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Onset of thermovibrational filtration convection: Departure from thermal equilibrium
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A theoretical investigation is made to understand the onset of thermovibrational convection in a fluid saturated
horizontal porous layer subjected to isothermal heating either at the bottom or at the top. Attention is paid to
the situation in which the solid and fluid phases of the porous medium may fail to obey thermal equilibrium
locally. Vertical harmonic vibrations of arbitrary amplitude and frequency are considered. The threshold for
dynamic instability is found via synchronous and subharmonic resonant modes exploiting the Floquet theory.
The nonequilibrium effect is felt only for intermediate values of the interphase heat transfer coefficient H . It is
found that H restrains the onset of convection whereas γ , the porosity modified conductivity ratio, encourages it.
γ constricts the convective cells ensuing at the threshold except when the layer heated from below is undergoing
small amplitude vibrations. Small values of γ expose the competition between synchronous and subharmonic
modes for a wider range of vibrational frequencies.
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I. INTRODUCTION

The widely studied configurations in hydrodynamics ex-
hibiting pattern forming instabilities are a fluid layer with
an imposed adverse vertical temperature gradient (Rayleigh
Bénard convection [1,2]) and a vertically oscillated open dish
of fluid (Faraday surface waves [3]). For sufficiently weak
driving mechanisms, both the systems are in macroscopically
time-independent uniform states. As the driving is increased,
regular spatial variations appear at well established thresholds
and the dynamics becomes complex in space and time.

Controlling natural buoyancy flow arising in the Rayleigh-
Bénard setup is essential in certain situations, like fabricating
extremely pure materials. One of the ways to achieve this is
to introduce vertical vibrations that can stabilize the adverse
density stratification in a horizontal fluid layer heated from
below, as in the case of an inverted pendulum. This analogy
was first noticed theoretically [4,5] and stimulated theoretical
[6,7] and experimental [8–10] research on thermovibrational
convection. The externally imposed mechanical vibrations
impart a fluctuating component to the already existing static
gravity and produce a convective flow component oscillating
with time. In this paper, we report the onset of convection in a
vertically vibrating fluid saturated porous layer.

The extensive work done so far on convective instability
in porous media with constant gravity has been well reviewed
[11]. In most of these investigations, the state of local thermal
equilibrium (LTE) was profoundly employed. Nevertheless, in
many practical applications involving sudden and high speed
flows, the hot fluid stream penetrates well into the relatively
cold porous structures and hence in a representative elementary
volume its temperature becomes sufficiently higher than that
of the adjacent solid phase. This local thermal nonequilibrium
(LTNE) situation can be handled by considering separate
energy equations for solid and fluid phases with a coupling
in between them to represent the energy exchange. Nield and
Bejan [11] introduced one of the simplest models to deal with
the LTNE situation. A brief review of various two equation
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models accounting the LTNE effect in porous convection
and many recent studies including free and external forced
convection boundary layers were given by Rees and Pop [12].
The onset criterion for convection in a porous medium with
the LTNE effect was first determined by Banu and Rees [13].
They predicted the emergence of tall thin convection cells
in the LTNE situation under circumstances that depend on
the conductivity ratio of the two phases. This was followed
by similar studies in the Brinkman porous medium confined
between stress-free [14,15] and rigid [16] boundaries. All
the above studies were performed based on linear stability
analysis, while Straughan [17] made a nonlinear analysis
and concluded that the linear results are important as they
coincide with the nonlinear limits. The recent works pertaining
to the LTNE effects have concentrated on various themes
and combined effects like rotation, heat generation, density
inversion, applied pressure gradient, nanofluid, etc. [18–22].

The published works on thermovibrational convection in
porous media are quite recent and fairly limited [23,24].
There are also few recent works available in the literature
dealing with thermovibrational convection in a more general
Brinkman porous medium [24–26]. In our recent study [24],
thermovibrational convection in a Brinkman porous layer in
the presence of vibrations of arbitrary amplitude and frequency
was considered. It was demonstrated that the vibration ampli-
tude could either favor or suppress setting up of convection
depending on the vibration frequency for a layer heated from
below, whereas it always favors convection irrespective of the
values of frequency for the layer heated from above. To the
best of our knowledge, there seems to have been no work on
the stability analysis of thermovibrational convection wherein
the LTE assumption breaks down. Hence we study the onset
of convection in a vertically vibrating porous layer exhibiting
thermal nonequilibrium. Moreover, though there are several
studies related to time-dependent gravity modulation in both
fluid and porous domains, most of them do not report their
results to a wider range of vibrating parameters. Because
of the limitations of the adopted solution procedures, their
investigations were restricted to either small amplitude [25,27]
or low frequency [28] or high frequency [29]. Therefore, we
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are also interested in predicting the results for an arbitrary
range of frequency and amplitude using an efficient procedure,
viz., continued fraction method [30], that does not impose any
constraint on the vibrating parameters.

II. MATHEMATICAL FORMULATION

We consider a sparsely packed, isotropic, and homogeneous
porous layer saturated with a viscous incompressible fluid.
We assume that the layer and its boundaries are subjected to
vertical harmonic vibration. The layer is confined between
two horizontal planes of infinite extent z = 0 and z = h,
which are maintained at temperatures T1 and T2, respectively.
A Cartesian coordinate system is chosen with its origin in
the lower plane and the z axis pointing vertically upward.
Here the characteristic temperature difference �T = T1 − T2

is positive for the case of unstable equilibrium (layer heated
from below), while it is negative for the stable equilibrium
(layer heated from above). The porous medium need not be
consistent with the LTE condition. Brinkman’s law is used to
model the flow through it after neglecting inertial effects.

The appropriate equations governing laminar flow through
the porous medium under the Oberbeck-Boussinesq approxi-
mation are

1

ϕ

∂v
∂t

+ 1

ϕ2
v · ∇v = − 1

ρ
∇p − ν

K
v + ν∇2v + βTf g(t )̂k,

(1)

ϕ(ρcp)f
∂Tf

∂t
+ (ρcp)f v · ∇Tf = ϕkf ∇2Tf + H (Ts − Tf ),

(2)

(1 − ϕ)(ρcp)s
∂Ts

∂t
= (1 − ϕ)ks∇2Ts − H (Ts − Tf ), (3)

∇ · v = 0, (4)

where v = (v1,v2,v3) is the filtration velocity, p the pressure,
ϕ the porosity, K the permeability, ρ the density, ν the
kinematic viscosity, β the thermal expansion coefficient, and
k̂ the unit vector directed vertically upward. Also, cp is the
specific heat, k the thermal conductivity, T the temperature
with the subscripts f and s denoting fluid and solid phases,
respectively, and H the interphase heat-transfer coefficient.
The time-dependent gravitational field is taken to be g(t) =
g0 + A

ϕ
	2f ′′(τ ), where g0 is a reference acceleration level, A

the vibration amplitude, 	 the vibration frequency, and f (τ )
the 2π -periodic function with zero 2π average.

Equation (1) contains Brinkman’s viscous term, which
creates a thin boundary layer with thickness of order

√
K ,

where K is the permeability of the porous medium. One can
also notice that Eqs. (2) and (3) are coupled together through
an additional term that incorporates the energy exchange
between the two phases when the porous medium exhibits
a thermal nonquilibrium behavior. One may note that in
the absence of fluid flow, these equations take the form of
Fourier’s equation with additional source-sink terms, which
allow the microscopic transfer of heat between the phases
due to differences in their local intrinsic values. It is assumed
that, at the bounding surfaces, the solid and fluid phases
have identical temperatures which would settle, for the time
being, the question of appropriate boundary conditions for the

temperature fields in the absence of LTE [15]. The bounding
surfaces are flat and stress-free and obey the conditions

v3 = ∂v1

∂z
= ∂v2

∂z
= 0, Tf = Ts = T1 at z = 0, (5)

v3 = ∂v1

∂z
= ∂v2

∂z
= 0, Tf = Ts = T2 at z = h. (6)

We consider a quasiequilibrium state in which the mean
velocity is zero, though the oscillating velocity is nonzero. Ac-
cordingly, we seek solutions in the form v = v0, Tf = T 0

f (z),
Ts = T 0

s (z), and p = p0(z,t). Thus Eqs. (1)–(4), together with
the boundary conditions, possess the following solution:

v0 = 0, T 0
f = T 0

s = T1 − 1

h
�T z,

(7)

p0 = βρg(t)

(
T1z − 1

2h
�T z2

)
.

We study the stability of this basic state using the method of
small perturbations. Let us consider the motion

v = v0 + u, p = p0 + q,
(8)

Tf = T 0
f + θ, Ts = T 0

s + φ,

where u, q, θ , and φ are small unsteady perturbations. Di-
mensionless variables are defined in terms of the length scale
h, the time scale h2/ν, the velocity scale ϕν/h, the pressure
scale ρν2/K , and the temperature scale Ch for both fluid and
solid phases, where C = �T/h is the basic quasiequilibrium
temperature gradient. Then the nondimensional governing
equations are

c
∂u
∂t

= −∇q − u + Da∇2u + Gr[1 + ηf ′′(τ )]θ k̂, (9)

∂θ

∂t
− u3 = 1

Pr
∇2θ + H

Pr
(φ − θ ), (10)

κ

∂φ

∂t
= 1

Pr
∇2φ − Hγ

Pr
(φ − θ ), (11)

∇ · u = 0, (12)

where Da = K
h2 is the Darcy number, Gr = βCh2g0K

ϕν2 the
filtration Grashof number based on the fluid properties, Pr =
ν(ρcp)f

kf
the Prandtl number, c = Da

ϕ
the porosity-permeability

parameter, H = Hh2

ϕkf
the interphase heat-transfer coefficient,

γ = kf ϕ

ks (1−ϕ) the porosity modified conductivity ratio, κ =
kf (ρcp)s
ks (ρcp)f

the ratio of diffusivities, η = A	2

ϕg0
the nondimensional

amplitude, and ω = 	h2

ν
the nondimensional frequency of

vibration. The nondimensional boundary conditions are

u3 = ∂2u3

∂z2
= θ = φ = 0 at z = 0 and z = 1. (13)

We then expand the vertical component of velocity and the
temperature in terms of normal modes as

(u3,θ,φ) = [ũ3(z,t),θ̃(z,t),φ̃(z,t)]ei(α1x+α2y), (14)
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where α1 and α2 represent wave numbers in the x and y

directions, respectively. Substituting this into Eqs. (9)–(12),
we obtain[

c
∂

∂t
+ 1

]
(D2 − α2)ũ3 − Da(D2 − α2)2ũ3

+α2Gr[1 + ηf ′′(τ )]θ̃ = 0, (15)

∂θ̃

∂t
− ũ3 = 1

Pr
(D2 − α2)θ̃ + H

Pr
(φ̃ − θ̃ ), (16)

κ

∂φ̃

∂t
= 1

Pr
(D2 − α2)φ̃ − Hγ

Pr
(φ̃ − θ̃ ), (17)

where D = ∂
∂z

and α2 = α2
1 + α2

2 is the overall horizontal wave
number. Now we separate the z variable from the system (15)–
(17) using the following representation:

[ũ3(z,t),θ̃(z,t),φ̃(z,t)] = [û3,θ̂ ,φ̂](t) sin(πz). (18)

After the substitutions t = t̂
√

Prcκ and ω = ω̂
√

Prcκ, we
obtain a system of ordinary differential equations with periodic
coefficients:

c

r

dû3

dt̂
= −(Dam2 + 1)û3 + α2

m2
Gr[1 + ηf ′′(τ )]θ̂ , (19)

1

r

dθ̂

dt̂
= û3 − m2

Pr
θ̂ + H

Pr
(φ̂ − θ̂), (20)

κ

r

dφ̂

dt̂
= −m2

Pr
φ̂ − Hγ

Pr
(φ̂ − θ̂ ), (21)

where m2 = α2 + π2 and r = √
Prcκ. We assume that f (τ ) =

cos ωt in Eq. (19) and, for notational convenience, the tilde
from t̃ and ω̃ will be subsequently omitted.

III. SOLUTION: CONTINUED FRACTION METHOD

Before applying this method, first we convert Eqs. (19)–(21)
into a system of algebraic equations. Following the Floquet
theory, we search for the solution to the system (19)–(21) in
the form

(û3,θ̂ ,φ̂)(t) = eσ t

+∞∑
n=−∞

(wn,θn,φn)einωt , (22)

where the σ is the Floquet exponent that defines the behavior
of the perturbation with time. Substitution of Eq. (22) into
the system (19)–(21) yields an infinite system of linear
algebraic equations for determination of unknown coefficients
wn,θn,φn :

2m2

α2η

(
c

r
(σ + inω) + 1 + Dam2

)
wn

= Gr

(
2

η
θn − θn+1 − θn−1

)
, (23)(

Pr

r
(σ + inω) + m2 + H

)
θn − Hφn = Prwn, (24)(

Prκ

r
(σ + inω) + m2 + Hγ

)
φn = Hγθn,

n = . . . , − 2, − 1,0,1,2, . . . . (25)

Eliminating the variables wn and φn from this system, we
transform it into an infinite tridiagonal system of linear
algebraic equations for the coefficients θn:

Mnθn = −q(θn−1 + θn+1), n = . . . , − 2, − 1,0,1,2, . . . ,

(26)

where

Mn =
(

σ+inω
P

+ 1 + Dam2

P (σ + inω) + m2 + γH

)[
P 2

κ

(σ + inω)2

+P

(
m2 + H + m2 + γH

κ

)
(σ + inω) + m4

+m2H + m2γH

]
− α2

m2
Ra

and

q = α2ηRa

2m2
.

Here P =
√

Prκ
c

and Ra = Gr · Pr is the Rayleigh number
based on the fluid properties.

Now we use the continued fraction method to solve the
above linear system. Substituting an = qndn into Eq. (26), we
obtain

Mndn =−(dn−1 + q2dn+1), n = . . . , − 2, − 1,0,1,2, . . . .

(27)

After one more substitution ζn = dn−1

dn
(dn �= 0), the system

(26) becomes

Mn = −
(

ζn + q2

ζn+1

)
, n = . . . , − 2, − 1,0,1,2, . . . .

(28)

The validity of the transition from Eqs. (26)–(28) was
discussed by Markman and Yudovich [28] and they proved
that none of the coefficients an can become zero for a solution
of the system (26). From Eq. (28), using complex fractions,
we derive two different recurrence relations for the unknown
ζn as

ζn = −Mn − q2

ζn+1
= −q2

Mn−1 + ζn−1
,

which in turn yield two different continued fractions for ζn:

ζn = −Mn + −q2

−Mn+1 + −q2

−Mn+2 + −q2

−Mn+3 + · · ·

= −q2

Mn−1 + −q2

Mn−2 + −q2

Mn−3 + · · ·

. (29)
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Assigning n = 0 in these leads to the following dispersion
equation for the Floquet exponent σ in the explicit form:

M0 − q2

M1 − q2

M2 − q2

M3 − · · ·
= q2

M−1 − q2

M−2 − q2

M−3 − · · ·

, (30)

from which we can determine the values of the Floquet
exponent σ .

Equation (30) is simplified to the real form when σ = 0
corresponding to the synchronous (S) mode with period 2π/ω,
while σ = iω/2 corresponds to the subharmonic (SH) mode
with period 4π/ω. When σ = 0, the expression for Mn

simplifies with the symmetry M−n = Mn (the bar denotes the
complex conjugate) as

Mn =
(

inω
P

+ 1 + Dam2

inωP + m2 + γH

)

×
[−P 2

κ

n2ω2 + P

(
m2 + H + m2 + γH

κ

)
inω

+m4 + m2H + m2γH

]
− α2

m2
Ra

and hence Eq. (30) reduces to

Re

⎛⎜⎜⎜⎜⎜⎜⎜⎝
q2

M1 − q2

M2 − q2

M3 − · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= M0

2
. (31)

When σ = iω/2, the expression for Mn simplifies with the
symmetry Mn = Mn−1 as

Mn =
( (

n+1
2

)
iω
P

+ 1 + Dam2(
n+1

2

)
iωP + m2 + γH

)

×
[−P 2

κ

n2ω2 + P

(
m2 + H + m2 + γH

κ

)
×

(
n + 1

2

)
iω + m4 + m2H + m2γH

]
− α2

m2
Ra

and hence Eq. (30) becomes∣∣∣∣∣∣∣∣∣∣∣∣∣
M0 − q2

M1 − q2

M2 − q2

M3 − · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

= q2. (32)

The transcendental Eqs. (31) and (32) are solved then to
obtain the marginal curves of Ra against α for S and SH
modes, respectively. Prior to that, convergence of the continued
fractions was verified numerically and the continued fractions
were truncated once the desired precision (10−4) is achieved.
The stability characteristics, viz., the critical Rayleigh number
Rac, obtained by minimizing marginal Ra against α and the
critical wave number αc with the α corresponding to Rac, are
then calculated by fixing the values of other parameters.

IV. RESULTS AND DISCUSSION

The influence of mechanical vibration on buoyancy driven
convection in a fluid saturated porous medium is considered
using a thermal nonequilibrium model. We can recover the
results corresponding to the nonvibrating situation when η =
0, which in turn serve as the reference to which later results
can be compared. By setting σ = q = n = 0 in Eq. (26), we
obtain the known relation [14,15] for the Rayleigh number
corresponding to the monotonic case (exchange of stabilities)
of the nonvibrating situation as

Ra0 =
(

(π2 + α2)2

α2
+ Da(π2 + α2)3

α2

)
×

(
1 + H

π2 + α2 + γH

)
. (33)

Before proceeding further, let us look at the situation under
two different limiting cases. Both Ra0 in the limit γ → ∞ and
Ra0( γ

1+γ
) in the limit H → ∞ become (π2+α2)2

α2 + Da(π2+α2)3

α2 .
At this stage, one should note that the Rayleigh number Ra
defined already is based on the properties of the fluid, whereas
the combination

Ra

(
γ

1 + γ

)
= βCh2g0K(ρcp)f

[ϕkf + (1 − ϕ)ks]ν
(34)

is the Rayleigh number based on the mean properties of the
porous medium that is used in the equilibrium model. Thus the
results of the LTE situation are recovered in both cases except
a rescaling in the later. When Da → 0, Eq. (33) reduces to the
one reported in the initial work of Banu and Rees [13] for the
Darcian porous layer.

It is well known that there is no permeability-porosity
relationship that can be applied universally. It is widely
accepted, however, that the permeability is determined by
microstructures such as pores and cracks that are connected. So
one can suppose, in general, that increasing porosity results in
more interconnected void spaces, which in turn contributes
to higher permeability. Having this in mind, we fixed the
porosities to lie in the range 0.01–0.1 for Da = 10−4 (Darcy
model) and 0.1–1 for Da = 10−1 (Brinkman model). It should
be noted that Da assumes values less than 10−3 for the Darcy
model and exceeds 10−3 for the Brinkman model [31]. Based
on these, we fixed c to be 10−2 and 10−1 for the Darcy and
the Brinkman models, respectively. The values of the other
parameters used in this study are Pr = 1 and κ = 1, unless
otherwise specified. This combination covers the following
porous medium–fluid pairs. For air, Pr = 0.713 at 30 ◦C
and specific-heat capacity (ρC)f = 1005J/KgK. For con-
crete, ϕ = 0.05 and (ρC)s = 960J/KgK. Hence concrete-air
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combination has κ = [ϕ(ρC)f + (1 − ϕ)(ρC)s]/(ρC)f =
0.96. Similarly, a closely packed bed of spherical glass beads
of diameter 0.3 cm (ϕ = 0.4) filled with air has κ = 0.91.
Low density foam made up of polyurethane (ϕ = 0.98)
saturated with air has κ = 0.998. Moreover, we note that the
kinematic viscosity of air at 30 ◦C is ν = 0.16 × 10−4 m2/s
and the acceleration due to gravity is g0 = 9.81 m/s2. Hence a
simple calculation shows that, if the layer is vibrating with
the frequency 	 = 15 Hz and amplitude A = 0.15 m, we
obtain the nondimensional frequency ω as 23.438 and the
nondimensional amplitude η as 3.443, 34.438, and 344.387
for the porosity ϕ = 1, 0.1, and 0.01, respectively.

A. Heated below (Ra > 0)

The dependence of Rac for small amplitude vibrations is
plotted in Fig. 1 for a wide range of vibrating frequency. An
increase in the conductivity ratio γ in general advances the
onset of convection. However, this trend is altered for very low
ω, which can be seen in the Darcy regime. Thus the presence
of vibrations could lead to dual effects of γ depending on the
vibrating frequency as against the nonvibrating case, wherein
γ is always destabilizing [13]. It is also seen that the effect
of γ is more pronounced for its small values demonstrating
the major influence of nonequilibrium phenomena. We notice
that the LTE results are approached when γ becomes 100
(see [24]). It was already demonstrated that the small amplitude

FIG. 1. (Color online) Heating from below in the presence of low
amplitude (η = 2) vibrations. Dependence of Rac as a function of ω

for H = 100 and different values of γ . Thin lines correspond to the
results of the Darcy model and heavy lines correspond to the results
of the Brinkman model. Rac → Ra0c at sufficiently high frequency is
marked in each curve. Insets show the marginal curves for LTE and
LTNE; the presence of LTNE introduces the loop shaped marginal
curves with S and SH modes alternating each other.

restriction conceals a multilooped marginal curve, which is a
characteristic of parametric excitation [24,26]. We now notice,
from the insets, that the marginal curve corresponding to large
γ exhibits a single minimum, whereas that corresponding
to small γ shows a multiloop. Thus qualitative changes are
introduced in the marginal curves even for small amplitude
vibrations when the system exhibits thermal nonequilibrium.

Figure 1 shows that the onset of instability is of SH type
for small values of γ and ω. As ω increases, it changes
from SH to S mode suddenly at a particular frequency (as
low as ω = 25 when γ = 0.001), called transition frequency,
and continues to be the preferred one for higher frequencies
however large. The corresponding Rac exhibits a cuspidal point
at the transition frequency. The changes that took place in
the marginal curves near the transition need special attention.
Initially, the bottommost loop was SH for very small ω.
As ω started increasing toward the transition frequency, an
additional thin S loop emerged in the low wave-number
region. Its minimum then reached the level of the already
existing SH loop and hence Rac for both the S and SH modes
became equal at the transition frequency (bicritical situation).
Thus, at this stage, αc experienced a sudden jump to a lower
value, indicating a catastrophic change in the length scale
of the ensuing convection cells, λ = 2πh/αc. For a further
increase in ω beyond this transition frequency, the S mode
grew further and became critical. It is to be mentioned at
this stage that the convergence rate of Mn, n = 0,1,2, . . .

in Eqs. (31) and (32) was found to increase against ω. As
many as 10 to 15 terms were required for lower values of
ω against a maximum of five terms for higher values of ω.
The same trend was maintained throughout the present study
with proportionately more number of terms for large amplitude
vibrations. The stability limits in Fig. 1 beyond the transition
frequencies, occurring at the low ω region, approach those
of the nonvibrating case asymptotically. Thus the system is
unable to react to vibrations at large frequencies. Also, we
observe that there is no mode transfer for large γ (LTE case)
and the S mode remains the preferred one throughout the
frequency range under consideration.

The interplay between the S and SH modes is apparent in
Fig. 2 for an increased vibration amplitude. At low frequencies,
we can see some cusps in Rac for smaller γ representing the
interaction between the two modes when the porous medium
is away from thermal equilibrium. As ω increases further,
the system is significantly stabilized via the SH mode, until
a final transition frequency is reached and then destabilized
rapidly via the S mode to reach the nonvibrating limits.
Also, we note that the jumps in αc become wide at high
frequencies. Moreover, we observed that, when the vibrational
effect is felt, the augmentation of the onset of convection by
γ is via constricted patterns in contrast to η = 2, the nearly
nonvibrating situation [13–15]. The Brinkman model is found
to delay the onset compared to the Darcy model. This is
because of the increased viscous resistance near the boundaries
that opposes the fluid to move with ease. We observe that the
boundary effect brought in by the Brinkman model shifts the
final transition frequency to higher values, thereby extending
the competition between the two modes over a wider region
of ω. On the other hand, an increase in γ leaves the opposite
effect. Hence the stability limits are markedly modified under
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Ra S

S

(a)

(b)

FIG. 2. (Color online) Heating from below in the presence of high
amplitude (η = 200) vibrations. Dependence of (a) Rac and (b) αc as
a function of ω for H = 100 and different values of γ .

externally imposed vibrations as the porous medium starts
showing thermal nonequilibrium.

B. Heated above (Ra < 0)

In the absence of mechanical vibrations, a layer heated from
above is obviously stratified and thermally stable and hence no
convection occurs. However, for sufficiently large temperature
gradients, damped internal gravity waves exist, which can
sustain for longer duration due to their large decay time
compared to the temporal period. Hence convective instability
can be triggered if there is a resonant coupling of these factors
to the imposed external vibration.

The onset criteria for different values of γ in the presence
of both small and large amplitude vibrations are shown in
Fig. 3. We observed that −Rac → ∞ for both ω → 0 and ω

→ ∞. At very low vibrating frequencies, it is impossible
to destabilize the diffusive equilibrium state. This is the
substantial physical reason for unboundedness of −Rac near
ω = 0. On the other extreme, when ω takes higher values, the

Ra

S

S

(a)

(b)

FIG. 3. (Color online) Heating from above. Dependence of
(a) Rac and (b) αc as a function of ω for H = 100 and different
values of γ and η. In (b), αc shown only for η = 2 and γ = 0.001.

porous layer starts behaving as if it is not forced to oscillate and
hence the effect of gravity modulation dies down, similar to
Ra > 0. Moreover, the SH mode remains critical for ω > 102.
Hence we have restricted the upper limit of ω to 103. From
Fig. 3(a), we observe that the effect of γ is unique, unlike the
case of Ra > 0. It advances the onset of motion, but always
constricts the convective cells ensuing at the threshold for all
vibrational amplitudes. For small values of γ , we observe a
severe competition between the S and SH modes over a wider
range of ω. The S and SH branches become increasingly small
and closely packed as the approach of ω is toward zero. The
corresponding αc depicted in Fig. 3(b) shows a possible yet
sensitive control of convective pattern by tuning the forcing
frequency. Also, we note that the jump in αc is narrow at low
frequencies and gradually widens as ω increases. We note that
the effects of γ are similar to those for Ra > 0. They show
that vibrations of larger amplitude leave a destabilizing effect.
However, we notice that when the porous medium exhibits
the LTE phenomenon, the instability is dictated solely by
the SH response. Thus interaction between the S and SH

026307-6



ONSET OF THERMOVIBRATIONAL FILTRATION . . . PHYSICAL REVIEW E 84, 026307 (2011)

modes comes into the picture as the medium starts moving
away from thermal equilibrium. Unlike the case Ra > 0, the
system was always observed to be more prone to instability,
which manifests in the form of smaller cellular patterns for an
increase in η for all ω.

C. Effect of Pr

Figure 4 displays the effect of Pr for different values
of Da and H . The stability limits approach those of the
nonvibrating case via the S mode for very small and large
Pr limits (refer to [7,24]). However, it is clear that the SH
mode becomes dominant for intermediate values of Pr creating
two transitional Pr’s. Nevertheless, in our previous study [24]
based on the LTE assumption, the S mode was observed
to determine the critical condition throughout the range of
Pr as Da → 0. Thus the effect of thermal nonequilibrium
is to introduce subharmonic oscillations of the convective
pattern for the Darcy regime as well. The critical Rayleigh

Ra

Ra

Pr

Pr

S

S

(a)

(b)

FIG. 4. (Color online) Heating from below. Dependence of
(a) Rac and (b) αc as a function of Pr for η = 20, ω = 100, γ = 0.1,
and different values of H . Inset in (b) shows the different topology
of the marginal curves for Pr = 0.005.

number Rac decreases to its minimum value, while the
critical wave number αc attains its maximum value in the
intermediate range of Pr. In other words, a critical Pr exists with
the corresponding convective cells ensuing at the threshold
reaching their smallest size. Also, we observe that the SH mode
extends to a wider range of Pr as Da increases. Figure 4(b)
shows that αc exhibits different behaviors in the neighborhoods
of the transitional Pr’s. It decreases for the Brinkman model,
whereas it increases abruptly for the Darcy model near the
one occurring in the low Pr region. However, this trend
reverses partially, depending on c, near the other occurring
in the high Pr region. A clearer understanding of the situation
can be obtained from the resonance regions at the marginal
state for the Darcy model, shown in the inset, exhibiting an
additional disconnected S loop belonging to higher α becoming
critical.

D. Effect of H

The influence of the interphase heat-transfer coefficient H

for different values of γ and η is shown in Fig. 5. We observe
from Figs. 5(a) and 5(c) that, for H → 0, Rac is independent
of H and γ . This is because very small values of H correspond
to a state in which the fluid and solid phases remain almost
without any interaction and the fluid phase alone takes part in
convection. In this situation, naturally even a high contrast in
conductivities of the two phases has no effect. Similarly, for
H → ∞, both phases interact well and hence can be regarded
as a single phase. Thus, in this case, also Rac was observed
to be independent of H , which can be seen to a certain extent
for ω = 10 and η = 200. Thus H leaves its effect on Rac only
for its intermediate values, of course, depending on γ . This
study almost reproduces the critical curves of the unmodulated
problem for Ra > 0 [14,15] when ω = 1000 and η = 2: Rac

increases monotonically against H and αc increases, reaches a
maximum, and then decreases against H , maintaining almost
the same value for H → 0 and ∞. However, S mode remains
critical throughout, as already mentioned in Sec. IV A. This
behavior is altered and either the S or SH mode emerges at the
critical point for intermediate values of H when the layer is
exposed to mechanical vibrations. The corresponding αc was
also found to deviate from its LTE value only for intermediate
values. These can be clearly seen when ω = 10 and η = 200. It
is also noticed that when both the vibration parameters assume
higher values, then the interaction between the two phases is
suppressed for a wider range of H .

In the case of heating from above, one can see −Rac →
∞ in the LTE limit when the layer is nearly unmodulated,
i.e., when ω = 1000 and η = 2. This is obvious because of
the thermally stable background state. An interesting behavior
in the non-LTE regime, which was not seen for Ra > 0, is
the existence of a severe competition between the S and SH
modes for intermediate values of H . One can also observe from
Fig. 5(c) that an increased ω suppresses thermal interaction
between the fluid and solid phases for a wider range of H .
The behavior of αc for intermediate values of H is completely
different from that of a nonvibrating porous layer with LTNE
effect. It decreases, reaches a minimum, and then increases
against H . It also exhibits a catastrophic jump at each mode
transition. It is also clear from Fig. 5 that when η = 200,
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(b)
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FIG. 5. (Color online) Heating from below. Dependence of (a) Rac and (b) αc as a function of H for different values of γ, η, and ω.
Rac → Ra0c and αc at H → 0 and H → ∞ are marked in each curve. Heating from above. Dependence of (c) Rac and (d) αc as a function of
H for different values of γ, η, and ω. Rac → Ra0c and αc at H → 0 and H → ∞ are marked in each curve.

both |Rac| and αc are almost the same. Thus we arrive at the
significant result that vibrations with higher amplitude have
the same effect whether the layer is heated from below or from
above. A similar result was predicted in the LTE case also [24].
In general, it is seen from Fig. 5 that mechanical vibration does
not alter the general pattern of Rac curves corresponding to the
nonvibrating porous medium using LTNE, but the convective
cells at the threshold exhibit different behavior.

E. Experimental validation

Before concluding this section, we would like to present
a comparison of the linear stability results with the available
laboratory observations of Rogers et al. [8]. To do this, we
assumed K → ∞ and ϕ = 1 corresponding to a clear fluid
and the layer to be confined between rigid surfaces. This
requires u3 = Du3 = θ = φ = 0 at the surfaces. For this, we
used the first-order Galerkin approach as in [24]. Accordingly,
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Ra Da
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FIG. 6. (Color online) Comparison of (a) Rac and (b) αc with
Rogers et al. [8] for the clear fluid case.

we represented û3(z,t) = a1(z)F (t), θ̂ (z,t) = a2(z)�(t), and
φ̂(z,t) = a3(z)�(t) in Eqs. (15)–(17) with the trial functions
a1(z) = z2(1 − z)2 and a2(z) = a3(z) = z(1 − z)(1 + z − z2).
The results given in [8] are for Pr = 0.93 and their vibrating
frequency, ω′ = 98. Owing to the use of different scalings, the
vibrating parameters in the present study are related to their
counterparts ω′ and δ′ of [8] as ω = ω′/Pr and δ = η/ω′2.
Figure 6 shows the identical qualitative natures of the critical

limits for rigid and stress-free boundaries. We also notice a
very good agreement with the experimental results validating
the numerical procedure adopted.

V. CONCLUSION

The influence of relaxing the LTE assumption on the
stability of a horizontal fluid saturated porous layer is exam-
ined under time-periodic vertical vibrations. The temperature
gradient imposed across the layer may be either parallel
or antiparallel to the gravity field. The flow through the
porous medium is governed by Brinkman’s law. The following
findings are obtained.

The nonequilibrium effect is felt only for intermediate
values of H depending on γ , Da, ω, and η; H stabilizes the
system.

The effect of γ is to advance the onset of motion. It
constricts the convective cells ensuing at the threshold, except
when the layer heated from below is subjected to small
amplitude vibrations.

The competition between the S and SH modes becomes
significant when γ assumes smaller values. It is found to
occur over a wider range of ω when Da takes higher values.
However, this coupling cannot be observed for small amplitude
vibrations.

In the case of Ra > 0, the interaction between the two
phases is suppressed for a wider range of H when both ω and
η are large. However, in the case of Ra < 0, the suppression is
found when ω takes higher values irrespective of η.

Vibrations of larger amplitude do not influence the onset
conditions significantly when the layer is heated from above.
They have the same effect for both Ra > 0 and Ra < 0.

In contrast to the LTE situation [24], the LTNE introduces
the SH mode for intermediate values of Pr irrespective of the
value taken by Da.
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