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Structure-function scaling of bounded two-dimensional turbulence
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Statistical properties of forced two-dimensional turbulence generated in two different flow domains are
investigated by numerical simulations. The considered geometries are the square domain and the periodic
channel domain, both bounded by lateral no-slip sidewalls. The focus is on the direct enstrophy cascade range
and how the statistical properties change in the presence of no-slip boundaries. The scaling exponents of the
velocity and the vorticity structure functions are compared to the classical Kraichnan-Batchelor-Leith (KBL)
theory, which assumes isotropy, homogeneity, and self-similarity for turbulence scales between the forcing and
dissipation scale. Our investigation reveals that in the interior of the flow domain, turbulence can be considered
statistically isotropic and locally homogeneous for the enstrophy cascade range, but it is weakly intermittent.
However, the scaling of the vorticity structure function indicates a steeper slope for the energy spectrum than the
KBL theory predicts. Near the walls the turbulence is strongly anisotropic at all flow scales.
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I. INTRODUCTION

In his famous works on three-dimensional (3D) homoge-
neous isotropic turbulence Kolmogorov derived the inertial
subrange scaling of the kinetic energy spectrum (see, for
example, Frisch [1]). Applying the ideas proposed earlier by
Richardson [2] he supposed that the redistribution of kinetic
energy in the inertial subrange results in a net transport of
kinetic energy from the integral scales of the flow (where
energy injection takes place) toward the smallest (dissipative)
scales. This process is known as the energy cascade of 3D
turbulence. The arguments put forward by Kolmogorov are
based on the assumption that the constant spectral energy flux
is equal to the constant dissipation rate € of kinetic energy. He
also assumed that the kinetic energy E(k) in this range depends
on only € and the wave number k. On dimensional grounds
one then finds his famous five-thirds law: E(k) oc €2/3k=5/3.

The physical picture of two-dimensional (2D) turbulence
is different. The main significant difference between 2D
and classical 3D turbulence consists of the formation and
persistence of large coherent structures (vortices) in 2D
turbulence. The emergence of large-scale coherent structures
was already predicted on theoretical grounds by Onsager [3]
and Fjgrtoft [4]. With these predictions by Onsager and
Fjgrtoft at hand, attempts to formulate a phenomenological
theory of 2D turbulence were put forward more than 40 years
ago by Kraichnan [5,6], Batchelor [7], and Leith [8]. It is
nowadays known as KBL theory. The statistical description
of 2D turbulence in KBL theory is based on the assumptions
of homogeneity and isotropy in the limit of infinite domain
size. In the inviscid limit both the kinetic energy of the flow
and the vorticity of fluid parcels are conserved. The latter
actually implies an infinite number of conserved quantities,
such as all area-averaged powers of the vorticity. Kraichnan
[5] considered only two of the conserved quantities, the
kinetic energy and the enstrophy (area-averaged square of
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vorticity), and proposed the existence of a dual cascade in
forced unbounded 2D turbulence. The dual cascade consists
of the inverse energy cascade and the direct enstrophy cascade.
Assuming a certain injection scale of kinetic energy (in
wave-number space denoted by the wave number k) it is
possible to make the following simplified picture of these
cascades. By assuming the presence of a constant energy flux
from the injection scale toward the largest scales accessible
to the flow, and no enstrophy flux from the forcing scale to
the smallest (and dissipative) scales, Kraichnan [5] predicted
an inertial range scaling as E(k) oc €*/3k=5/3, with € the rate
of cascade of kinetic energy per unit mass. The other limiting
case concerns the situation with the presence of a constant
enstrophy flux from the injection scale toward the dissipative
scales, and no energy flux to the largest scales of motion. For
this case an inertial range according to E(k) o x>k~ has
been predicted. Here x is the enstrophy dissipation rate.

The first direct numerical simulations (DNS) of forced
2D turbulence with periodic boundary conditions was carried
out by Lilly [9] in order to confirm the existence of the
dual cascade. These numerical studies were restricted to
a resolution of 64> grid points. Although this definitely
represents too low of a resolution, these results indicated for
the first time the presence of a k=>/3 and a k3 inertial range.
To obtain the dual cascade, the domain size, forcing scale,
and dissipative scales should be sufficiently separated from
each other, and small-banded forcing in wave number space is
required. Obviously, numerical experiments aimed at simul-
taneously generating both one-to-two decade inverse energy
and direct enstrophy cascades require therefore extremely high
resolutions. Only very recently Boffetta [10] reported on a
very-high-resolution (up to 16 3842 grid points) simulation of
stationary 2D turbulence. He used a forcing that is narrow
banded in space and short correlated in time with a forcing
scale [y = L /100, with L the box size and [ o 1/ks. Thus
approximately two decades are available for both the inverse
energy cascade (for k < k) and the direct enstrophy cascade
(for k > ky). This DNS of the 2D Navier-Stokes equations
indeed reproduces, for the first time, the dual cascade scenario
predicted by Kraichnan.
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In this paper we consider the statistical properties of forced
2D turbulence in bounded domains with no-slip boundaries.
In numerical studies on forced 2D turbulence in a periodic
box (for an overview, see Ref. [11]), it is common practice
to use additional friction mechanisms in order to achieve a
statistically steady state. In particular, artificial friction at large
scales is generally applied to circumvent the pile-up of energy
(due to the inverse energy cascade) at domain-sized scales. As
observed in the high-resolution simulations of Boffetta [10]
the presence of friction has dramatic consequences for the
statistical properties of the smallest scales of motion. In the
present simulations the no-slip boundary provides a natural
sink for the kinetic energy that can balance the injection
of energy by the external forcing such that a steady state
is achieved. In this way the use of a volumetric drag force
can completely be avoided. Therefore, it is challenging to
determine the statistical properties of the small scales of
turbulence in the interior of the flow domain with no-slip
boundaries, as well as close to the sidewalls.

Another remarkable observation for forced 2D turbulence
on a periodic domain by Smith and Yakhot [12,13], already
predicted by Kraichnan [5], is the formation of a large-scale
vortical structure, called a condensate. Here all the energy that
cascades from the injection scale toward the large scales (k ~
1) is collected in this condensate. The emerging large-scale
structure turned out to have a dipole-like character. Indications
of this phenomenon from numerical studies had already been
reported by Hossain ez al. [14]. It is anticipated that the no-slip
boundaries are able to prevent energy accumulation on the
largest scales of motion and the subsequent formation of a
condensate (due to the inverse energy cascade). Smith and
Yakhot [12,13] found that in a condensation regime the self-
similarity of the small-scale statistics is lost. It is examined in
this paper whether the no-slip boundaries sufficiently prevent
the accumulation of energy in domain-sized coherent vortices
and subsequently sustain the self-similarity at the small scales.

A difficulty that may keep the small-scale structure from
obtaining KBL scaling is the injection of high-amplitude
vorticity filaments, generated at the no-slip domain bound-
aries, into the bulk of the flow. Note that this process may
affect the isotropy and local homogeneity of the turbulence.
Furthermore, Clercx and van Heijst [15] provide evidence that
in decaying 2D turbulence boundary-layer detachment can
result in an inverse energy cascade in the wall region. Wells
etal.[16] used a forcing mechanism aimed solely at generating
turbulence by vorticity production at no-slip sidewalls (without
direct vorticity production in the interior). They achieved
this by oscillating the container with a certain frequency,
thus generating Stokes boundary layers. This process indeed
results in the production of small-scale vorticity at the domain
boundaries that accumulate in thin boundary layers. These
boundary layers eventually detach and move subsequently
into the interior of the flow domain. The energy spectra
obtained by Wells and coworkers [16] indeed suggest that
these vorticity layers feed both an inverse energy cascade and
a direct enstrophy cascade. In the present study the container
remains fixed, and we apply an external forcing mechanism
(with vorticity production in the interior of the domain). An
important question is whether the interaction of the turbulence
with the no-slip boundaries and subsequent detachment of
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boundary layers, thus transporting vorticity into the interior,
has an important effect on the enstrophy transfer rate of the
internal flow.

In this paper we take a dual approach for determining
statistical properties of forced 2D turbulence in a domain
bounded by no-slip walls. A square bounded domain is used
to investigate how the statistics in the interior changes. For
determining statistical properties near the domain boundaries
simulations in a rectangular periodic channel domain with two
(opposite) no-slip walls are used. In the following sections the
problem and the numerical models used are described. Then
we give a short description on the flow structures that appear.
For both problems, the isotropy and self-similarity properties
of turbulence are determined. Finally, the power-law scaling
in the enstrophy-cascade range is investigated.

II. PROBLEM DESCRIPTION

Consider an incompressible fluid of unit density, p = 1,ina
domain € R?, which evolves according to the Navier-Stokes
equations

su+@-Vyu+Vp—vAu=f in Qx[0,T] (1)

and the continuity condition

V.u=0 in 2 x[0,7T], 2)

where u = [u(x,7),v(x,?)] is the Eulerian velocity, x = (x,y)
denotes the position vector in a Cartesian coordinate frame,
p = p(x,t) is the scalar kinetic pressure, v the kinematic
viscosity, and f = f(x,#) denotes the amount of external force
per unit area. For 2D incompressible flows it is common
to introduce the stream function i, and the relation of
Y with the velocity field is 4 = 9, and v = —9,v. The
complexity of the flow is controlled by the Reynolds number
Re = UL/v, where U represents a typical velocity and L a
typical length scale. The Reynolds number is a measure of the
relative strength of the advective versus the viscous term. In
the present study the flow domain is (partly) bounded by a
nonmoving impermeable wall, which implies that the velocity
component normal to the wall equals zero. Furthermore, the
(viscous) no-slip condition implies that the tangential velocity
component is zero at the wall. The combination of these
boundary conditions gives

ux,r)=0 xead, tel[0,T] 3)

which is essentially a Dirichlet boundary condition for u. Note

that Eq. (1) contains second-order derivatives, so two boundary

conditions are required for the existence of a unique solution.
On a rectangular bounded geometry

Q={xeR}-L<x<L,—-W<y<W},

itis also possible to define periodic boundary conditions, which
means that the value of the solution at the boundary x = —L
equals the value at the boundary x = L. The same periodicity
may hold for the boundaries at y = W and y = —W (but for
the periodic channel geometry these walls are of the no-slip
type). The formulation is completed by appending the initial
condition

u(x,0) =0, xe Q. 4
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For convenience the Navier-Stokes equations in velocity-
pressure or primitive variables (1) can be rewritten in the
velocity-vorticity formulation by taking the curl of Eq. (1)
and applying some vector identities to arrive at

ow+u-Vo—vAw=¢qg in Q x[0,T], (®)]

where
w=(Vxu- e =0dv—0oyu (6)

is the scalar vorticity and ¢ = (V x f) - e, is the z component
of the curl of the external forcing. Note that the velocity-
vorticity formulation is scalar valued in two dimensions.
The boundary conditions on 92 for the velocity-vorticity
formulation are defined in terms of the velocity since no
physical boundary condition is a priori available in terms of
the vorticity.

The forcing in terms of ¢ in the vorticity equation (5) is
defined as a Markov chain process

1/2
9(t%) = ¢,q(tu1 %) + 1A,(1 = ) Pwm)., (D)
where
1 =ét/7
14 68t/z,
is the correlation factor with correlation time 7. and |A,| the
amplitude, which is static in time (for details, see Ref. [17]).
The function w(x) takes completely random values at each

time step 8¢. The spatial structure of w(x) is generated by
considering the Fourier transform

wx) = Y explifi)exp(ik - x). )

ki <|K| <k,

®)

cr

The phase 6 € [0,27] is drawn at each time step 67 from a
uniform distribution that is independent for each wave vector
in the shell k; < |[k| < k;. This forcing protocol, originally
introduced by Lilly [9], is commonly used in numerical
simulation of 2D turbulence.

III. NUMERICAL SETUP

Two spectral methods are applied to solve the vorticity
equation (5) in bounded domains. One method, based on the
expansion of the flow variables in Fourier and Chebyshev
polynomials, is used to solve the flow in a periodic channel.
The other method consists of a standard Fourier method,
but the solid boundaries are implemented using a volume
penalization technique. Here we will give a short description
of both methods; more details can be found in Refs. [18,19].

In the case of the periodic channel the equations are
solved numerically using a Fourier-Chebyshev pseudo-
spectral method in the domain 2. We use the formulation
proposed by Daube, where the velocity-vorticity equation (5)
is supplemented by two Poisson equations for the velocity
components [20]. The domain €2 is spanned by the rectangle
[—4,4) x [—1,1] (in this particular study we limit the domain
to an aspect ratio % = 4 with the half-width fixed at W =1
and the half-length of the channel at L = 4). The no-slip walls
of the channel are located at y = =£1. The velocity and vorticity
are expanded in a truncated series of Fourier polynomials
for the x direction and in a truncated series of Chebyshev
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polynomials for the nonperiodic y direction. For the numerical
computation of the vorticity evolution, a semi-implicit time
discretization scheme is applied to the vorticity equation
(5). The linear terms in (5) are discretized by the backward
differencing formula (BDF) of third order. The nonlinear term
is extrapolated from the three previous time levels; for details,
see Refs. [18,21]. Applying the spatial and time discretizations
yields a system of equations for the spectral coefficients for the
velocity and vorticity, which can be resolved using a specially
tailored Gaussian elimination technique. The vorticity values
at the walls are not known a priori. Enforcing the vorticity
definition (6) with an influence matrix technique yields the
correct boundary values for the vorticity at the walls [20,22].

In the volume-penalization approach fluid-wall interaction
is no longer described by demanding no-slip boundary con-
ditions. The basic idea is to embed the square flow domain,
[—1,1] x [—1,1], in a larger domain with porous walls. The
porous walls are modeled by adding a Darcy drag term to the
Navier-Stokes equations, which yields the penalized vorticity
equation,

ow
at

Here € is the penalization parameter and H a mask function,
which has values 1 inside the porous walls and O for the
flow domain. An advantage to the penalization approach
is that periodic boundary conditions can be used for the
enlarged domain. This permits to use a standard dealiased
Fourier spectral method for solving the penalized Navier-
Stokes equations. A third-order BDF scheme with exact time
differentiation of the diffusion term is applied [19]. Carbou
and Fabrie [23] have shown that the L, norm of the differences
in the velocity u and velocity gradients Vu of the penalized
Navier-Stokes equations and the Navier-Stokes equations with
no-slip boundary conditions is proportional to /€. Inside the
porous wall an asymptotically thin boundary layer exists with
thickness proportional to /ve. The Gibbs oscillations that
derive from this thin boundary layer are not influencing the
solution and can be removed by a mollification technique [19].
For the mollified solution spectral accuracy is restored for the
fluid domain except for a thin layer at the boundary.

The Fourier spectral method with volume penalization has
recently been successfully applied to several decaying 2D
turbulence studies (including Lagrangian dispersion studies
in such flows) and 2D plasma turbulence on domains bounded
by sidewalls. In particular for square [24,25], circular [25-29],
and elliptical domains [25,30].

In Table I the settings used in the numerical simulations
are specified. Normal to the wall about 10 grid points are used
to resolve the viscous boundary layer. This determines the
number of active modes for simulations on the square domain,
where a uniform grid is used. The distribution of grid points
normal to the wall in the periodic channel domain is finer near
the wall than in the interior (as Chebyshev collocation points
condense near the boundaries). Hence, we can use a smaller
number of Chebyshev modes in the periodic channel than
the number of Fourier modes in the square bounded domain.
The grid spacing in the periodic direction is about equal to the
interior grid spacing in the wall-normal direction. The time step
is limited by CFL conditions and is small enough to resolve the

1
+ - Vo —vAw=—-(V x Hu)-e, +q. (10)
€
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TABLE I. Numerical parameters for the simulations on a square
domain and periodic channel domain with aspect ratio % = 4. Here,
v is the kinematic viscosity, N and M are the number of grid points
in the x and y (wall-normal for the periodic channel) direction,
respectively, At the time step, A, the forcing amplitude, 7. the
forcing correlation time, k; the forcing wave number, and [, the
typical forcing length scale.

Domain v N M At A, 1 k¢ Iy

Square 107* 1364 1364 4 x 1075 6 1072 [77x,97] 0.25
Channel 107% 2048 512 4x107° 8 1072 [7x,97] 0.25

correlation time of the forcing. The viscosity and the forcing
amplitude are chosen in such a way that the integral-scale
Reynolds number of both simulations is about 20 000. The
forcing is limited to the wave numbers 77 < |k ¢| < 97, which
relates to a forcing length scale of about one-eighth of the
domain width. The forcing length scale must be large to obtain
a long direct enstrophy cascade range, but has to be small
enough to produce an isotropic forcing field. For the bounded
square domain we ensure that Fourier modes with k, = 0 or
k, = 0 are not present in the forcing, such that the forcing does
not exert a net torque on the fluid.

IV. STATISTICALLY STEADY STATE

In Fig. 1 the evolution of the total kinetic energy E =
1 [olul*dxdy and enstrophy Z = 1 [, @*dx dy are given
for the simulation in the square domain. It can be deduced
that the flow slowly converges toward a statistically steady
state. The maximum value of the (time-dependent) Reynolds
number Re(¢) is approximately 25 000. A similar observation

10
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1000 /AMﬂWMKﬂ
0 20
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FIG. 1. (Color online) Total kinetic energy (top) and enstrophy
(bottom) vs dimensionless time (where ¢ = 1 corresponds to a typical
eddy turnover time of the larger vortices) of a forced turbulence
simulation in a square bounded domain. The integral-scale Reynolds
number is approximately 25 000.
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can be made for the periodic channel domain, where the
Reynolds number reaches Re ~ 21 000. Note that in the case
of periodic boundary conditions (in both coordinate directions)
the applied forcing mechanism would result in an unbounded
growth of the total kinetic energy. In the absence of bottom
friction the energy input by the forcing has to be balanced
by viscous dissipation, thus ((f,u)) = 2v(Z) with (f,u) =
fQ f(x,t) - u(x,t) dx dy and (--) denoting an ensemble average.
Usually itis assumed that it is legitimate to adopt the dynamical
system concept of ergodicity such that ensemble averages
can be replaced by time averages, or limy_, % fOT fwdt =
(f(u)). The production of vorticity at the domain boundaries
results in a sufficiently high dissipation rate of kinetic energy
that is able to balance the energy injection of the external
forcing. The peaks in the enstrophy signal shown in the bottom
panel of Fig. 1 are mainly a result of intensive flow-wall
interactions. To illustrate this we first introduce the enstrophy
balance,

— = v% om-V)wds —2vP + (w,q), (11)
it

with ds an infinitesimal element tangential to the boundary,
P = % fQ |Vw|?>dx dy the palinstrophy of the flow, and
(w,q) = fQ wo(x,t)g(x,t)dx dy. It is verified that the first
two terms in the enstrophy balance (11) are two orders of
magnitude larger than the last term which quantifies the
vorticity injection of the external forcing. This indicates that
the steady state in the total kinetic energy is indeed achieved
by production of vorticity at the domain boundaries.

In Fig. 2 snapshots of the vorticity field and the correspond-
ing stream function are given for two different times. Several
vortices can be recognized with different sizes and strengths.
The larger vortices are a direct result of the forcing, whereas
the smallest vortices originate from the thin detached boundary
layers [31]. In the present simulations the large-scale flow
patterns can be associated with the strongest vortices in Fig. 2.
Since the angular momentum L with respect to the origin
(0,0) can be written as L = 2 f Y dxdy, it is obvious from
the circulation of the dominant large-scale coherent structure
(and thus the sign of ¥) that the angular momentum changes
sign between ¢ = 90 and r = 110. The energy does not pile
up in the dominant vortices due to a strong dissipation of
energy during the interaction with the no-slip sidewalls. The
formation of a condensate, as observed in the simulations of
forced 2D turbulence on a periodic domain without bottom
friction by Smith and Yakhot [12,13], is absent. In these
simulations almost all the vorticity is eventually contained in
the two cores of a single dipolar vortex (one patch with negative
and another with positive vorticity). The no-slip sidewall in
our simulations clearly prevents the accumulation of energy
in domain-sized coherent structures and hence prevents the
formation of a condensate.

A similar observation can be made for the rectangular
periodic channel domain. As shown by the stream function
in Fig. 3 the flow consists of an array of four circulations cells.
Each cell corresponds with one strong large-scale vortex or a
cluster of vortices. The dimension of each circulation cell is
limited by the domain width. Hence, one can expect that the
number of circulation cells matches approximately the aspect
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FIG. 2. Snapshots of the vorticity distribution and the stream
function of forced 2D turbulence in the square domain taken at
t = 90 (toprow) and ¢ = 110 (bottom row). The vorticity ranges from
o = —120 to @ = +120 with 30 gray levels. The stream function
is shown with an interval of 0.1. The solid isolines correspond with
positive values of i, and the dashed isolines represent negative values

of .

ratio of the domain. Again, the smallest vortices derive from
vorticity boundary layers that are detached from the wall [17].

V. ISOTROPY

The spatial structure of the flow can be analyzed by
considering the statistical properties of velocity differences
su(x,r,t) = u(x +r,t) —u(x,r). For statistically stationary
flows it is allowed to drop the time dependence; we are
thus left with Su(x,r,7) = du(x,r). The velocity difference
can be decomposed in components parallel and perpendicular

©

FIG. 3. Snapshots of the vorticity and the stream function in the
periodic channel domain. The vorticity ranges from w = —120 to
o = +120 with 30 gray levels. The stream function is shown with an
interval of 0.1. The black isolines correspond with positive values of
¥, and the gray isolines represent negative values of .
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tor: duy(x,r) = du(x,r) -r/r and du, (x,r) = du(x,r) - r /r,
respectively, with r = |r|] and r| = kxr (with k= 0,0,1)
the unit vector perpendicular to the plane of the flow). By
assuming homogeneity and isotropy we can unambiguously
drop the x dependence and replace r by r in statistical
averages. The structure functions of different orders p for the
longitudinal and transverse velocity components are Sl,' r)=
(|6uyy|?) and SIJ;(r) = (|6u|?), respectively. The scaling of
the structure function S, is given by

Sy(r) ~ rer (12)

with ¢, = hp the scaling exponent [assuming that Su(r) ~ r"].
Note that the structure functions are much better suited
for application in bounded domains than the spectra, as
computation of spectra on a nonperiodic domain requires a
spatial filtering of the solution near the wall.

The relation between the transverse second-order structure
function SzL(r) and the longitudinal second-order structure

function S‘zl(r),

sS40 = (1 " fi)s'(r) (13)
S 2dr )"
permits to verify whether the small-scale statistics is consistent
with the crucial KBL assumption that the flow is locally
homogeneous and isotropic. The procedure is straightforward:
First, one computes both structure functions, and then one
computes an estimate for S5-(r) by using S‘z| (r) and relationship
(13). Strong deviations between the estimate for Sj(r) and
the direct determination of SzL(r) indicate the presence of
anisotropy or local inhomogeneity in the flow.

Figure 4 shows the transverse second-order structure
function of the velocity obtained from a forced 2D turbulence
simulation in a square box (with width 2). The second-order
structure function is either directly evaluated in a square box
in the center of the domain or indirectly by applying Eq. (13).
Various box sizes with a width ranging from 0.6 to 1.2 have

K 107 107 10°

r —

FIG. 4. (Color online) Transverse second-order structure function
of the velocity, S;(r) (solid line). The arrow denotes the length
scale of the forcing. The dashed line corresponds with the isotropic
estimate for the transverse second-order structure function based
on the longitudinal structure function. The structure functions are
computed in a square box with a width 1.0 in the center of the flow
domain (the square computational domain has a width 2).
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been considered, and no significant differences have been
observed for the statistical quantities in the present study.
Therefore, all the presented results for the square domain are
calculated in a box centered in the interior with a width equal
to one. Figure 4 also shows a comparison of the transverse
second-order structure function, numerically evaluated from
the available flow field, with the computed estimate obtained
with Eq. (13), thus based on the longitudinal second-order
structure function. The result is in good agreement for scales
smaller than the forcing scale, which supports the assumption
that the flow can be considered as statistically isotropic
and locally homogeneous. The structure function Sj(r) is
proportional with r? for the smallest separations and flattens
when moving to the forcing length scale.

While isotropy for scales smaller than the forcing scale
is observed in the interior, this is not likely near the walls.
In viscous boundary layers the wall-normal velocity is much
smaller than the tangential velocity. Figure 5 displays the
transverse velocity structure function calculated along four
different lines parallel to the no-slip sidewalls in the periodic
channel. Along the center line of the channel (y = 0) isotropy
is again retrieved for all scales smaller than the forcing scale,
and Sj- o r2. Moving toward the wall the statistical properties
of the turbulent flow become more anisotropic, in particular for
y=0.95and y = 0.99. The line y = 0.99 is located inside the
boundary layer based on the 99% velocity criterion, but well
outside the viscous sublayer. While the anisotropy is strongest
for the largest scales, isotropy is even lost for the scales in the
viscous subrange; see Fig. 5.

0.99 Tlf
10 : ‘ ‘

r —

FIG. 5. Transverse second-order structure function of the velocity
computed over the lines y =0.99, y =095, y=0.5, and y =0
(ranging from the sidewall to the center of the channel, respectively).
Each subsequent plot is shifted by a factor 10?. The gray line in
each panel corresponds with the isotropic estimate for the transverse
second-order structure function SzL(r), based on the longitudinal
structure function; see Eq. (13).
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A special note needs to be made about the scaling exponent
¢p of the structure functions. The power-law scaling exponent
of a structure function S,(r) is bounded by its order, ¢, < p
(see, for example, Ref. [32]). Therefore, the comparison with
the exponent of the energy spectrum has some limitations. The
classical k=>/3 scaling of the energy spectrum in the inverse
energy cascade relates to a 7*/3 scaling of the second-order
structure function of the velocity. Evaluating the scaling in the
enstrophy-cascade range [E (k) oc k3] is not straightforward
as the corresponding 2 scaling for the second-order velocity
structure function, shown in Fig. 4, is equal to the upper bound.
Hence, steeper energy spectra, for instance, in the viscous
subrange, always result in S5-(r) o< 72 scaling. In Sec. VII we
investigate the second-order structure function of the vorticity,
S>.0, for extracting the scaling of the energy spectrum, as it
has a slope usually well separated from this upper bound.

VI. INTERMITTENCY AND SELF-SIMILARITY

A straightforward method to analyze the scale dependence
of the statistical properties of turbulence is to investigate the
probability density function (pdf) of the vorticity increments
dw(r) = w(x+r) — w(r) at different separations r = |r|.
Figure 6 presents the pdf of the vorticity increments for seven
separations in the range » < [. It is observed that the pdf has
a similar shape for all separations. A Gaussian core can be
recognized with exponential tails. The similarity in the shape
of the pdf suggests scale-invariant statistics.

This particular shape of the pdf is typically observed
in two-dimensional turbulence. The general picture is that
the heavy exponential tails are related to the presence of
coherent vortices in the flow. The same pdf is observed in
the interior of the periodic channel (see data obtained for
y =0, shown in Fig. 7). Near the wall a totally different
pdf is observed, P(s) ~ exp(—c|s|~'/?), where s = 8w and
¢ a constant. The probability of observing very weak and
very strong vorticity increments is increased at the expense
of fluctuations at average intensity. Boffetta [33] observed a
similar pdf in numerical simulations of 2D turbulence with
Ekman friction. He argued that the visual counterpart is the

1

10

- / \
10°

4

—

10

P(éw)

10°

—6

10

-4 -2 0 2 4
dw/ <(5w2>1/2 —

FIG. 6. Probability density function P(Sw) of the vorticity incre-
ments dw for separations r S I, (r = 1/256, 1/128, 1/64, 1/32,
1/16, 1/8, and 1/4) in the interior of the square bounded domain. A
Gaussian distribution is given in gray for comparison.
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P(ow) —
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FIG. 7. Probability density function P(Sw) of the vorticity incre-
ments for separations r S I, (r =1/64,1/32,1/16, 1/8, and 1/4) in
the periodic channel domain for the lines y =0, y = 0.5, y = 0.95,
and y = 0.99 with each subsequent plot shifted upward for clarity.
The gray line in the lower plot depicts a Gaussian distribution with the
same variance as in Fig. 6, while in the upper plot the gray line gives
the distribution P(s) ~ exp(—c|s|~'/?) (which are mostly buried in
the different pdfs).

organization of the vorticity field into “quiescent” areas (where
the vorticity changes smoothly) and active regions (dominated
by filaments). The vorticity in the boundary layer is a response
to the internal flow structures. The large circulation cells
present in the interior flow yield a relatively smooth vorticity at
the wall. However, when the boundary layers detach from the
wall, high-amplitude vorticity filaments occur perpendicular
to the wall.

The self-similar scaling of the form (12) is motivated by
the scale invariance of the Euler equations. It is assumed
that Navier-Stokes flow in the limit of v — O will obtain
self-similar scaling. However, as the forcing scale and the
dissipation scale are only weakly separated in our simulations,
the presence of viscous dissipation can be expected to be
relevant for all separations smaller than the forcing scale. Since
the Stokes equation is not scale invariant, it can be expected
that self-similarity will no longer hold.

A more accurate method for the detection of intermittency
effects is proposed by Benzi et al. [34]. They showed that
locally homogeneous, isotropic turbulence obeys a more
general scaling relation of the form

S,(r) ~ 5. (14)

The scaling (14) extends the inertial range property (12),
which is strictly valid for r; < r < If. The relative scaling
exponent ¢ » allows a more accurate determination and hence
a more reliable detection of the presence of either extended
self-similarity (ESS) or intermittency.

The relative scaling exponent can now be expressed as
E,, = p/3+y,, where y, is a measure of the degree of
intermittency. Babiano et al. [35] determined the relative
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FIG. 8. Transverse structure functions SpL of the velocity vs the
separation r (top panel) and versus the third-order structure function
of the absolute value of the transverse velocity increments. The
arrow denotes the forcing scale, and the dashed lines in the bottom
panel correspond with a slope of p/3. All results are obtained from
simulations of forced 2D turbulence in a square bounded domain.

scaling exponent ¢, for both the inverse energy cascade and
direct enstrophy cascade range. It was observed that in the
enstrophy cascade range the intermittency correction y, was
negligible, so that Ep = p/3. In the inverse energy cascade
range a strong intermittency correction was found to be
necessary. The magnitude of the intermittency correction in
the inverse energy cascade is close to the corresponding value
observed in 3D turbulence. Babiano et al. [35] developed an
intermittency model for y, based on the scaling behavior of
local averages of the nonlinear transfer rate of the enstrophy.
It correctly explains the observed absence of intermittency
in the enstrophy cascade range and the presence of strong
intermittency in the inverse energy cascade range.

Figure 8 (top panel) shows the structure functions with
respect to the separation length r. In the viscous range the
scaling exponent is equal to its upper bound, ¢, = p. Forr >
1072 the scaling exponent is fractionally smaller and decreases
strongly near the forcing scale. In Fig. 8 (bottom panel) the
structure functions are plotted versus the third-order structure
function. It can be seen that the scaling £, = p/3 indicating
self-similarity holds up to order p = 4. Note that in the viscous
range this relation is automatically satisfied due to the upper
bound of the scaling exponent. For higher-order structure
functions (p > 6) deviations appear from the ESS scaling for
S3l(r) > 1072, which points toward some intermittency in the
direct enstrophy cascade range.
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FIG. 9. ESS scaling exponent for y = 0 (black) and y = 0.99
(gray) for the structure functions of order p = 2, 4, 6, and 8. The
dotted lines correspond with the p/3. All results are obtained from
simulations of forced 2D turbulence in the periodic channel domain.

Figure 9 gives the scaling exponent, determined using the
ESS principle, found in the periodic channel. Let us first
consider the structure functions obtained from the center
line of the channel. As for the square domain deviations
from ESS scaling appear for structure functions with p > 6.
No deviations are observed for p = 2 and 4. The enstrophy
cascade range is not long enough, however, to yield a plateau in
the scaling exponent. Hence, there is no possibility to quantify
the intermittency by calculating y,. Near the wall deviations
are observed even for p = 2. This indicates, as can be expected,
that near the wall the turbulent flow is strongly intermittent.

VII. ENERGY AND ENSTROPHY FLUXES

The second-order structure function of the vorticity,
S$2.0(r) = ((Bw)?), is displayed in Fig. 10. This figure reveals
that for the smallest scales ((§w)?) o r! and that it flattens
for separations near the forcing scale [y. The structure
function S, ,(r) = ((8w)?) provides more information about
the scaling exponents of the energy spectrum, since the slope
of the second-order structure function of the vorticity is well
separated from the upper bound. From Fig. 10 we can deduce
that the corresponding energy spectrum has a slope of k=3
near the forcing scale and becomes steeper for higher wave
numbers, viz., E(k) o< k=*3, whichis significantly steeper than
the inertial range prediction in the enstrophy cascade range by

Sow —

r —

FIG. 10. (Color online) The second-order vorticity structure
function S, ,, in the interior of the square domain.
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KBL. This might be due to the presence of a nonnegligible
amount of viscous dissipation. The local dissipation scale is
computed with I; = (v3/x10c)'/®, where the local enstrophy
dissipation rate is defined as xjoc = —vA’lfB [Vw|?dA,
where A denotes the area of the flow domain and B the
measurement section in the interior of the domain. The
ensemble averaged value for I, is approximately 5 x 1073,
which is consistent with the position of the steep section of
the vorticity structure function in Fig. 10. From these numbers
it can be deduced that the enstrophy cascade extends over
less than two decades between the forcing scale and the
dissipation scale. Therefore, the role of viscous dissipation
in the range between /; and [; cannot be excluded. On the
other hand, in several studies it is anticipated that energy
spectra steeper than k3 or second-order vorticity structure
functions S, o r%, with o > 0 result from the presence
of coherent structures in the flow; see, e.g., Benzi et al.
[36]. The high-resolution simulation of isolated vortex-merger
events by Kevlahan and Farge [37], in which many intensive
spiraling vorticity filaments are created, also show typically
steeper energy spectra. Figure 2 clearly reveals the presence
of coherent vortices and spiraling filamentary structures in the
vorticity field. Therefore, the observed deviation from the KBL.
theory in the present simulations are not necessarily explained
by viscous dissipation effects in the enstrophy cascade range.
It might reflect the dominant role of coherent structures on the
small-scale statistics.

Bernard [38] derived an analytical expression for a mixed
velocity-vorticity structure function in the limit of v — O,

)

r

=—2x 15)

with x denoting the ensemble-averaged enstrophy dissipation
rate. It can be seen as an equivalent of the well-known 4/5 law
of 3D turbulence. The mixed third-order structure function,
given by (15), can be interpreted as a measure of the nonlinear
transfer rate of enstrophy. The role of the longitudinal velocity
increments can be related to the alignment between the rate of
strain tensor and the vorticity gradient vector, which describes
the nonlinear amplification of the vorticity gradients. In the

<(5u” ((5w)2> —

10 10” 1072 10 10
r —

FIG. 11. (Color online) The mixed third-order structure function
Vs separation r.
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FIG. 12. (Color online) The mixed third-order structure function
vs third-order structure function of the vorticity. Dashed line
represents a slope of +1.

derivation of relation (15) it is assumed that the flow is locally
homogeneous and isotropic. In Fig. 4 it has been verified that
these conditions can be assumed in the interior of the flow
domain. Therefore, relation (15) can safely be applied to obtain
an estimate for the enstrophy transfer rate. In Fig. 11 the mixed
third-order structure function is shown with respect to the
separation length. In the forcing range a sign-change of the
mixed third-order structure function can be observed in Fig. 11.
This can be related to the injection of vorticity by the external
forcing. No other sign changes are observed in Fig. 11, which
indicates that a direct enstrophy cascade is developed from the
forcing range to the dissipation range.

The mixed third-order structure function does not clearly
show the inviscid scaling predicted by Bernard [38], i.e., a
scaling (8u||(8a))2) o r; see (15). To overcome the dissipation
effect we use once again the concept of extended self-similarity
discussed in Sec. VI. In this case the mixed third-order
structure function is plotted versus the third-order structure
function of the vorticity in Fig. 12. In the KBL framework for
the enstrophy inertial range the vorticity structure functions are
independent of the separation length. It can be deduced from
Fig. 12 that the enstrophy flux demonstrates a scaling that is
consistent with (15) in the limit of v — 0. This signifies that
the scaling for separations r S [ is consistent with the KBL
picture of the direct cascade of enstrophy toward the smallest
scale of motion. There is no sign that the vorticity injection
from the sidewalls acts as a separate forcing length-scale for
the internal flow.

Note that the analysis based on essentially isotropic
relations for the mixed third-order structure function cannot
be applied in the nonisotropic wall region.

PHYSICAL REVIEW E 84, 026310 (2011)

VIII. CONCLUSIONS

Numerical simulations of forced flow in both a square
domain and a periodic channel domain bounded by no-slip
sidewalls reveal the existence of a statistically steady state
that is maintained by a volumetric forcing and dissipation
at the sidewalls. The structure of the turbulence under these
conditions forms an important extension of the validation set
for the KBL scaling theory since the effect of volumetric drag
is absent in our simulations. It is found for the integral-scale
Reynolds numbers considered in the present simulations that
the flow is isotropic and locally homogeneous in the interior.
These are important assumptions for the derivation of the KBL
theory. However, in the enstrophy cascade range the turbulent
flow is found to be intermittent. Also the scaling exponent
of the energy spectrum, E(k) oc k~*>, which was obtained
from the vorticity structure function, is much steeper than the
k=3 spectrum from the KBL theory. From the simulations
it is not yet clear whether this is solely due to viscous
effects or that coherent vortices might play a role. The heavy
tails in the pdf of vorticity increments are related to these
coherent vortices, as was also observed in other studies on
2D turbulence in double periodic domains. To exclude viscous
effects, simulations at higher Reynolds number are required.
However, the restrictions on the grid resolution near the wall
make these simulation presently hard to perform.

Near the wall, the detachment of vorticity boundary layers
and the subsequent creation of small-scale vortices results in a
high likelihood of large vorticity increments. It was observed
that the flow is here strongly intermittent and anisotropic for
all length scales. The small-scale vortices originating from
the boundary layers also travel into the interior flow. They
can be the cause of the observed weak intermittency in the
interior for higher-order structure functions (p > 6). These
observations are in contrast with other studies of 2D turbulence
in periodic domains (thus without no-slip sidewalls) where
no significant intermittency in the enstrophy cascade range is
found.
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