RH,Rμ). (4.8)

The analytical expressions of c0 and c1 are given in
Appendix B. We point out that the expressions given in [22]
which correspond to the long-wave analysis of the Navier-
Stokes equations are recovered. Then, Fig. 2, which shows
the stability diagram in the (RH,Rμ) plane, is in complete
agreement with the results of Yiantsios and Higgins [6] in the
long-wave-length limit. The black and white regions show that
the Poiseuille profile is unstable and stable, respectively. It is
verified that the two-layer Poiseuille flow is stable when the
less viscous layer is sufficiently thin (thin lubrication layer
effect). The neutral curves in Fig. 2 correspond to the lines
Rμ = 1 and Rμ = (RH − 1)2 which remain independent of the
Reynolds number. The latter curve represents the case when
the slope of the base velocity profile, and hence the vorticity
distribution, is continuous at the interface.

Vempati et al. [33] recently carried out a linear stability
analysis for two-layer flow in an inclined channel. They found
out that the critical value of the flow rate (or equivalently the
Reynolds number) for the onset of instability determined from
the measurements is larger than that predicted by linear stabil-
ity analysis at all tilt angles and interface heights. The reason
for this discrepancy is the lack of accuracy of the visualization
technique used for experimental measurement, preventing the
visualization of the small disturbance waves. In addition, the

FIG. 3. Mesh of the solution procedure.

test sections used in the experiment were not chosen long
enough to see the unstable interfacial disturbances.

V. NONLINEAR TRANSIENT RESPONSE

The formulation in the previous section is now used to
investigate transient nonlinear two-layer film flow. A brief
outline of the solution procedure is given first. The steady flow,
which is simply the uniform flow of two layers of fluid inside
the channel, is perturbed by imposing a time-dependent forcing
on the lower-layer flow rate at inception (x = 0). The response
to two types of forcing at inception is examined, namely an
initial pulse of the Dirac type, and a time-periodic forcing.
These boundary conditions are taken to investigate the effect
of pump perturbations on the quality of coextruded layers.
Finally, some connection with coextrusion will be made.

A. Solution method

The system of nonlinear equations (3.17) is discretized in
the x-t domain. Keller’s box method [34] is used to solve
the discretized equations. Figure 3 shows the mesh used in
this discretization. The step size and time step used along the x
axis and time are �x = 0.1 and �t = 0.01, respectively. These
values are found to lead to reasonable accuracy, stability, and
convergence rate, and are fixed in all the numerical calculations
presented in this study. The derivatives in Eq. (3.17) are as
follows:

∂h

∂t
=

(
hn+1

i + hn+1
i−1 − hn

i − hn
i−1

)
2�t

,

∂q

∂t
=

(
qn+1

i + qn+1
i−1 − qn

i − qn
i−1

)
2�t

, (5.1)

∂h

∂x
=

(
hn+1

i + hn
i − hn+1

i−1 − hn
i−1

)
2�x

,

∂q

∂x
=

(
qn+1

i + qn
i − qn+1

i−1 − qn
i−1

)
2�x

.

The time-dependent boundary conditions at inception will
be specified later in Secs. V B and V C. The steady flow, which
is simply the uniform flow of two layers of fluid inside the
channel, is taken as initial condition at t = 0 [see relations
(4.1)]. Given the initial and boundary conditions, the values
of h and q at nodes (i, n), (i, n) (i, n + 1) in Fig. 3 are
then known. Moreover, it can be seen from Eq. (5.1) that the
time derivatives are approximated in an implicit manner not
to impose any restrictions on the maximum allowable time
step and also to ensure numerical stability. The coefficients
R1,R2,...,R5 in Eq. (3.17) are nonlinear functions of h and q

026320-7



KAMRAN ALBA, PATRICE LAURE, AND ROGER E. KHAYAT PHYSICAL REVIEW E 84, 026320 (2011)

(see Appendix A), which are taken as average values over the
cell shown in Fig. 3, or

h = hn+1
i−1 + hn+1

i + hn
i−1 + hn

i

4
,

(5.2)

q = qn+1
i−1 + qn+1

i + qn
i−1 + qn

i

4
.

The kinematic condition in Eq. (3.17) is a linear partial
differential equation. Using the first equations in systems
(3.17) and (5.1), it is not difficult to relate hn+1

i to qn+1
i . The

nonlinear depth-averaged momentum equation in Eq. (3.17)
can now be used to solve for qn+1

i . The Newton-Raphson
root-finding method is then used to find qn+1

i , the lower-layer
flow rate at the new time step.

B. Dirac-type pulse forcing

In this section, it is assumed that a sudden pulse is imposed
for the flow rate of the lower layer, which has the following
form:

q (x = 0,t) = qs + 0.1qsδ (t) , (5.3)

where δ(t) is the Dirac delta function. Figure 4 displays the
profiles of the interface evolution, h–hs (hs is the steady
interface height), for two different Re values at x = 1. It can
be seen that the modified Reynolds number has a destabilizing
effect on the flow as reflected by the increase in the modulation
amplitude. The perturbation takes the form of a wave packet.
In fact, the interface oscillates and then decays to its steady
value, over a longer time for Re = 10 than for Re = 1. Similar
behavior was previously observed by Valette et al. [35] for
both Newtonian and viscoelastic fluids using the finite element
method and the Navier-Stokes equations.

The evolution of the interface at two different locations (x
= 1 and 2) is illustrated in Fig. 5 for a Dirac-type pulse for
Rμ = 0.1, RQ = 2.3, and Re = 10. Note that for this set of
parameters, the thickness ratio is RH = 2 upon using Eq. (2.11).
As is evident from this figure, the maximum modulation
amplitude increases further downstream (such systems are
mainly noise amplifier). The perturbation is convected along
the x axis and remains localized. Therefore, it is concluded
that the interfacial instability for the moderate modified
Reynolds number is of the convective type [36]. In general,
if small localized disturbances grow in time at the location of
excitation, the flow is termed as absolutely linearly unstable,
and if they propagate away from their original location without
changing the basic state flow, the flow is convectively unstable.
In the two-layer channel flow, the perturbation takes the form
of a wave packet which may or may not be amplified as it
moves downstream. The spatial evolution of the unsteady flow
is in large part determined by the character of the excitation,
e.g., amplitude, frequency, etc. It is worth noting that Laure and
Fortin [37] have obtained the same qualitative behavior with
the Navier-Stokes equations for a channel with finite length
using the same viscosity ratio (Rμ = 0.1) but larger flow rate
ratio (RQ = 11.5).

Figure 6 shows the interface evolution at x = 1 and 2
for Rμ = 0.1, RQ = 0.11, and Re = 10. The corresponding
thickness ratio value in this case is RH = 1.15. Upon

(a)

(b)

FIG. 4. The interface evolution at x = 1 with time for Rμ = 0.1
and RQ = 11.5 for (a) Re = 1 and (b) Re = 10. The forcing is a
Dirac-type pulse.

comparing Figs. 5 and 6, it can be seen that the modulation
amplitude is damped further downstream. Given the same set
of parameters, the behavior shown in Fig. 6 has also been
reported in [37] for a channel of finite length using a Galerkin
finite element method for the direct numerical computations
of Navier-Stokes equations.

C. Time-periodic forcing

This type of forcing can be related to the extruder rotary
motion, and it is probable to have a periodic perturbation
imposed on the layer flow rates. The periodic excitation is a
conventional way of assessing the multilayer stability. Wilson
and Khomami [38] perturbed the two-layer flow by regulating a
pressure pulse periodically, which finally results in the change
in the flow rate. In this section, the effect of a time-periodic
boundary condition on the coextrusion flow will be examined.
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FIG. 5. The interface evolution with time at two different loca-
tions for Rμ = 0.1, Re = 10 and RQ = 2.3 (RH = 2). The forcing is
a Dirac-type pulse.

The lower-layer flow rate at inception is now perturbed in the
following form:

q (x = 0,t) = qs + 0.1qs sin (2πνt) , (5.4)

where ν is the forcing frequency. The interface height evolution
at two different locations (x = 1 and 2) is illustrated in Fig. 7 for
RQ = 2.3. These two points are, respectively, located near and
away from the inception. The other parameters are Rμ = 0.1,
Re = 10, and ν = 1/2. Further downstream, the maximum

FIG. 6. The interface evolution with time at two different loca-
tions for Rμ = 0.1 and Re = 10 and RQ = 0.11 (RH = 1.15). The
forcing is of the Dirac-type pulse.

FIG. 7. The interface evolution with time at two different loca-
tions for Rμ = 0.1 and Re = 10 for RQ = 2.3 (RH = 2). The forcing
frequency is ν = 1

2 .

modulation amplitude is amplified. There is always a time
delay for a point at a further location affected by the flow rate
change at inception (see Fig. 4). This time delay is in general
a function of the flow characteristics such as Rμ, RQ, and,
more importantly, Re. In the case of the time-periodic forcing,
similarly to the Dirac-type pulse case, the amplifying behavior
of the flow field becomes more evident by further increasing
the RQ value [37].

Finally, Fig. 8 displays the interface evolution at x = 1 and
2 for fairly low value of flow rate ratio (RQ = 0.11). The other
parameters are kept the same as in Fig. 7. Upon comparing
Figs. 7 and 8, it is observed that, similarly to the Dirac-type
pulse case, the modulation amplitudes for these values of Rμ

and RQ will be damped further downstream for time-periodic
forcing. The behavior shown in Fig. 8 for periodic forcing is
confirmed via direct simulation of the Navier-Stokes equations
[37].

D. Connection with coextrusion

Suppose that the upper layer is 2.5 mm thick and contains
polypropylene (PP) melt and the lower layer is also 2.5 mm
thick but contains high-density polyethylene (HDPE) melt.
The thickness ratio at inception is then obtained as RH = 2.
The channel length is assumed to be large enough compared to
its thickness. The value of the thickness-to-length ratio, ε, will
be a small value and the thin-film approach remains valid. The
melt flow rate in this coextrusion process is often very low and
at 200 ◦C may be around 30 g/min. Using this flow rate, it is
not difficult to show that the mean velocity inside a 5-mm-wide
channel is U = 1.05 × 10−4 m/s and the maximum shear rate
across the channel becomes 0.04 m/s. In this range of shear
rate, the polymers can be modeled as Newtonian fluid. The
viscosities of polypropylene and high-density polyethylene at
200 ◦C are approximately equal to 2 × 103 and 2 × 104 Pa s,
respectively, and their density is taken to be ∼950 kg/m3.
In this case, the Reynolds number is of order 10−7 and the
viscosity ratio Rμ = 0.1. The current formulation suggests that
if the speed of screw extruder of high-density polyethylene
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FIG. 8. The interface evolution with time at two different loca-
tions for Rμ = 0.1 and Re = 10 for RQ = 0.11 (RH = 1.15). The
forcing frequency is ν = 1

2 .

is perturbed, e.g., by a Dirac-type pulse or a time-periodic
forcing, the perturbation will grow further downstream (see
Figs. 5 and 7). Although the Reynolds number in our study
is higher than 10−7, it is known that the flow pattern remains
qualitatively the same (convective instabilities) but the growth
rate depends on the viscoelastic behavior (which can be linked
to a Weissenberg number) [39,40]. In fact, as the amplitude of
the perturbations decreases with the decrease in the Reynolds
number, it is necessary to introduce the constitutive equation
of the studied polymer in order to get an accurate estimation of
spatial growth rate. In a real coextrusion process, the growth
in the perturbation amplitude further downstream should be
avoided because it will not lead to a uniform interface height
and may cause mixing of the fluid layers. Nevertheless, a
partial and preliminary result based on the predictions in
Sec. III can be made: the amplification of the perturbation
amplitude further downstream could be reduced by decreasing
the upper-layer thickness (polypropylene).

VI. CRITERION FOR SPATIALLY AMPLIFYING WAVES

For small temporal and spatial growth rates, the following
approximate transformation relating these growth rates was
proposed by Gaster [29] for αx , the spatial amplification:

αx = −σr

/
∂σi

∂α

∣∣∣∣
α=αν

, (6.1)

where σr and αυ are solutions of the dispersion relation (4.5):

D (σr − i2πν,αυ) = 0. (6.2)

If the perturbation grows in amplitude with locationx
(spatially amplifying waves), αx is positive; and if the
perturbation amplitude decays with x, αx shows a negative
value. Gaster’s relation is widely utilized for computing spatial
growth rates using computed temporal growth rates. This
reduces considerably the computation time because spatial
stability computations are much more time consuming than

TABLE I. Amplification ratio,αx , for Rμ = 0.1 and Re = 10.
αν is the wave number solution of dispersion relation (6.2), αx,G is
the amplification ratio calculated based on Gaster’s formula (6.1),
whereas αx,N is the value obtained from the numerical results via
Eq. (6.3).

αν αx,G αx,N αν αx,G αx,N

ν = 1
5 0.796 0.078 0.31 1.195 0.044 0.05

ν = 1
2 2.163 0.259 0.37 2.915 0.218 0.26

temporal stability ones. Moreover, Gaster’s transformation
allows us to obtain the spatial amplification in the entire
domain of α. In [41], a mathematical example was presented in
which all the premises of Gaster’s analysis [29] were fulfilled.
However, formula (6.1) gave incorrect results, indicating that
the Gaster’s transformation should be used with caution. In
another study [42], on the other hand, it was found that relation
(6.1) remains adequate for film flow down an inclined plane.
Since for two-layer Poiseuille flow, the same kind of instability
mechanism is expected (the liquid-air interface is replaced by
a liquid-liquid interface) and the growth rates σr are rather
small, it can be assumed that this relation would also work
well in this case [35]. Reference [35] looks at coextrusion
flow experimentally. It is shown in their Fig. 10 that the
theoretical predictions based on Gaster’s criterion are in quite
good agreement with experimental data. In some ranges of
wave number the two values do not agree well quantitatively
but the source of discrepancy is well addressed in details in
the same paper [35].

Gaster’s criterion is now applied to the current linear
stability formulation (Sec. IV), for a different set of parameters.
The values of αx for Re = 10 and Rμ = 0.1 are listed in Table I.
The influence of flow rate ratio and frequency is assessed by
considering RQ = 2.3 and 0.11, and ν = 1

5 and 1
2 . Note that

the forcing frequency ν and wave speed σi , are related by
ν = − σi

2π
. A crude spatial growth rate based on the numerical

results can also be given by the formula

αx = log{maxt [h(x2,t) − hs]} − log{maxt [h(x1,t) − hs]}
x2 − x1

,

(6.3)

where x1 and x2 denote two different locations along the
channel. The amplification ratios calculated based on estimate
(6.3) and the simulations are also listed in Table I:

RQ = 2.3, RQ = 0.11.

The positive values of αx in Table I indicate that the
perturbation will be amplified further downstream, which is
in qualitative agreement with the numerical prediction (also
see Fig. 7 for Rμ = 0.1, ν = 1

2 , Re = 10, and RQ = 2.3).
The agreement between the numerical amplification ratio,
αx,N , and the amplification ratio based on Gaster’s formula
αx,G is better for ν = 1

2 because the spatial periodicity of the
perturbation of the Gaster’s solution is smaller. In fact for ν =
1
5 , it is necessary to perform direct numerical computations on
a larger spatial range in order to get a disturbance with the
spatial periodicity predicted by the dispersion relation. It is
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worth noting that the code was run on a larger domain (x2 =
8) and an amplification ratio of ∼0.13 was obtained, which is
much closer to Gaster’s prediction, αx,G = 0.078. It is worth
noting that the good agreement with Gaster’s criterion (either
quantitatively or qualitatively) is more of a hint in the right
direction than a complete agreement. By looking at the Table I
data, it can also be concluded that in the case of a less viscous
upper layer, any increase in the upper-layer thickness will make
the flow field more unstable. In return, the negative value of
αx in Table I means that the perturbation will be damped
further downstream. Note the close quantitative agreement
between the negative amplification ratio value based on
Gaster’s formula αx,G and the numerical value αx,N for ν = 1

2 .
In the case of the more viscous upper layer, any increase in
the upper-layer thickness will result in a smaller value of αx ,
finally stabilizing the flow. Although there is no difference
between the signs of αx,G and αx,N , one can see a very slight
quantitative discrepancy between the two values, which is most
likely due to the fact that Gaster’s formula is based on the
temporal linear stability results, whereas the numerical values
are obtained from the nonlinear numerical solution on a finite
domain in the x direction. Another interesting result can be
extracted from Table I by considering the effect of forcing
frequency. It can be seen that when the viscosity and flow
rate ratios are such that the perturbation gets amplified further
downstream, the decrease in the forcing frequency, ν, can
destabilize the flow even more. On the other hand, the decrease
in ν value has a stabilizing effect as the perturbation is damped
downstream.

Valette et al. [39] studied the interface instability of
the coextrusion flow of polyethylene and polystyrene both
experimentally and theoretically (using the White-Metzner
constitutive equation) in a slit geometry. For prototype in-
dustrial conditions, a stable (unstable) transition was found
which bounds the occurrence of stable (unstable) sheets at the
die exit. This transition is controlled by flow rate ratio and
temperature (since the viscosities depend on the temperature).
The dominant mode of instability was recognized to be of
the convective type. Spatial amplification rates were then
calculated for all studied conditions and showed that such
an analysis is able to predict the occurrence of defects at the
die exit. The spatial amplification rate of the perturbations
was given in [39] as a function of forcing wave number for
polyethylene and polystyrene solutions, a die gap of 2 mm,
T = 180 ◦C, and RQ∼11.8 (QPE = 87.4 g/min and QPS =
7.4 g/min). The corresponding Rμ value for these solutions
is ∼1.4. The current formulation predicts a negative value for

the spatial amplification factor αx , whereas a positive value
was observed both experimentally and theoretically for the
White-Metzner model (see Fig. 10 in [39]). Given the high
flow rate in this case, the current Newtonian fluid assumption
may not be valid. The shear rate inside the system is very high,
γ̇ = O(103) s−1. In this case, viscoelastic and shear-thinning
effects cannot be neglected.

VII. CONCLUSION

Two-layer thin-film flow inside a channel is examined in
this study. The fluid density is assumed to be uniform over the
flow domain, but the viscosity in each layer can be different.
Interfacial tension has been neglected. The weighted residual
approach first proposed by Amaouche et al. [31] is used
for solving the problem, but additional simplifications are
proposed to improve its legibility and appliance. The stability
of two-layer Poiseuille flow is investigated for long wavelength
limit and the formulas of the literature are recovered. The
viscosity ratio Rμ seems to have a destabilizing effect on the
flow with a thicker upper layer. When the upper layer is more
viscous than the lower layer, the thickness ratio RH seems to
have a stabilizing effect on the flow.

In order to simulate the disturbance effect on a real
coextrusion flow, the steady flow, which is simply the uniform
flow of two layers of fluid inside a channel, was then perturbed
in two different ways. First, by a Dirac-type pulse which
is imposed on the lower-layer flow rate at t = 0.5, and
second, by time-periodic forcing in the form of q (x = 0,t) =
[1 + 0.1 sin (2πνt)] qs with ν being the forcing frequency.
The perturbation takes the form of a wave packet which may
or may not be amplified as it moves downstream depending
on the values of the parameters involved in problem. In a real
coextrusion process, the growth of the perturbation amplitude
further downstream should be avoided because it will not lead
to a uniform interface height and may cause mixing of the fluid
layers. Finally, Gaster’s criterion [29] was applied to the linear
stability formulation for a different set of parameters to check if
the perturbation grows in amplitude with location x, (spatially
amplifying waves). The predictions based on Gaster’s criterion
were then compared with those obtained through the numerical
solution of the reduced model showing close agreement.
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APPENDIX A: COEFFICIENTS IN EQ. (3.17)

R1 = (a17h
7 + a16h

6 + a15h
5 + a14h

4 + a13h
3 + a12h

2 + a11h + a10)/D1,

R2 = (a29h
9 + a28h

8 + a27h
7 + a26h

6 + a25h
5 + a24h

4 + a23h
3 + a22h

2 + a21h + a20)/D2,

R3 = (a35h
5 + a34h

4 + a33h
3 + a32h

2 + a31h + a30)/D3,

R4 = (a47h
7 + a46h

6 + a45h
5 + a44h

4 + a43h
3 + a42h

2 + a41h + a40)/D4,

R5 = (a57h
7 + a56h

6 + a55h
5 + a54h

4 + a53h
3 + a52h

2 + a51h + a50)/D5,
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where

a17 = −2(Rμ − 1)3(1 + f ),

a16 = (Rμ − 1)2(5Rμ − 12)(1 + f ) − 3
(
R3

μ − 3R2
μ + 3Rμ − 1

)
q,

a15 = −4(Rμ − 1)
(
R2

μ − 6Rμ + 7
)
(1 + f ) + 6

(
R3

μ − 4R2
μ + 5Rμ − 2

)
q,

a14 = −2
(
6R2

μ − 21Rμ + 16
)
(1 + f ) − (

2R3
μ − 19R2

μ + 34Rμ − 17
)
q,

a13 = −2(7Rμ − 9)(1 + f ) − 4
(
2 − 3Rμ + R2

μ

)
q,

a12 = (Rμ − 4)(1+f ) + 3(Rμ − 1)q,

a11 = −2(Rμ − 2)q,

a10 = −q,

a29 = −4(Rμ − 1)3(9Rμ − 10)(1 + f )2 + 76(Rμ − 1)4(1 + f )q,

a28 = [−99
(
R4

μ + 1
) + 386Rμ

(
R2

μ + 1
) − 594R2

μ

]
q2 + (Rμ − 1)2

(
55R2

μ − 238Rμ + 192
)

(1 + f )2

− 2(Rμ − 1)3(62Rμ − 181) (1 + f ) q,

a27 = (
240R4

μ − 1272R3
μ + 2376R2

μ − 1896Rμ + 552
)
q2 − 2(Rμ − 1)

(
5R3

μ − 112R2
μ + 283Rμ − 180

)
(1 + f )2

+ 2
(
17R2

μ − 230Rμ + 337
)

(Rμ − 1)2 (1 + f ) q,

a26 = (−180R4
μ + 1494R3

μ − 3720R2
μ + 3678Rμ − 1272

)
q2 + (−34R3

μ + 312R2
μ − 604Rμ + 320

)
(1 + f )2

+ (−4R4
μ − 718R2

μ + 106R3
μ + 1218Rμ − 602

)
(1 + f ) q,

a25 = (
48R4

μ − 774R3
μ + 2844R2

μ − 3654Rμ + 1536
)
q2 + (−6R2

μ + 136Rμ − 120
)

(1 + f )2

+ (−8R3
μ + 126R2

μ − 352Rμ + 250
)

(1 + f ) q,

a24 = (
156R3

μ − 1062R2
μ + 1896Rμ − 990

)
q2 + (−11R2

μ + 10Rμ

)
(1 + f )2 + (−56R2

μ + 62Rμ − 46
)

(1 + f ) q,

a23 = (
156R2

μ − 420Rμ + 264
)
q2 − (2Rμ − 8)(1 + f )2 + 2q

(
11R2

μ − 16Rμ + 11
)

(1 + f ) ,

a22 = (−18Rμ + 48)q2 + 2(3Rμ − 7) (1 + f ) q,

a21 = (18Rμ − 48)q2 + 2 (1 + f ) q,

a20 = 9q2,

a35 = 3(Rμ − 1)2,

a34 = −4(Rμ − 1)(Rμ − 2),

a33 = 6(1 − Rμ),

a32 = 0,

a31 = −1,

a30 = 0,

a47 = −262(Rμ − 1)3(1 + f ),

a46 = (Rμ − 1)2(437Rμ − 1100) (1 + f ) − 297(Rμ − 1)3q,

a45 = −2(Rμ − 1)
(
74R2

μ − 721Rμ + 893
)

(1 + f ) − 54(Rμ − 1)2(10Rμ − 23)q,

a44 = −(
402R2

μ − 1722Rμ + 1384
)

(1 + f ) − 27(Rμ − 1)
(
8R2

μ − 65Rμ + 73
)
q,

a43 = (−378Rμ + 506) (1 + f ) + 108(Rμ − 1)(5Rμ − 13)q,

a42 = (33Rμ − 76) (1 + f ) + 351(Rμ − 1)q,

a41 = 6 (1 + f ) − 54q,

a40 = 27q,

a57 = −7Re(Rμ − 1)2f ′,
a56 = Re(Rμ − 1)(16Rμ − 27)f ′,

a55 = −20Rμ(Rμ − 1)2(1 + f ) − Re
(
9R2

μ − 45Rμ + 38
)
f ′ + 20

(
R3

μ − 3R2
μ + 3Rμ + 1

)
q,
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a54 = 20Rμ(Rμ − 1) (1 + f ) − Re(17Rμ − 22)f ′ + 100(Rμ − 1)2q,

a53 = −20Rμ(3Rμ − 5) (1 + f ) + Re(−Rμ + 3)f ′ − 40
(
3R2

μ − 8Rμ + 5
)
q,

a52 = −60Rμ (1 + f ) − f ′ Re − 20
(
4R2

μ + 14Rμ − 10
)
q,

a51 = 100(Rμ − 1)q,

a50 = 20q,

and

D1 = 5

Re
(h − 1)2[(Rμ − 1)h2 − 2(2Rμ − 1)h − 1][(Rμ − 1)h + 1]2,

D2 = 140

3Re
h(h − 1)3[(Rμ − 1)h2 − 2(2Rμ − 1)h − 1][(Rμ − 1)h + 1]3,

D3 = 5

Re
(h − 1)[(Rμ − 1)h + 1][(Rμ − 1)h2 + 2(1 − 2Rμ)h − 1],

D4 = 28D1,

D5 = 10(h − 1)2[(Rμ − 1)h + 1][(Rμ − 1)h2 + 2(1 − 2Rμ)h − 1].

APPENDIX B: COMPARISONS WITH ASYMPTOTIC ANALYSIS OF THE NAVIER-STOKES EQUATION

Following notations in [22], new parameters are introduced: the layer thickness ratio εp = RH − 1 and the viscosity ratio
m = Rμ. Then, the coefficients c0 and c1 of the relation (4.7) have the following forms:

c0 = 6
(
m + 2mεp + ε2

p

) (
2ε + ε2

p + m
)
mε(1 + εp)2

d2
0

,

c1 = iRe
3
(
m − ε2

p

)
(m − 1)ε2

pf1(εp,m)

35d5
0

,

with

d0 = m2 + 2εm
(
2ε2

p + 3εp + 2
) + ε4

p,

f1 = (6εp + 1)m7 + (−2εp − 9ε2
p − 120ε3

p − 88ε4
p

)
m6 + (

32ε2
p + 344ε3

p + 821ε4
p + 1426ε5

p + 1096ε6
p + 224ε7

p

)
m5

+ (
408ε4

p + 1642ε5
p + 3667ε6

p + 3424ε7
p + 1240ε8

p + 224ε9
p

)
m4

+ (
224ε5

p + 1240ε6
p + 3424ε7

p + 3667ε8
p + 1642ε9

p + 408ε10
p

)
m3

+ (
224ε7

p + 1096ε8
p + 1426ε9

p + 821ε10
p + 344ε11

p + 32ε12
p

)
m2 − (

88ε10
p + 120ε11

p + 9ε12
p + 2ε13

p

)
m + 6ε13

p + ε14
p .

The relations given in Appendix A in [22] are recovered by changing the scaling for the velocity (the velocity at the interface
instead of the mean velocity). That corresponds to dividing the above coefficients by the nondimensional velocity at the interface
(twice for c1):

u

(
y = 1

RH

)
= 6m(1 + εp)2εp

m2 + 4mεp + 6mε2
p + 4mε3

p + ε4
p

.
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