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Traveling-wave convection in colloids stratified by gravity
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Thresholds of convection excitation and nonlinear convective flow patterns in a horizontal colloidal-mixture
layer heated from below are investigated. We take into consideration the fact that, provided the barometric
stratification has been reached prior to imposing the temperature gradient, only oscillatory disturbances develop.
The influence of separation ratio, sedimentation length, and Prandtl number on the thresholds of oscillatory
convection is studied. To examine the complex nonlinear dynamics of the system, numerical simulations with
realistic boundary conditions have been carried out using a finite difference method. Long-wave and cellular
instability modes as well as transitions between the conductive state and the traveling-wave regime are discussed.
It is shown that the traveling-wave regime is stable within a specified range of heating intensity (the Rayleigh
number interval). Complex bifurcation and spatiotemporal properties of dissipative structures caused by the
interaction of the gravity-induced concentration gradient, nonlinear advection, and mixing of the fluid with
nanoparticles are considered.
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I. INTRODUCTION

A majority of dynamical processes occurs in multiphase
systems, and it is no wonder that contemporary continuum
mechanics problems involve the study of volumetrically
coupled phenomena in compositions of materials with dif-
ferent physical properties,which coexist and operate within
the same spatial regions. During the past decade, progress
in understanding the effects accompanying flows of solid
particles suspended in a continuous liquid medium has been
achieved through the results of numerous investigations. These
efforts are important for fundamental science focusing on
description, simulation, design, and control of processes in
colloids, as well as for multiple applications of colloidal mix-
tures in chemical, pharmaceutical, food, cosmetic, wastewater,
and other industries, medical technology, bioprocessing, and
environmental engineering [1,2].

A colloidal mixture contains dispersed-phase particles
which are about 10–100 nm in diameter. Similarly to the
instability phenomenon observed in one of the most inves-
tigated heat transfer problems (the Rayleigh-Benard problem)
for molecular binary mixtures [3–11], in a colloid-mixture
layer under gravity segregation [13] there may be density
inhomogeneity, and consequently, the volume force, which
depends on thermal conditions and solid phase distribution.
Thermal diffusion (the Ludwig-Soret effect) in turn influences
the relationship between the concentration and temperature
fields and the bifurcations in colloidal systems. The large
difference between the characteristic times of thermal and
diffusive processes is the cause of the interesting properties
of convection in colloidal suspensions [12–17].

A large number of spatiotemporal patterns has been
observed in the convective flows of binary mixtures with
negative Soret coupling. The specific directed motion of a
heavy component to a hot boundary of the layer weakens
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the buoyancy effect and gives rise to growing oscillatory
disturbances, whose nonlinear evolution generates a variety of
regimes. In colloidal mixtures, another segregation mechanism
exists; the heavy component migrates in the direction opposite
to gravity. Depending on initial conditions, the onset of
convection may be related to the development of monotonic or
oscillatory instability modes [13]. Oscillations in the colloidal
mixture have been experimentally observed over a long time
interval (within approximately a week) [17].

This paper presents the results of a theoretical study of
convection in a horizontal layer filled with a suspension of
solid nanoparticles in an incompressible viscous fluid stratified
under terrestrial conditions. In Sec. II, we focus on a proper
mathematical formulation of nonisothermal processes in a two-
component system with thermal diffusion and sedimentation,
in which mechanical equilibrium may be unstable. In Sec. III,
the linear theory of convective instability is developed to
analyze the behavior of the colloid fluid system. In Sec. IV,
linear analysis of the normal mode of perturbations is extended
to include the study of nonlinear evolution of perturbations.
We use the obtained numerical results to analyze the developed
convection regimes and to describe the oscillatory transitive
dynamics of the system and the stable traveling-wave regime.
In Sec. V, the results of the research are summarized.

II. GOVERNING EQUATIONS

We consider a horizontal, colloid-mixture layer placed in
the gravitational field of the Earth. The layer is bounded
by rigid, perfectly heat-conducting and impermeable parallel
planes located at z = 0 and z = h (h is the layer thickness).
The temperature Tu of the upper boundary as well as the tem-
perature Tl of the lower boundary are fixed. The temperature
difference is denoted by �T . We assume that all transfer
coefficients, like the diffusion coefficient D, temperature
diffusivity coefficient κ , and coefficient of fluid viscosity η,
are constants.
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Let the colloid mixture be a suspension of grains with
diameter d, the mean volume fraction C, and density ρs

in a carrier liquid of density ρf . The equilibrium grain
concentration in conductive state that is maintained in the
large depth layer in the gravitational field obeys the barometric
formula

Ccond(z) = C∗ e−z/lsed , lsed = kBT /(�ρVg), (2.1)

where C∗ is the concentration on the lower boundary of
the layer, g is the gravity acceleration, lsed stands for the
sedimentation length, �ρ = ρs − ρf , and V denotes the
particle volume; the z axis is directed upward. All estimates
are carried out for a water-based suspension of silica (ρs =
2.255 g/cm3, d = 22 nm) examined earlier in [12,13]. The
data yields the spatial scale of sedimentation lsed � 60 mm.
For the layer of thickness h = 2 mm, the ratio h/lsed � 1/30 is
sufficiently small, so it is reasonable to replace the barometric
distribution (2.1) by the linear one,

Ccond(z) � C∗ (1 − z/lsed) , (2.2)

implying that the concentration gradient through the layer is
almost constant and the mean concentration C slightly differs
from value C∗:

dCcond(z)/dz � −C∗/lsed, (2.3)

C = 1

h

∫ h

0
Ccond(z)dz � C∗

(
1 − h

2lsed

)
. (2.4)

When h � lsed, the characteristic mass-diffusion time is
τD � h2/(π2D) [18]. The substitution of the measured values
of the diffusion coefficient D = 2.2 × 10−7 cm2/s [12] and
h = 2 mm gives τD ≈ 5 h, whereas the thermal diffusion time
τT � h2/(π2κ), on substitution of the temperature diffusivity
coefficient κ = 1.48 × 10−3 cm2/s, hardly reaches 3 s. Thus,
the equilibrium temperature gradient dT /dz = −�T/h is set-
tled in the layer about 6000 times faster than the concentration
gradient (2.3).

Let us now take into account the Ludwig-Soret effect of
thermal diffusion. The density of the matter flux,

j = Cu − D(∇C + S∇T ) (2.5)

(S denotes the Soret coefficient), consists of the diffusion part
caused by the concentration and temperature gradients and the
regular flux due to the gravitational sedimentation of particles.
The Archimedean force �ρV g and the Stokes drag coefficient
3πηd give rise to the downward particle movement with the
velocity

u = �ρV g/(3πηd) = −(D/lsed) e. (2.6)

Here, η designates the fluid viscosity and the unit vector e is
aligned with the z axis.

In accordance with the Einstein formula, the particle dif-
fusion coefficient is inversely proportional to the nanoparticle
diameter d:

D = kBT /(3πηd). (2.7)

Substituting u from Eq. (2.6) into Eq. (2.5) gives the expression

j = −D[∇C + S∇T + (C/lsed) e], (2.8)

where the first term represents the diffusion flux, the second
term the thermodiffusion flux, and the third term can be treated
as a barodiffusion flux [20]: −D(C/lsed)e = D(C/p)∇p.

We presuppose the small variations in the fluid density ρ,

ρ(z) = ρ(1 − αδT + βδC) (2.9)

due to deviations of the temperature T and concentration
C, respectively, from their mean values T and C. The
linear thermal expansion coefficient α and solutal expansion
coefficient β,

α = − 1

ρ

∂ρ

∂T
, β = 1

ρ

∂ρ

∂C
, (2.10)

are positive for the colloid mixture under study.
Convection in a colloidal mixture is described in the Boussi-

nesq approximation by the set of equations which includes
the continuity equation for the incompressible medium, the
Navier-Stokes equation, the heat conductivity equation, and
the diffusion equation for concentration field [4,20]:

∇ · v = 0. (2.11a)
∂v
∂t

+ (v · ∇)v = −∇p + P∇2v + P (RδT − BδC)e,

(2.11b)
∂δT

∂t
+ (v · ∇)δT = ∇2δT , (2.11c)

∂δC

∂t
+ (v · ∇)δC = L

[
∇2

(
δC + ψ

R

B
δT

)
+ l−1 ∂δC

∂z

]
.

(2.11d)

Here l = lsed/h is the dimensionless sedimentation length.
In Eqs. (2.11), we apply the following scales: length h, time
h2/κ , velocity κ/h, temperature �T , concentration C∗h/lsed,
and pressure ρκ2/h2. Notably, this time scale differs from one
employed in [13]. Later on (Sec. IV) we discuss traveling-
wave regimes of convection and compare the results obtained
with the results [22] for the wave regimes in molecular binary
mixture convection, where the thermal time scale τ = h2/κ

was used. For the layer depth h = 2 mm and the temperature
diffusivity coefficient κ = 1.48 × 10−3 cm2/s, it appears that
the time scale is τ � 27 s.

Dimensionless equations (2.11) contain two control param-
eters,

R = αg�T h3

νκ
, B = βgC∗ h4

νκl
, (2.12)

which are the Rayleigh number and the Boltzmann (or
barometric) number, respectively. The material parameters,
the Lewis number L = D/κ , the Prandtl number P = ν/κ ,
and the separation ratio ψ = (β/α)S, are introduced in
Eqs. (2.11), ν denotes the coefficient of kinematic viscosity.

We consider the case of heating from below. The horizontal
boundaries at z = 0,1 are taken to be no slip, isothermal, and
impenetrable so that there

v = 0,
∂δC

∂z
+ ψ

R

B

∂δT

∂z
+ C

l
= 0,

(2.13)
δT (z = 0) = 1, δT (z = 1) = 0.

We emphasize that contrary to pure thermodiffusion strat-
ification the boundary conditions (2.13) contain the total
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concentration C = C + δC and the derivative of the concen-
tration deviation δC.

The dimensionless temperature and concentration gradients
related to the conductive state are as follows:

d(δTcond)/dz = −1, d(δCcond)/dz = −Ccond/l + ψ
R

B
.

(2.14)

Upon substitution of the dimensionless concentration of the
conductive state Ccond(z) � l − z into (2.14) and taking into
account that z/l � 1, we obtain

d(δCcond)/dz � −1 + ψ
R

B
. (2.15)

III. LINEAR THEORY

In this section, the linear stability theory is used to analyze
the stability of the quiescent state of a colloidal-mixture layer.
Assuming that small perturbations of vertical velocity compo-
nent w = (v · e), temperature θ , and concentration ϕ depend
on time and horizontal coordinates as exp[λt + i(kxx + kyy)] ,
we write Eqs. (2.11) as

(D2 − k2)[P (D2 − k2) − λ]w − Pk2(Rθ − Bϕ) = 0,

(3.1a)

(D2 − k2 − λ)θ + w = 0, (3.1b)

L

[
(D2 − k2)

(
ϕ + ψ

R

B
θ

)
+ Dϕ/l

]
− λϕ

+
(

1 − ψ
R

B

)
w = 0, (3.1c)

where D = d/dz and k2 = k2
x + k2

y . A solution to this set of
equations should satisfy the boundary conditions imposed on
the confining rigid impenetrable planes:

z = 0; 1: w = Dw = θ = 0, (3.2a)

Dϕ + ψ
R

B
Dθ + ϕ/l = 0. (3.2b)

A. Long-wave instability

To study the spectra of disturbance increments and to find
the stability threshold in the long-wave limit, when k → 0, we
represent the solution of Eqs. (3.1) as

w(z) = exp(λt)
∞∑

n=0

k2nWn(z),

θ (z) = exp(λt)
∞∑

n=0

k2nϑn(z), (3.3)

ϕ(t) = exp(λt)
∞∑

n=0

k2nXn(z), λ =
∞∑

n=0

k2nλn.

We assume that the sedimentation parameter is l−1 = O(1),
and therefore the gravity segregation term in Eq. (3.2b) is
retained to the next order in asymptotic expansions, i.e., the
diffusive and thermodiffusive fluxes are dominant.

Substituting expansions (3.3) into system (3.1) and match-
ing the factors at the identical degrees of k2, we derive the
equation systems for determining approximate solutions of
different orders. To the leading order in k, the boundary
conditions take the form

z = 0; 1: Wn = DWn = ϑn = 0, (3.4a)

DXn + ψ
R

B
Dϑn = 0. (3.4b)

In the zeroth order of approximation to k2, the following
system is derived:

λ0W0 = PW IV
0 , λ0ϑ0 − W0 = ϑ

′′
0 ,

(3.5)

λ0X0 = L

(
X

′′
0 + ψ

R

B
ϑ

′′
0

)
.

This implies that λ0 = 0, ϑ0 = 0, W0 = 0, and that X0 is
the only nonzero function (yet it may be unity, i.e., X0 = 1).

In the first order of approximation, the functions W1,ϑ1,X1

are governed by the following system of equations:

W IV
1 = −B, (3.6a)

ϑ
′′
1 − W1 = 0, (3.6b)

λ1 = L

(
X

′′
1 + ψ

R

B
ϑ

′′
1

)
− L +

(
1 − ψ

R

B

)
W1. (3.6c)

The correction λ1 is obtained as a result of integration (3.6c)
across the layer:

λ1 = −L +
(

1 − ψ
R

B

) ∫ 1

0
W1 dz. (3.7)

Explicit expressions for W1 and λ1 are derived using the
boundary conditions

W1 = − B

24
(z4 − 2z3 + z2),

(3.8)

λ1 = −L −
(

1 − ψ
R

B

)
B

720
.

Thus, the stability boundary (λ1 = 0) can be represented as

R = 720L + B

ψ
. (3.9)

Notably, Eq. (3.9) indicates that long-wave convective
instability is observed both in the molecular binary-mixture
layer and in the colloidal-mixture layer. The long-wave
instability boundary obtained for the molecular, nonstratified
(B = 0) binary-mixture layer with thermodiffusion [4], can
be derived from Eq. (3.9). Since the typical colloid mixture
is characterized by the Lewis number (L) of the order of
10−4, it is evident that for the mean concentration C > 1%,
the Boltzmann number exceeds 100 [13], and the relation
720L � B holds accurately. Therefore the long-wave con-
vective threshold is expressed as

R ∼= B

ψ
. (3.10)

In Ref. [13], expressions (3.9) and (3.10) were derived from
the approximate solutions obtained by the Galerkin method.
The analysis presented in this section shows correctness of the
results of [13] in the general case.
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B. Stability boundaries

Linear analysis of the basic state stability relative to
disturbances with an arbitrary wave number is carried out
by solving the spectral-amplitude problem. The numerical
procedure is based on a shooting (sequential) method applying
the orthogonalization scheme for integration [21].

In Fig. 1, the critical Rayleigh number Rc, the frequency
of neutral oscillations ω, and the critical wave number kc,
which are dependent on the level of gravitational stratification
(the Boltzmann number B), are presented for two cases: (i)
the absence of thermodiffusion ψ = 0 and (ii) anomalous
thermodiffusion with ψ = −0.8 at two values of the Prandtl
number P = 5.5 and P = 100. The increase of the
Boltzmann number B leads to the growth of both the critical
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FIG. 1. (Color online) The minimum of the Rayleigh number (a),
corresponding frequency value (b), and critical wave number (c) as
functions of the Boltzmann number at L = 1.5 × 10−4, l = 30.

Rayleigh number R [Fig. 1(a)] and the frequency of neutral
oscillations ω [Fig. 1(b)]. The critical wave number k is either
constant (P = 100,ψ = 0) or a slightly growing function of B

[Fig. 1(c)]. The maximum increase of the critical wave number
kc is 4.5% in the considered range 0 < B < 800.

The Rayleigh number and frequency ω obey the following
dependence on B [Figs. 1(a) and 1(b):

R = R0 + a(P,ψ)B, (3.11a)

ω2 = c2(P,ψ) + b2(P,ψ)B, (3.11b)

where R0, a, b, and c are the fitting coefficients (see Table I).
In the absence of thermodiffusion (ψ = 0) c vanishes, and the
frequency ω depends on the Boltzmann number in accordance
with the square root law

ω = b(P )
√

B. (3.12)

In the case of ψ = −0.8 the relation c � b holds and the linear
law ω(B) is valid:

ω = c + b2

2c
B. (3.13)

This behavior is illustrated by Fig. 1(b).
In Ref. [13] the approximate analytical dependencies

RG = 28f2(f1f3 + k2PB)

k2(27f3 + 28Pψf2)
, (3.14a)

ω2
G = f1(27k2B − 28ψf1f2)

(27f3 + 28ψPf2)
P, (3.14b)

f1(k) = 10 + k2, f2(k) = 504 + 24k2 + k4,
(3.14c)

f3(k) = f1(f1 + 2) + Pf2

were obtained using the Galerkin approach with

w = w0
(
z2 − 1

4

)2
, θ = θ0

(
z2 − 1

4

)
.

Here, the subscript “G” denotes the Galerkin-type results. The
form of Eq. (3.14a) slightly differs from expressions (27) in
[13]. This difference is attributed to the alternative time scale
used in this study.

As seen from Table I, the numerical results [Fig. 1,
Eqs. (3.11)–(3.13)] are in good accordance with the results
obtained by the Galerkin method (3.14).

Indeed, one can derive the dependencies RG(B) and ω2
G(B)

at the critical value of the wave number kc for B = 0 [Table I,
Fig. 1(c)]:

RG = R0
G + aGB, (3.15a)

ω2
G = c2

G + b2
GB. (3.15b)

As can be seen from Table I, the inequality cG � bG holds
when ψ = −0.8. Using the Taylor-series expansion, the linear
dependence

ωG = cG + b2
G

2cG

B (3.16)

is derived for P = 5.5 and P = 100. This result is consistent
with the data illustrated by Fig. 1(b) (dot-dashed lines) and
summarized in Table I (c line).
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TABLE I. Comparison of numerical results with results obtained by the Galerkin technique.

ψ = 0,P = 5.5 ψ = 0,P = 100 ψ = −0.8,P = 5.5 ψ = −0.8,P = 100

kc(B = 0) 3.116 3.116 3.39 3.19
R0 1708 1708 6592 8946
R0

G 1750 1750 7181 10024
a 0.93 1.01 3.45 5.23
aG 0.95 1.03 3.83 5.90
b 0.463 0.478 1.076 1.130
bG 0.459 0.479 1.000 1.171
c 0 0 36.2 41.7
cG 0 0 37.6 43.85

It should be pointed out that linear stability of equilibrium
sharply increases as the denominators in Eq. (3.14c) tend to
zero. The heated from below, colloidal-mixture layer with
a fully developed conductive concentration profile is stable
relative to small perturbations when

ψ < ψ∗ = − 27f3

28f2P
∼= −1, (3.17)

and this is supported by the experimental results ([17], Fig. 1).
The parameter l, responsible for sedimentation in the

gravitational field, is of great importance to the nonlinear
evolution of colloidal-mixture characteristics (see Sec. IV).
However, the numerical results obtained by the shooting
method have indicated that its influence on the stability
boundaries is insignificant. In a wide range of the parameter
l values (5 < l < 1000) the Rayleigh number changes very
poorly; for example, we have R = 2079.41 at B = 399 and
R = 2436.63 at B = 783. This result can be explained
as follows. In the mechanical equilibrium state (2.14), the
parameter l is related to the formation of a concentration
gradient. The analysis of the behavior of small disturbances on
the stability boundary is governed by the equations containing
the concentration gradient in an explicit form. Thus, the
diffusion term of the equation for concentration can be
ignored because of the extremely small values of the Lewis
number (3.1c).

IV. NONLINEAR ANALYSIS

In laboratory experiments dealing with different kinds of
thermophilic nanoparticles [17], the permanent oscillatory
convection appeared when the definite threshold, not co-
incident with that predicted by the linear stability theory,
was exceeded. It was shown that this threshold decreased
as the absolute value of the thermodiffusion parameter |ψ |
decreased, and in the absence of thermodiffusion it reached
the critical value, which was greater than the convection
instability threshold for a quiescent horizontal liquid layer
R0

c = 1707.8. In our opinion, this result can be attributed to
the effect of colloid stratification in the gravity field. Therefore,
the Ludwig-Soret effect is further neglected (ψ = 0).

Equations (2.11), which describe two-dimensional con-
vection in the form of y-axial rolls, are solved numerically
taking into account gravitational stratification and assuming
that thermodiffusion may be ignored. To this end, we introduce

the stream function field � and the vorticity field ϕ, which are
velocity related as

v =
(

∂�

∂z
,0, − ∂�

∂x

)
, ϕ = (∇ × v)y. (4.1)

We also use here the full concentration field C = C + δC.
Then the system of partial differential equations (2.11) takes
the form

ϕ = ∇2�, (4.2a)
∂ϕ

∂t
+ ∂�

∂z

∂ϕ

∂x
− ∂�

∂x

∂ϕ

∂z
= P∇2ϕ − P

(
R

∂δT

∂x
− B

∂C

∂x

)
,

(4.2b)
∂δT

∂t
+ ∂�

∂z

∂δT

∂x
− ∂�

∂x

∂δT

∂z
= ∇2δT , (4.2c)

∂C

∂t
+ ∂�

∂z

∂C

∂x
− ∂�

∂x

∂C

∂z
= L

(
∇2C + 1

l

∂C

∂z

)
. (4.2d)

The conditions imposed on the horizontal boundaries
describe the impermeability of the plates and the absence of
slip along them:

z = 0;1 : � = 0,
∂�

∂z
= 0, (4.3a)

∂C

∂z
+ C

l
= 0. (4.3b)

We consider the developed, nonlinear colloid-mixture flow
in a horizontal layer heated from below. Rigid boundaries of
the layer are kept at different constant values of temperature:

δT (z = 0) = 1, δT (z = 1) = 0. (4.4)

Periodic boundary conditions, f (x,z,t) = f (x + λ,z,t), im-
posed on the lateral sides of a convection cell, are assigned to
all variable fields f = �,ϕ,δT ,C, with λ = 2.

To solve the system of equations (4.2) in the general
case, the finite-difference technique is applied. The evolution
equations are approximated using an alternating-direction
implicit scheme of the second order with central differences
for spatial derivatives and one-sided right differences for time
derivatives. The Poisson equation for the stream function was
worked out by means of an iterative method of successive
overrelaxation at each time step. Typically, a regime of
steady-state, finite-amplitude convective oscillations obtained
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at a particular set of parameters was used as an initial condition
for a run at a different set of parameters. All calculations were
executed on a grid of 124 × 81 nodes. Further mesh refinement
did not provide a significant improvement in the evaluation of
oscillation characteristics and showed no relevant differences.

A. Diagnostic tools

To assess the heating intensity, the reduced Rayleigh
number r = R/R0

c is used, where R0
c is the critical Rayleigh

number for the onset of pure-liquid convection with the
corresponding wave number k0

c . The linear stability theory
predicts R0

c = 1707.8 and k0
c = 3.116. However, to compare

the numerical results presented in this paper with the well-
known experimental, analytical, or numerical ones of other
authors, we scale R by the threshold R0

c = 1705.6 obtained
using our numerical code.

To monitor the process, the following convection character-
istics are used: (1) the maximum value of the vertical velocity
component in the x − z cross section perpendicular to the roll
axis

wmax(t) = maxx,z w(x,z,t); (4.5)

(2) the value of the vertical velocity component in the reference
point x0,z0 of the convection cell

wloc(t) = w(x0 = λ/4, z0 = 1/2,t); (4.6)

and (3) the lateral phase velocity vph of w, which is measured
by the time derivative of node locations of w(x,z,t) at the
midheight of the liquid layer z = 1/2:

vph = dx(w=0)

dt
. (4.7)

For all traveling waves with the lateral periodicity λ =
2π/k, the phase velocity vph is used to identify the frequency
of the modulated traveling wave as

ωTW = vphk. (4.8)

We analyze the evolution of the spatial variance of the
concentration field. To this end, we monitor the mixing number
describing the concentration difference in the convective cell:

M =
√

〈(δC)2〉/〈(δCcond)2〉. (4.9)

Here the 〈· · ·〉 implies a space-average value over the layer.
In the quiescent layer (v = 0), the gravity-induced conduc-

tive concentration profile Ccond(z) = l − z varies from l − 1 at
the top to l at the bottom with 〈(δCcond)2〉 = 1/12.

In the conductive state, M equals 1 by definition. When the
convection excitation threshold is exceeded, advective mixing
reduces the mean square deviation 〈(δC)2〉 of the concentration
field; the better colloid is mixed due to advection, the closer
M approaches the limit M = 0 for a perfectly mixed fluid.

B. Numerical results: A traveling-wave regime

Let us consider the nonlinear evolution of convective
patterns in a colloidal binary mixture layer heated from below.
In calculations, we employed the following geometric and ma-
terial parameters: l = 30, the Lewis number L = 1.5 × 10−4,
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FIG. 2. (Color online) The bifurcation diagram of laterally ex-
tended convective states with wave number k = π in colloid mixture
as functions of the reduced Rayleigh number r . Full (dashed) thick
lines relate to wmax (a) and the frequency ω (b) of stable (unstable)
solution in a gravity stratified colloid mixture. The thin dash-dotted
line corresponds to homogeneous liquid. L = 1.5 × 10−4, P = 5.5,
ψ = 0, B = 399, and l = 30.

and the Prandtl number P = 5.5. This set of parameters is
characteristic for experimentally realizable colloidal mixtures,
and it is the same as that used in [12].

We are concerned with the properties of the traveling-wave
(TW) mode as well as the oscillatory transients into the TW
or the conductive state in the case of the Boltzmann number
B = 399.

Figure 2 represents the bifurcation diagram of various
convective regimes obtained numerically. It illustrates the
dependencies of the maximum vertical velocity wmax and
the oscillating frequency ω on the reduced Rayleigh number.
The solid and dashed lines correspond to the colloidal
binary mixture, and the dot-dashed line corresponds to the
homogeneous one-component fluid.

According to the linear stability theory, when the heating
intensity increases quasistatically, the onset of convection
occurs via a Hopf bifurcation at the value of reduced
Rayleigh number rosc = 1.217 and is characterized by the Hopf
frequency ωH (k = π,rosc) = 9.21.

On the other hand, as evidenced by the nonlinear nu-
merical simulations, a convection in a colloid-mixture layer
demonstrates a pair of the symmetry degenerated left- and
right-handed traveling-wave solutions, bifurcating backward
from the conductive state at rosc = 1.218, which is in
good agreement with the predictions of the linear theory
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[see Fig. 1(a), the lower branch for TW solutions]. At
rTW
S = 1.125, the traveling waves gain stability via a saddle-

node bifurcation. For r < rTW
S , the colloid-mixture convection

decays and the system turns to the conductive state. The
branch of stable TWs ends at r∗ = 1.42, and the branch of
stable stationary overturning convection (SOC) appears. Thus,
the highly developed, nonlinear traveling-wave convection is
stable in the interval of reduced Rayleigh numbers rTW

S < r <

r∗ [the upper branch for solutions in Fig. 1(a)].
The bifurcation behavior of the nonlinear TW solutions is

also evident from Fig. 2(b) that illustrates the dependence
ω(r). This frequency reaches its maximum ωH = 9.20 at
the Hopf bifurcation critical point rosc. When the reduced
Rayleigh number r is decreased from rosc, the frequency values
corresponding to unstable TW regimes [see the lower, dashed
branch in Fig. 2(a)] decrease as well. At the saddle point,
rTW
S , the TW frequency is about three times less than the Hopf

frequency ωTW
S = 2.72. Then an increase of r fits with the

upper TW branch in Fig. 2(a), and the TW frequency falls to
zero at r∗ corresponding to loss of stability of the SOC mode
in a parity-breaking bifurcation.

When r > r∗ = 1.42, the evolution of perturbation against
the equilibrium temperature and concentration fields brings
about the formation of a stationary overturning convection
pattern. This SOC regime is settled in the colloid-mixture layer
after the transient standing-wave regime, and the concentration
field within the cell in the final stage of evolution has
become almost homogeneous. This type of a transition in the
colloidal liquid mixture is studied in detail, taking into account
gravitational stratification [13], or thermodiffusion [14].

Note that the bifurcation diagram of TW solutions in the
gravity stratified colloid mixture (Fig. 2) is qualitatively similar
to the bifurcation diagram of TW regimes in the molecular
binary mixture with negative thermodiffusion coupling [6,22].
On the other hand, both TW and SOC modes in a molecular
binary mixture have the mirror-glide (MG) symmetry [5,6]:

f (x,z; t) = −f (x + λ/2,1 − z; t), (4.10)

where f denotes �, ϕ, δT , or δC. In the case of colloid mixture
the terms l−1(∂C/∂z) in Eq. (4.2d) and C/l in Eq. (4.3b) break
this symmetry.

C. Transient behavior

The result of the evolution of initial perturbation depends
on the heating intensity r . If the value of the Rayleigh number
belongs to the interval rosc < r < r∗, then the small oscillating
disturbances grow and the traveling-wave regime is formed in
the layer upon the completion of the transient stage. Similar
behavior has also been observed for the molecular-mixture
layer [22].

We consider the nonlinear evolution of convective struc-
tures producing the traveling-wave flow pattern at r = 1.294.
At the first stage, the standing-wave regime is settled as
a result of the oscillatory perturbation growth [Fig. 3(a),
t < ta]. The points in the convective cell, where the stream
function takes its maximum �max or minimum �min values,
interchange their positions each half period of oscillations
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FIG. 3. (Color online) The evolution of wloc(t) (a) and the
coordinate of vertical velocity nod x(w=0) (b) at the beginning
stage of the transition from the quiescent binary mixture to the TW
regime. The specific time moments are labeled by lines a, b, c, d, e,
f, g and h. L = 1.5 × 10−4, P = 5.5, ψ = 0, l = 30, B = 399, and
r = 1.294.

[see Fig. 3(b), t < ta]:

x�max (t) = x�max (t + π/ω) + λ/2,
(4.11)

x�min (t) = x�min (t + π/ω) − λ/2.

These points correspond to the nodes of the vertical velocity
component xw=0. The wave amplitude—the maximum inten-
sity of the convective motion—goes up with time [see Fig. 3(a)
for wloc]. With all this going on the fields of stream function,
temperature and concentration change harmonically with the
spatial period L = 2π/k. The snapshots of the concentration
field in the transient regime are presented in Fig. 4 and
correspond to the time moments, which are labeled “a–h” in
Fig. 3.

At the next stage, the intensity of convective motion in-
creases and the concentration field gets spatial anharmonicity
[Figs. 4(b)–4(f)]. This effect is most noticeable at the time
moments, when the velocity is close to zero. At a certain point,
the standing-wave regime becomes unstable, then collapses,
and after the relatively fast transient stage the traveling-wave
regime develops.

When t > tb, the horizontal movement appears in the
layer [see Fig. 3(b)]. The spatial symmetry inherent in a
standing-wave regime is lost [Fig. 4(c)], and the concentration
field undergoes qualitative rearrangement [Figs. 4(e)–4(h)].
Within the time interval tg < t < th, the traveling-wave mode

026305-7



SMORODIN, CHEREPANOV, MYZNIKOVA, AND SHLIOMIS PHYSICAL REVIEW E 84, 026305 (2011)

0

0.5

1
0

0.5

1

0

0.5

1

0 0.5 1 1.5 2
0

0.5

1

0 0.5 1 1.5 2

(e)

(f)

(g)

(h)

(a)

(b)

(c)

(d)

FIG. 4. (Color online) Snapshots of the concentration field
through the transition from the quiescent binary mixture to the TW at
r = 1.294. The times “a–h” are indicated by vertical lines in Fig. 3.
In the color online version the vertical color bars show the coding
in the conductive state with Ccond(z) varying linearly from 30 at the
bottom to 29 at the top for l = 30. L = 1.5 × 10−4, P = 5.5, ψ = 0,
and B = 399.

is characterized by the constant phase velocity, and the sharp
boundary layers are formed [Fig. 4(h)]. Such a field pattern
reproduces a transition to the traveling-wave flow structure
taking place in the molecular mixtures stratified due to the
negative Soret coupling [22]. It should be mentioned that the
rearrangement of the standing-wave mode into the traveling-
wave regime lasts over approximately the same time period,
t ∼ 1.5, as in the case of the colloidal mixture stratified by
the gravity field, and in the molecular mixture stratified by
thermodiffusion. The point is that the transition is dependent
on the character of convective mixing and independent of the
specificity of the diffusive process. So the term with the Lewis
number L as a coefficient can be neglected in the right-hand
side of the evolutionary equation for concentration (4.2). The
difference between the maximum and minimum values of the
colloid-mixture concentration within the transient stage does
not practically change. The mixing parameter at this moment
M � 0.90 is close to its maximum value.

At r = 1.294, the time period required for setting the
traveling-wave flow pattern is �tTW ≈ 11, which corresponds
to the dimensional value of 5 min. The lesser the critical level
exceeding r − rosc, the slower small perturbations develop,
and the more time is needed to increase the standing-wave
amplitude and to turn to the traveling-wave regime.

Further evolution of the traveling-wave mode becomes
apparent on the diffusion time scales. Figure 5 illustrates the
effect of smoothing the concentration profile inhomogeneities
δCmax and δCmin due to the convective mixing. At r =
1.246, the initial (maximum) concentration deviation in the
convective cell δCmax decreases [Fig. 5(a)], and the maximum
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FIG. 5. (Color online) The time dependencies of maximum δCmax

and minimum δCmin of concentration (a) and vertical velocity wmax(t)
(b) in the case of gravity segregation l = 30 (solid blue lines) or in the
case of its absence (1/l = 0) (dashed black lines). L = 1.5 × 10−4,
P = 5.5, ψ = 0, B = 399, and r = 1.246.

convective vertical velocity wmax (the intensity of convective
motion) increases and reaches the stationary level [Fig. 5(b)].
At this time the dynamic balance is established in the colloidal
mixture between the sedimentation level in the gravitational
field and the convection mixing. For a specified set of
parameters, the stationary level of the concentration difference
is approximately five times less than that of the motionless
mixture. The time of setting a new concentration difference
in the traveling-wave regime is t = 3600 (≈27 h). To make
sure of such traveling-wave properties, we have extended the
dimensionless simulation period to t = 8000. This does not
change the concentration difference or the stream function
field. Thus such traveling-wave patterns can be recognized as
stable.

For comparison, the transient behavior is modeled for
the idealized case of cancellation of sedimentation in the
gravitational field as soon as the nonuniform concentration
profile is formed in the layer: B �= 0 and 1/l = 0 (Fig. 5).
Hence the convective motion brings a colloidal mixture into the
homogeneous state with zero difference between the maximum
and minimum concentration values. The concentration differ-
ence reaches the zero level during the time period t = 2000,
which is shorter than that at 1/l �= 0. Obviously, this can be
attributed to the fact that sedimentation does not interfere with
the diffusive mixing of the colloidal mixture.

The concentration field in the stable TW solution is strongly
anharmonic (Fig. 6). In the case of r = 1.246 the vertical
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FIG. 6. (Color online) Snapshots of the concentration field in
the final stage of the TW. (a) r = 1.246 and (b) r = 1.126. The
vertical color bars in the color online version show the coding with
Cmax = 29.602 and Cmin = 29.398. L = 1.5 × 10−4, P = 5.5, ψ =
0, B = 399, and l = 30.

velocity w is relatively large and therefore convective mixing is
strong. The mixing parameter is close to zero, M = 0.04. The
concentration in every point of the convective cell practically
equals its mean value C ≈ C = 29.5 [Fig. 6(a)] except narrow
regions near boundaries of the layer. Maximum concentration
deviation δCmax equals 0.053.

The concentration field of TW solution at a lower value
of r = 1.126 (slightly above the saddle-node bifurcation
point rTW

S ) is more inhomogeneous than that in the previous
case [Fig. 6(b)]. This pattern is characterized by the higher
values of the mixing parameter M = 0.21 and δCmax =
0.102.

Reaching the Rayleigh number value rTW
S , the dynamic

balance is broken in favor of sedimentation, the convective
motion settles down, and the system passes into the mechanical
equilibrium state. The corresponding transition is shown in
Fig. 7 for r = 1.123. At the first stage, when t � 2100,
the convective mixing intensity (wmax) decreases slowly, and
the difference in the concentration values δCmax increases
very slowly. The dimensional time of the oscillations, t �
5.67 × 104c, corresponds to the typical time of transient
oscillations observed in the experiment [17]. At the next
stage, when 2100 < t < 2600, the vertical convective velocity
quickly goes to zero, and then the sedimentation in the
gravitational field leads to the increase in maximum of
concentration deviation (δCmax). It is clear that the final
stage of this segregation process on the background of a
quiescent binary mixture is the equilibrium concentration
distribution.
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FIG. 7. (Color online) The time dependence of maximum vertical
velocity wmax(t) (4.5) (solid black line) and concentration difference
δCmax (dashed red line) in the transient from the TW regime to binary
mixture equilibrium state. r = 1.123, L = 1.5 × 10−4, P = 5.5, ψ =
0, B = 399, and l = 30.

In the presence of thermodiffusion the following effects
might be expected in the layer with colloid mixture when
heating from below. According to [13], the oscillatory insta-
bility exists in the case of ψ < B/R0

c , that is, ψ < B/1708.
Therefore, in the presence of gravity stratification stable TW
regimes in colloids might be expected even in the case of the
positive Soret coupling. In the opposite case of the negative
Soret coupling, sedimentation and thermodiffusion act in
the same direction, opposing the convective instability, and
the higher Rayleigh number is necessary to support the stable
(permanent) TW solution. Similar transient behavior of a
colloid mixture has been observed in [17].

V. CONCLUSION

We have investigated the onset of convection in the horizon-
tal, colloidal binary mixture layer subjected to gravitational
segregation, as well as the bifurcations of traveling roll
flow patterns and spatiotemporal behavior of these periodic
regimes.

Based on the calculated results, we have theoretically
substantiated a loss of stability of the quiescent colloidal-
mixture layer due to the growth of oscillatory perturbations,
long-wavelength or cellular, in a wide range of values for the
separation ratio, sedimentation length, and the Prandtl number.
The explicit relations between the convection thresholds and
the dimensionless parameters of the problem have been
derived. We have observed that the convection thresholds
and flow evolution on the thermal time scale are practically
independent of the sedimentation length. However, this param-
eter plays the main role in the TW pattern formation, which
develops on the diffusive time scales.

To illustrate the typical temporal oscillations of the flow
intensity and the concentration field structure, the nonlinear
dynamics of the traveling-wave mode is represented by a
set of consecutive contour maps. The transitions between the
conductive state and the traveling-wave flow pattern have been
studied in detail.
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It has been shown that the obtained nonlinear results and
the predictions of the linear theory concerning the convection
thresholds are in good agreement. We have found numerically
that the unstable TW solution, occurring in the colloidal-
mixture layer stratified by gravity, bifurcates backward out
of the conductive state, and the stable TW solution exists in
some heating interval. It has been found that the bifurcation
diagram obtained for the TW regimes in the gravity stratified
colloid mixture looks like the diagram for the molecular binary
mixture with the negative Soret coupling.

Selection of a dissipative structure realizable in a colloidal
binary mixture layer is rather sensitive to the morphological

conditions of the generated concentration field, which could
have demonstrated the spatial anharmonicity within convective
cells. This result can be used to control the heat mass transfer
characteristics of nonequilibrium colloidal systems.
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