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Spectral properties of cylindrical quasioptical cavity resonator with random
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A rigorous solution for the spectrum of a quasioptical cylindrical cavity resonator with a randomly rough side
boundary has been obtained. To accomplish this task, we have developed a method for the separation of variables in
a wave equation, which enables one, in principle, to rigorously examine any limiting case—from negligibly weak
to arbitrarily strong disorder at the resonator boundary. It is shown that the effect of disorder-induced scattering
can be properly described in terms of two geometric potentials, specifically, the “amplitude” and the “gradient”
potentials, which appear in wave equations in the course of conformal smoothing of the resonator boundaries.
The scattering resulting from the gradient potential appears to be dominant, and its impact on the whole spectrum
is governed by the unique sharpness parameter �, the mean tangent of the asperity slope. As opposed to the
resonator with bulk disorder, the distribution of nearest-neighbor spacings (NNS) in the rough-resonator spectrum
acquires Wigner-like features only when the governing wave operator loses its unitarity, i.e., with the availability
in the system of either openness or dissipation channels. It is shown that the reason for this is that the spectral
line broadening related to the oscillatory mode scattering due to random inhomogeneities is proportional to the
dissipation rate. Our numeric experiments suggest that in the absence of dissipation loss the randomly rough
resonator spectrum is always regular, whatever the degree of roughness. Yet, the spectrum structure is quite
different in the domains of small and large values of the parameter �. For the dissipation-free resonator, the NNS
distribution changes its form with growing the asperity sharpness from Poissonian-like distribution in the limit
of � � 1 to the bell-shaped distribution in the domain where � � 1.
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I. INTRODUCTION

A great deal of attention is currently being given to studying
the spectral properties of microwave systems in which the
propagation of waves is highly, or even totally, restricted in
all three dimensions. Systems of this sort, widely referred to
as zero-dimensional systems, are commonly used in optic,
acoustic, and laser technologies as resonators, both of cavity
and of open type.

Spectral properties of resonators whose spatial dimension
substantially exceed an operational wavelength (the so-called
quasioptical resonators) have for a long time been thoroughly
investigated (see, e. g., Refs. [1,2]). However, this applies
mainly to resonators of relatively simple form, which allow
for exact integrability of corresponding wave problems.
Things are getting worse with resonators whose geometrical
features do not permit the solution of wave equations using
conventional variable separation methods. Such resonators,
provided they have no internal inhomogeneities, are, by
analogy with classical dynamic systems, attributed to the class
of nonintegrable systems of the billiard type.

In studies of billiard dynamical systems, the most com-
monly used are the methods of classical chaos theory [3],
which rely substantially on the theory of random matrices
[4,5]. Using these methods, spectral properties of different
billiard systems with unstable classical dynamics have been
profoundly studied, in particular, the well-known Sinai and
Bunimovich billiards [6,7]. Systems of similar type, with
regular and mainly smooth boundaries, have been examined
experimentally using different microwave methods [8]. At the
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same time, spectral properties of resonators whose boundaries
possess essentially random properties have thus far received
insufficient attention. The adequate theoretic analysis of these
properties is difficult to perform, mainly, due to the widespread
belief that in systems with broken spatial symmetries the
variables do not separate, at least with a traditional algebraic
approach. This makes it necessary to employ rather ap-
proximate, and even phenomenological, methods for spectral
analysis of such systems, whose application is far from being
adequately substantiated.

In our recent papers, Refs. [9–11], using the method
developed previously in Ref. [12] we have shown that one
can separate variables in a wave equation and thus perform
a comprehensive spectral analysis, for any restricted wave
system, however disordered, lossy, or lossless it may be.
The only requirement for the system in question is that its
difference from some deliberately integrable reference system
might be described in terms of certain effective potentials.
In this case, the variables can always be separated, although
not necessarily by the algebraic approach but rather with some
operator technique. Nevertheless, this enables one to scrutinize
any limiting case, from negligibly weak to arbitrary strong
scattering of oscillatory modes due to inhomogeneities in the
resonator.

In the above-mentioned papers it was found that the scatter-
ing produced by static inhomogeneities smoothly distributed
in the resonator bulk, though Rayleigh in nature, results in
additional spectral line broadening, which is of essentially
nondissipative origin and is additive to the broadening caused
by dissipation processes. This kind of broadening is explained
by the resonance mode decoherence resulting from coexistence
in such systems of two scattering channels, specifically, the

026209-11539-3755/2011/84(2)/026209(13) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.026209


GANAPOLSKII, TARASOV, AND SHOSTENKO PHYSICAL REVIEW E 84, 026209 (2011)

intramode (coherent) and the intermode (incoherent) channel.
The impact of infill inhomogeneities on the separate resonance
lines is of a highly selective character. The most widened and
shifted along the frequency axis appear to be those lines in
whose vicinity there is the largest number of other resonances.
Meanwhile, the lines positioned relatively sparsely prove to
be weakly subjected to inhomogeneities and retain their high
quality factors.

Such a specific behavior of spectral lines was interpreted
in Refs. [9–11] as a kind of interaction between resonances.
The interaction results in effective rarefication of the initially
dense spectrum of the random inhomogeneous resonator, in
the sense that as the disorder increases the number of high-Q-
factor lines gets progressively lower. The quality factors of the
remaining lines are considerably reduced, and some of the lines
even become superposed. We have exploited such an effective
rarefication of cavity resonator spectrum, which results from
randomization of its infill, in simulations of a random laser with
single-frequency generation using the quasioptical millimeter
wave band resonator [13].

In this paper, the investigation is undertaken of the
cylindrical quasioptical cavity resonator which is randomized
not through inhomogeneous filling but rather through random
roughening of its side boundary. Resonators of such a type are
physically equivalent to the two-dimensional billiard system
conventionally called the Shepelyansky billiard. It was already
examined in Refs. [14–17] in an effort to elucidate the
possibility to observe the effects of dynamic localization and
quantum ergodicity. Apart from this, Refs. [18,19] also dealt
with resonance systems having randomly rough boundaries,
specifically, with solid-state quantum dots. To study the
current-carrier spectrum, the authors of Refs. [18,19] have
applied the ballistic σ model intended to describe not only
universal but also system-specific properties of quantum
resonance systems. Yet, carrier scattering due to boundary
roughness was taken into account in these papers phenomeno-
logically, using the concept of the specular reflection factor
[20]. This made it impossible for the authors to allow for the
diffraction effects produced in the course of quantum wave
scattering and, as a consequence, to carry out in-depth spectral
analysis for the system where the boundary scattering is of
determinative significance.

Some more attempts of theoretical description of rough-
wall resonator spectra can be noted. However, they all run
inevitably into great difficulties associated with the lack
of appropriate methods for considering the wave scattering
at random inhomogeneous boundaries of the system under
investigation. For instance, in spectral analysis of open-type
resonators possessing randomly rough boundaries, namely,
dielectric disk resonators (DDRs), the method of polarization
currents (the so-called volume current method, VCM) was
widely utilized in due time [21]. Primarily, the method was
invented to make plausible estimations of radiation loss of
whispering gallery (WG) oscillations of randomly bounded
open electrodynamic systems [22,23]. This method reduces
essentially to simulation of oscillation scattering produced
by real boundary inhomogeneities by adding the fictitious
sources (currents) randomly distributed near the unperturbed
(nonrough) boundary of the system. However, in our recent
paper, Ref. [24], we put forward the arguments in favor of

the inconsistency of using the VCM to describe the radiation
loss in DDRs with rough boundaries and obtained the solution
of this intricate problem with a more efficient and reliable
method, namely, the direct solution of wave equations for fields
in such systems. This was made possible due to elaboration
of the specific method for resonance mode separation, which
is applicable to systems with arbitrary degrees of disorder.
We succeeded in showing that the decay in quality factors of
resonators with randomly rough boundaries results, basically,
from the roughness-induced intermode scattering. Due to this
type of scattering, the energy of high-Q WG modes goes over
to other, less stable, modes and in such a way radiates out of
the resonator volume. Interestingly, the level of radiation loss
of a randomly rough DDR turns out to be mainly governed
by the average slope of the asperities (or, in other words, by
their sharpness) and is much less sensitive to the amplitude of
boundary fluctuations.

It should be noted that taking into account the random
roughness of wave system boundaries is a rather complex
mathematical problem, which has by now a long-lasting
history. Basically, different methods for describing the wave
scattering by such boundaries were previously developed for
open and infinite systems, such as sea surface [25–27]. Even
so, the number of problems subject to being completely
solved was principally restricted by the applicability of the
small-perturbation method (small amplitude and small slope
of boundary asperities) and/or the Kirchhoff approximation
(the inclusion of onefold scattering in the geometrical-optic
approach). As to the essentially confined systems such as res-
onators and quantum dots, their spatial boundedness imposes,
on its own account, significant limitations on the possibility to
apply statistical methods for describing the wave scattering
in such systems. Therefore, having in mind the essential
finiteness of the object of our study in this paper, the methods
used previously to cover wave scattering caused by boundary
roughness need serious modifications.

To calculate the spectra of resonance systems with ran-
domly inhomogeneous boundaries we suggest a method which
makes it possible, above all, to perform calculations without
imposing the substantial limitations on the random asperity
amplitude. Second, the method enables one to avoid any
restrictions regarding the asperity sharpness. The particular
advantage of the suggested method is that it is not rigidly
bounded to symmetries of the system under consideration.

The method includes two basic stages. Initially, the prob-
lem regarding the oscillations in cylindrical resonator with
arbitraryily rough walls is reduced, by means of the boundary
conformal smoothing, to the problem for oscillations in the
resonator whose boundaries are ideally homogeneous.1 In this
way, one is able to introduce a new complete set of eigenmodes
(we call them gradient renormalized, or GR, modes) which
serve as a good basic approximation for developing the
appropriate perturbation theory.

At the next stage, the GR modes are entirely separated,
much in the same way as it is done for standard integrable
systems. Remarkably, however, these specific modes can be

1The idea of such a smoothing goes back to Migdal’s work on
resonance levels of deformed nuclei, see Ref. [28].
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separated regardless of the level of the asperity sharpness, the
latter being the measure of scattering degree. The deduced
functional expressions for eigenfrequencies of the disordered
resonator enable one to carry out a detailed analysis of its
spectral properties to any desirable accuracy.

The conclusions we have made from our considerations
are as follows. First of all, at the amplitude of boundary
inhomogeneities, which is small as compared to resonator
dimensions, the level of the disorder is specified by the
universal gradient parameter, namely, the average slope of the
asperities, rather than by the relationships between the mean
asperity amplitude, the asperity correlation length, and the
wavelength of the excited oscillations. Depending on whether
the asperities are smooth (i.e., their mean slope ratio is small
as compared to unity) or sharp, the resonator behaves either as
a weakly or a strongly disordered wave system.

Next, as opposed to resonators with the disordered bulk
infill, the distribution of nearest-neighbor spacings in the
spectra of surface-inhomogeneous resonators acquires the
features typical for Wigner distribution (which is conven-
tionally associated with chaotic properties) only when the
unitarity of wave operator is violated, i.e., if dissipation and/or
openness channels are available in the system. In the absence of
dissipation the spectrum is completely regular, with zero-width
resonance lines, but offers essentially different correlation
properties and resonance level densities in the domains of
smooth and sharp boundary asperities.

The result of particular interest we have achieved in
the present work is the relationship established between the
roughness-induced decoherence of resonance modes and the
resonator dissipative properties. The resonance line broaden-
ing related to (Raleigh-type) mode scattering due to randomly
rough boundaries, being additive with the broadening caused
by the dissipation per se, is found to be also proportional
to the dissipation rate. If dissipation (or resonator openness)
is nonexistent, so will the roughness-induced broadening be
unavailable. This fact fundamentally differentiates resonators
with boundary inhomogeneities, which belong to the class of
billiard-type systems, from resonators randomly inhomoge-
neous in bulk.

II. THE CHOICE OF THE MODEL AND
THE PROBLEM FORMULATION

The object of our study is a resonator of cylindrical form
with generatrix parallel to the z axis (see Fig. 1), which is
bounded by ideally conducting plates passing perpendicular
to z axis through the points z± = ±H/2 and the ideally
conducting side boundary

S =
{

r = R + ξ (ϕ),

ϕ ∈ [−π,π ].
(1)

Here R is the average radius of the resonator, i.e., the radius
of an ideally circular cylinder whose volume coincides with
that of the original rough cylinder having the same height. The
function ξ (ϕ), which specifies inhomogeneity of the resonator
side boundary, is assumed to be the random process with zero
mean, 〈ξ (ϕ)〉 = 0, and binary correlation function

〈ξ (ϕ)ξ (ϕ′)〉 = σ 2W (ϕ − ϕ′). (2)

FIG. 1. (Color online) Schematic view of cylindrical resonator
with a randomly rough side boundary. Vectors n and n0 point toward
outer normal to the rough and ideal boundaries, respectively.

Taking σ in Eq. (2) to be the mean-square height of the rough-
ness, correlation function W (ϕ) will be thought of as having
unity maximum at ϕ = 0 and decreasing to parametrically
small values on the angle scale |�ϕ| = ϕc. The correlation
angle ϕc is related to the roughness arc correlation length,
sc, through the obvious relationship ϕc = sc/R. Both of the
functions, ξ (ϕ) and W (ϕ), are taken to be periodic with the
period 2π . In what follows, we regard the roughness as small
scale in that the arc correlation dimension is small as compared
to the characteristic size of the system,

sc � R. (3)

Despite the resonator being a restricted system, this inequality
suggests the conditions for spectrum self-averaging to be
fulfilled with parametric accuracy. An additional argument in
favor of the self-averaging is the well-known fact that classical
dynamics in systems analogous to wave billiard under study,
whose boundary pertains to the class of scattering boundaries,
is essentially ergodic [29,30].

Upon finding the Green’s function G(r,r′) of the Helmholtz
equation inside the region depicted in Fig. 1, by way of
boundary conditions (BC) we use the equalities [2]

∂ G(r,r′)
∂ rn

∣∣∣∣
S

= 0 (4a)

and
G(r,r′)|z=±H/2 = 0, (4b)

which correspond to H -polarized electromagnetic oscillations
(TE oscillations).2 The derivative in Eq. (4) is taken over an
outer normal line to actual, corrugated side boundary (see
Fig. 1).

In the general case the solution to wave equations with
BC Eqs. (4) is a challenging task. In this paper, following the
approach we have previously applied in Ref. [24], we smooth
out the rough boundary of the resonator to the ideal one, i.e.,
unperturbed by the asperities. In this way we manage to reduce

2The electric field of these oscillations is polarized parallel to
the resonator butt-end plates, whereby these oscillations are more
sensitive to fluctuations of the resonator side boundary than are the
TM-type oscillations.
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the problem of wave scattering at the resonator actual boundary
to the scattering by fluctuations of the effective medium filling
the bulk of a fictitious resonator, the cross section of which
is the ideal circle.

We relate the coordinates in the initial cylinder system
coupled to the resonator axis to new cylindric coordinates
(we mark them by the tilde sign) through the conformal
transformation

r̃ = r

1 + ξ (ϕ)/R
,

ϕ̃ = ϕ, (5)

z̃ = z,

whose Jacobian is equal to 1/ [1 + ξ (ϕ)/R]. In the new
coordinate system the Green’s function equation assumes the
form(

1

r

∂

∂r
r

∂

∂r
+ 1

r2

∂2

∂ϕ2
+ ∂2

∂z2
+ K2 − V̂ (h) − V̂ (s)

)
×G(r,ϕ,z; r ′ϕ′,z′) = 1

r
δ(r − r ′)δ(ϕ − ϕ′)δ(z − z′) (6)

(the tilde signs are omitted from here on), differing from the
initial equation by the additional terms in the wave operator,
namely, V̂ (h) and V̂ (s), which we call below the effective
potentials,

V̂ (h) = −
(

k2 + ∂2

∂z2

)
[β2(ϕ) − 1], (7a)

V̂ (s) =
[

ξ ′(ϕ)

Rβ(ϕ)

∂

∂ϕ
+ ∂

∂ϕ

ξ ′(ϕ)

Rβ(ϕ)

]
1

r

∂

∂r
−
[

ξ ′(ϕ)

Rβ(ϕ)

]21

r

∂

∂r
r

∂

∂r

(7b)

The analytical structure of these potentials is determined by
the roughness function itself, ξ (ϕ), and by its derivative ξ ′(ϕ).
In Eq. (6), the notation K2 = k2 − i/τdis is introduced, where
k = ω/c and 1/τdis is the effective dissipation rate which we
put in phenomenologically [time dependence of the fields is
chosen to be of the form exp(−iωt)]. Factor β(ϕ) in Eqs. (7)
is used to simplify the formula,

β(ϕ) = 1 + ξ (ϕ)

R
. (8)

Upper indices “h” and “s” at the potentials (7) symbolize
the fact that one of them, namely, the former, is governed
by fluctuations of the asperity height solely [i.e., directly by
function ξ (ϕ)], whereas the potential V̂ (s) is mainly determined
by the asperity slope [by the derivative ]. We consider ξ (ϕ) to
have a relatively small statistical value and put β(ϕ) ≈ 1 below.

In view of inequality (3), one can neglect the correlation
between functions ξ (ϕ) and ξ ′(ϕ) at angle distances larger
than ϕc. Owing to this we can relate two mutually independent
physical mechanisms with potentials, Eqs. (7), which are
responsible for wave scattering by surface roughness, namely,
the “height” and the “gradient” mechanism, both predicted
previously in Ref. [31].

Note that contrary to common belief (see, e.g., Ref. [25]),
even though we hold the asperities to be small in height in the
sense of inequality,

σ � R, (9)

the effective potential (7b) may take on quite large values. The
local value of this potential and, consequently, of the entire
potential in Eq. (6), is determined by the ratio ξ ′(ϕ̃)/R, which
under constraint (9) assumes arbitrary large values. Clearly,
this does not necessarily signify large scattering strength,
as the latter is the integral rather than the local property of
the potential. Below we formulate the particular parametric
conditions enabling one to regard the effect of scattering due
to effective potentials (7) as either weak or strong.

III. GRADIENT RENORMALIZATION OF WAVE
OPERATOR AND SEPARATION OF

OSCILLATION MODES

In contrast to “height” potential V̂ (h), “slope” potential
V̂ (s) in Eq. (6), keeping in mind the prospective usage of
perturbation theory, is defined in an awkward fashion as its
average is not equal to zero. By separating this average as the
operator summand,

〈V̂ (s)〉 = −�2 1

r

∂

∂r
r

∂

∂r
, (10)

where we have introduced the gradient parameter

�2 = 1

R2
〈[ξ ′(ϕ)]2〉 ∼ σ 2

s2
c

, (11)

which specifies the asperity sharpness degree, we can recast
Eq. (6) in the form[

(1+�2)
1

r

∂

∂r
r

∂

∂r
+ 1

r2

∂2

∂ϕ2
+ ∂2

∂z2
+K2−V̂ (h)−V̂ (s1)−V̂ (s2)

]
×G(r,ϕ,z; r ′ϕ′,z′) = 1

r
δ(r − r ′)δ(ϕ − ϕ′)δ(z − z′). (12)

In Eq. (12), two different slope potentials are introduced
instead of the potential (7b), whose configurational averages
are by definition equal to zero, namely,

V̂ (s1) = 1

R

[
ξ ′(ϕ)

∂

∂ϕ
+ ∂

∂ϕ
ξ ′(ϕ)

]
1

r

∂

∂r
, (13a)

V̂ (s2) = −
[
ξ ′2(ϕ)/R2 − �2

] 1

r

∂

∂r
r

∂

∂r
. (13b)

The function β(ϕ), subject to proviso (9), is set equal to unity
herein.

Let us proceed to Fourier representation using thereto a
complete set of eigenfunctions of the differential operator in
Eq. (12), which are consistent with boundary conditions (4)
and ϕ periodicity of the desired solution. In Eq. (12) with
no random potentials, the variables are readily separated,
thereby giving the following complete set of normalized
eigenfunctions:

|r; μ〉 = |ϕ; n〉|r; l〉(̃n)|z; q〉 (̃n = n/
√

1 + �2), (14a)

|ϕ; n〉 = (2π )−1/2einϕ (n = 0,±1,±2, . . .), (14b)

|r; l〉(̃n) = B
(̃n)
l

√
2

R
J|̃n|(γ

(|̃n|)
l r/R) (l = 1,2, . . .), (14c)

|z; q〉 =
√

2

H
sin

[(
z

H
+ 1

2

)
πq

]
(q = 1,2, . . .). (14d)
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Here, γ
(|̃n|)
l denote the positive zeros of function J ′

|̃n|(t)
enumerated by natural numbers (l) in ascending order. The
normalization constant in “radial” eigenfunction (14c) is

B
(̃n)
l = γ

(|̃n|)
l

[(
γ

(|̃n|)
l

)2 − ñ2
]−1/2[

J|̃n|
(
γ

(|̃n|)
l

)]−1
. (15)

Below we refer to the Hermitian differential operator in
Eq. (12), which possesses the set of eigenfunctions (14), as the
GR Laplace operator. In representation of this operator eigen-
mode Eq. (12) reduces to a set of nonhomogeneous coupled
equations against the Green’s function Fourier components,(

K2 − κ
2
μ − Vμ

)
Gμμ′ −

∑
ν �=μ

UμνGνμ′ = δμμ′ . (16)

Here,

Gμμ′ =
∫ ∫

�

drdr′〈r; μ|G(r,r′)|r′; μ′〉 (17)

is the Green’s function in momentum representation, and � is
the domain in coordinate space R3 occupied by the resonator
with an unperturbed boundary. The quantity κ

2
μ, which is

the GR Laplacian eigenvalue, in what follows is called an
unperturbed energy of the μth resonator mode,

κ
2
μ = (1 + �2)

(
γ

(|̃n|)
l

R

)2

+
(πq

H

)2
. (18)

Accordingly, the eigenfunctions (14) will be symbolically
termed as unperturbed eigenfunctions, even though they
contain gradient parameter �.

Matrix ‖Uμν‖ of the Eq. (16) coefficients is composed of
matrix elements of the total perturbation potential in Eq. (12),
which contains both the height potential and the gradient ones
[V̂ (pert)(r) = V (h) + V̂ (s1) + V̂ (s2)],

Uμν =
∫

�

d r〈r; μ|V̂ (pert)(r)|r; ν〉. (19)

The diagonal element of this matrix, Uμμ ≡ Vμ, is deliberately
separated from the sum in Eq. (16). The scattering induced by
this element is specified below as the intramode, or coherent,
scattering, and the potential Vμ is named the intramode
potential. On the contrary, all the constituents of matrix
‖Uμν‖ with distinct mode indices (μ �= ν) are thought of as
responsible for incoherent scattering between different modes
and are nominally referred to as intermode potentials. In
Refs. [12,24,32] it was shown that such a segregation of
the whole set of potentials into “coherent” and “incoherent”
subsets enables one to correctly deduce the whole set of
uncoupled equations for diagonal elements of the entire
Green’s matrix ‖Gμν‖, through which all other elements are
then expressed by linear operation. Basically, this fact makes
it easy to analyze the quantum (wave) systems subjected to
quite arbitrary external potentials, including nonlocal ones.

Equation (16) allows the peculiar separation of variables
provided that at least one of two fundamental symmetries,
either P or T , is broken. The variables are separated through
the operator procedure detailed in Ref. [11]. The key point of
the procedure is to introduce a certain trial mode propagator
G

(V )
ν for each of the harmonics, say, with mode index ν. This

propagator represents the “seed” mode Green’s function, i.e.,

the solution to Eq. (16) obtained without regard to intermode
potentials, and, hence, intermode scattering,

G(V )
ν = [

K2 − κ
2
ν − Vν

]−1
. (20)

Starting from this trial function, all the intermode propagators
Gνμ (with ∀ν �= μ) are expressed in terms of just one
intramode Green’s function Gμμ by means of functional
equality:

Gνμ = Pν(1 − R̂)−1R̂PμGμμ. (21)

Here, the operator R̂ has the meaning of a mode-mixing
operator, whose domain of definition is mode subspace Mμ

containing the whole set of mode indices save index μ; Pμ

is the projection operator that assigns the given value μ to
the nearest mode index of any operator standing next to it,
no matter if it is to the left or to the right. The operator R̂ is
expressed in the product form,

R̂ = Ĝ(V )Û , (22)

where operators Ĝ(V ) and Û are specified on Mμ by their matrix
elements

〈ν|Ĝ(V )|ν ′〉 = G(V )
ν δνν ′ , (23a)

〈ν|Û |ν′〉 = Uνν′ . (23b)

Putting then mode index μ′ = μ in Eq. (16) and substituting
all the intermode propagators in the form (21), we arrive
at the infinite set of uncoupled equations for all intramode
propagators Gμμ, whose solution is

Gμμ = [
K2 − κ

2
μ − Vμ − Tμ

]−1
(for ∀μ’s). (24)

Here,

Tμ = PμÛ(1 − R̂)−1R̂Pμ (25)

is the portion of the μth mode eigenenergy which is related
to the intermode scattering only. The whole set of in-
tramode propagators, Eq. (24), in conjunction with relationship
Eq. (21), solves entirely the perturbed resonator Green’s
function. In such a way we have reduced the problem of
determining the randomly rough resonator spectrum to finding
the poles of solely diagonal elements of matrix ‖Gμν‖.

From Eq. (24) it can be easily seen that in the general case
all eigenfrequencies of the resonator we study appear to be
complex valued. The complexity is apparently introduced by
two sources. One of them is related to dissipation directly,
being accounted for through the dissipation rate entering
complex “energy” of the resonator, K2 = k2 − i/τdis. The
other originates from the T potential (25), which is nothing
but the diagonal (in mode representation) element of the
regularized T matrix well-known in quantum scattering theory
[33,34]. This potential functional structure suggests that it can
be interpreted as taking into account the effective interaction
between the particular mode μ and the rest of trial modes with
∀ν �= μ.

Eventually, with the account of intermode interaction, the
mode μ becomes either coherent or incoherent, depending on
whether the dissipation is present in the resonator (1/τdis �= 0)
and/or the potential (25) contains an imaginary part. The latter
kind of imaginarity comes about in the self-energy of the
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particular wave or quantum system (in our case, the mode
state μ) interacting with the hardly controllable “environment”
if one tries to describe this system separately. Normally the
imaginary addendum to the isolated system self energy is
interpreted as environment-induced indefiniteness of its energy
levels, or, in other words, as the result of its decoherence [35]
(see also Ref. [36]). Hereafter we also refer to the imaginary
part (if any) of the T potential (25) as the decoherence rate of
the μth eigenlevel.

IV. STATISTICAL ANALYSIS OF THE RANDOMLY
ROUGH RESONATOR SPECTRUM

Since the steady-state propagation of waves in the resonator
under study is expected to be ergodic (see Ref. [37] and
references therein), one can obtain its spectrum by performing
configurational averaging of the Green’s function (24). We
denote this type of averaging by angular brackets, 〈·〉.

The net random potential in Eq. (6) and, consequently, its
matrix elements specifying the intra- and intermode potentials
in Eq. (24), are strongly dependent on the statistical properties
of the roughness function ξ (ϕ). The intramode scattering
produced by the potential Vμ may be regarded as either weak
or strong, subject to small or not, in comparison with the
unperturbed mode energy κ

2
μ, appears to be the mean-square

norm of this potential estimated on the unperturbed mode
eigenfunction.

As far as intermode scattering is concerned, the associated
additions to the unperturbed spectrum, Eq. (18), result mainly
from the potential Tμ, whose average is not equal to zero.
This potential has a rather involved functional structure;
therefore it seems to be reasonable to characterize its effect
by estimating the norm of operator R̂ which controls the
trial mode intermixing. Note that these modes are not the
eigenstates of a parent nonrough resonator. Their energies, as
seen from Eq. (18), contain the sharpness parameter �2, and,
therefore, the field of each of these modes may be represented
as a bundle of parent, nonrough resonator modes. Keeping this
fact in mind, we call the above-introduced trial modes, which
are specified by eigenenergies (18), the unperturbed composite
modes.

A. The comparative estimation of scattering mechanisms
for composite modes

1. Intramode scattering

Under restriction (9), the height potential, Eq. (7a), can be
represented with good accuracy by the approximate expression

V̂ (h) ≈ −2

(
k2 + ∂2

∂z2

)
ξ (ϕ)

R
. (26)

Since the random process ξ (ϕ) is supposed to be ergodic,
the diagonal matrix element of potential (26), taken between
function (14b) and its complex conjugate, is equal to zero.
Diagonal matrix elements of either of the gradient potentials
(13) also vanish: (i) for the potential V̂ (s1) this is because of
its periodicity in angle ϕ, and (ii) as regards the potential
V̂ (s2) this is due to the assumed ergodicity of the roughness

function.3 Hence, under our assumptions regarding the sta-
tistical properties of ξ (ϕ) there is no coherent (intramode)
scattering of composite modes which would be caused by
random roughness of the resonator side boundary.

2. Intermode scattering

The effect of intermode scattering on the resonator spec-
trum, that is, on the pole structure of function (24), is governed
by the potential (25), which is defined as the diagonal matrix
element of the regularized T matrix. The functional structure of
this matrix and, consequently, the magnitude and the analytical
structure of the potential Tμ are determined by the value of the
mode-mixing operator R̂. We regard the intermode scattering
as either weak or strong depending on whether the average
norm of this operator is small or large as compared with unity.
In view of the operator R̂ multiplicative structure, we estimate
this norm using the formula

〈‖R̂‖2〉 = max
μ

〈∣∣∣∣∣∑
ν

G(V )
ν Uνμ

∣∣∣∣∣
2〉

. (27)

Here, trial Green’s function G
(V )
ν is independent of the

roughness function ξ (ϕ), with regard to remarks made in
the previous subsection. The averaging of the potential Uνμ

modulus square, which is in fact simple but requires a great deal
of tedious calculations, is detailed in the Appendix. Eventually,
we obtain the following estimations:

〈‖R̂(h)‖2〉 ∼ (σ/R)2 , (28a)

〈‖R̂(s1)‖2〉 ∼ (σ/sc)2 ∼ �2, (28b)

〈‖R̂(s2)‖2〉 ∼ (σ/R)4 . (28c)

From these estimates one can infer that, in view of inequality
(9), the potentials U (h)

μν and U (s2)
μν result in negligibly weak in-

termode scattering. For the scattering induced by the potential
U (s1)

μν , it can be easily seen that under conditions (3) and (9),
first, the norm of the corresponding term in the intermixing
operator, R(s1), is the uppermost among the norms presented
in Eqs. (28), and second, the operator R(s1) norm can take on
both small and large values, as compared to unity. This enables
us to analytically treat any of the limiting cases, both of weak
and of strong intermode scattering.

B. Evaluation of spectrum corrections

The composite mode spectrum given by Eq. (18), even
without additional corrections induced by potentials entering
Eq. (16), can differ essentially from the initial, unperturbed
resonator spectrum. The difference is either small or large
depending on whether the mean asperity slope (in fact, the
parameter �2) is small or large as compared to unity. As
may be seen from Eq. (28b), it is exactly the same parameter
that governs the level of composite mode mixing. Below,
while analyzing the spectral corrections, we keep in mind
only the ones that result from the scattering induced by the
potential V̂ (s1).

3This assumption is justified to the measure of inequality (3).
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1. Weak scattering limit

As it follows from estimates (28), the intermode scattering,
or, in other words, the entanglement of composite resonant
modes, is weak provided that two inequalities hold simultane-
ously, namely,

σ/R � 1,
(29)

σ/sc � 1,

meaning the smallness (on average) of both the amplitude and
the slope of random asperities. In this limiting case, one can
expand the inverse operator in Eq. (25) in a power series of the
operator R̂, thereby obtaining the approximate expression

Tμ ≈ PμÛĜ(V )Û Pμ =
∑
ν �=μ

UμνG
(V )
ν Uνμ (30)

for the diagonal element of the T matrix. The correlator of
intermode potentials in Eq. (30), subject to definition (2) and
estimates (28), is calculated as

〈UμνUνμ〉 ≈ −δqνqμ

(σ

R

)2
W̃ (nμ − nν)

(
n2

μ − n2
ν

)2 DμνDνμ,

(31)

where Dμν is the matrix element of the operator (1/r) (∂/∂r),
which is taken between eigenfunctions (14c),

Dμν =
∫ R

0
dr〈r; lμ|(̃nμ) ∂

∂r
|r; lν〉(̃nν ). (32)

By representing the average mass operator for mode μ as a
sum of real and imaginary parts, 〈Tμ〉 = �κ

2
μ + i/τ

(sc)
μ , we

arrive at the following expressions for resonance line shifting
and broadening, which are associated with composite mode
scattering,

�κ
2
μ = κ

4
μ

∑
ν �=μ

Aμν

κ
2
μ − κ

2
ν(

κ
2
μ − κ

2
ν

)2 + (
1/τdis

)2 , (33a)

1

τ
(sc)
μ

= κ
4
μ

∑
ν �=μ

Aμν

1/τdis(
κ

2
μ − κ

2
ν

)2 + (
1/τdis

)2 . (33b)

The weight factor Aμν in Eqs. (33) is given by

Aμν =−δqνqμ
4
(σ

R

)2
W̃ (nμ − nν)

(
n2

μ − n2
ν

)2

(κμR)4

[
B

(̃nμ)
lμ

]2[
B

(̃nν )
lν

]2

×
∫ 1

0
dtJ|̃nμ|

(
γ

(|̃nμ|)
lμ

t
) ∂

∂t
J|̃nν |

(
γ

(|̃nν |)
lν

t
)

×
∫ 1

0
dt ′J|̃nν |

(
γ

(|̃nν |)
lν

t ′
) ∂

∂t ′
J|̃nμ|

(
γ

(|̃nμ|)
lμ

t ′
)
.

(34)

Interestingly, this factor is not positive definite in the general
case. If we consider, instead of TE polarized oscillations, the
oscillations of TM type, for which boundary conditions are
applicable,

G(r,r′)
∣∣
S

= 0 and
∂ G(r,r′)

∂z

∣∣∣∣
z=±H/2

= 0, (35)

rather than the BC Eq. (4) (see Ref. [2]), then the weight
factors appropriate to the transitions between any two different

modes would be necessarily positive. This stems from the
fact that for TM oscillations the quantities γ

(|̃n|)
l in Eq. (34)

would be zeros of the Bessel function itself rather than zeros
of its derivative. Based on this fact, antisymmetry of the tensor
Dμν would follow and, correspondingly, the antisymmetry of
each of the integrals in Eq. (34). As for TE oscillations being
considered here, the sign of the coefficient Aμν for different
pairs of mode indices is not a priori definite. This implies
that the intermode scattering contribution to Q factors and
shifting of different lines can be of different signs. To verify
this anticipation by analytical means seems to be an unrealistic
task. Therefore we subsequently analyze the rough-resonator
spectrum numerically, using for this purpose Eqs. (33) and
(41).

Yet, even at this stage we are in a position to make
some qualitative statements regarding the influence of surface
inhomogeneities on the resonator Q factor as well as on
the position of resonance lines. Assuming the azimuth mode
indices to be large as compared to unity, one can replace exact
zeros γ

(|̃n|)
l with their asymptotic expressions (see Ref. [38]).

For scattering-induced decay rate (33b), the approximative
formula readily follows

1

τ
(sc)
μ

∼ 1

τdis

(
σ

R

)2 ∑
nν

(
n2

μ − n2
ν

)2
W̃ (nμ − nν)

×
∑
lν

1(
lμ − lν + |̃nμ|−|̃nν |

2

)2
+ (R2/τdis)2

. (36)

Here, the sum over radial mode indices, subject to the
restriction imposed on the summation region in Eqs. (33),
is evaluated to be of order 1 + (

R2/τdis
)
. The convergence of

the sum over azimuth indices is provided by the correlation
function W̃ (nμ − nν), from which we obtain

1

τ
(sc)
μ

∼ 1

τdis
�2
(
nμ + ϕ−1

c

)2
. (37)

Because each of the resonance line Q factors is determined
by the sum of the dissipation rate and the rate of roughness-
induced attenuation,

Q−1
μ = κμ/

√
1/τdis + 1/τ

(sc)
μ , (38)

the emergence of random inhomogeneities on the resonator
side boundary may result either in the preservation of the
specific line width, if the condition �2(nμ + ϕ−1

c )2 � 1 holds
true, or in its significant broadening, with this inequality
changing to the opposite one. It is, however, intriguing that Q
factors of all resonance lines, subject to inequality (9), remain
infinite in the absence of dissipation, irrespective of whether
the resonator side boundary is rough or not. At the same
time, the positioning of these lines can differ considerably
from that pertinent to the initial, nonrough resonator. Even
if the asperities may be very smooth (� � 1), the shift of
the specific line, being determined by the difference between
energy (18) and the analogous energy calculated for � exactly
equal to zero, can substantially exceed the mean level spacing.
In principle, this single fact suffices to change significantly
the distribution of resonances along the frequency axis, as
compared to the inhomogeneity-free resonator. But apart from
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that, the additional shift should also be taken into account,
which is governed by Eq. (33a), whose relative value, as
numerical estimations do reveal, may significantly exceed the
parameter �2 in view of a large number of terms in the sum.

Of dominant importance, however, is the fact that the
spectrum of weakly rough [in the sense of inequalities (29)]
resonator remains strictly discrete (i.e., having exactly zero
line width) in the entire absence of dissipation [see Eq. (33b)],
despite the quite significant intermode scattering. This entirely
correlates with a common knowledge regarding the spectra of
conservative ballistic systems [29,30]. So far as the wave equa-
tions for the resonator in question prove to be separable despite
its boundaries’ complex structure, one may (and should) regard
such a resonator as the exactly integrable system. In Sec. V, we
provide the results of numerical calculations which enable one
to make some definite conclusions of a general type about the
chaotic properties of spectra of wave systems whose classical
analogs are nonintegrable.

2. Strong scattering limit

By strong intermode scattering we imply the limiting case
pertinent to the large (as compared to unity) norm of the
mode-mixing operator R̂ in Eq. (25). Subject to strong mode
mixing, each of the modes in this case becomes quasiuniformly
distributed over a large region in mode space.4 For the
resonator we study here this corresponds [see Eq. (28b)] to
the inequality

�2 ∼ (σ/sc)2 � 1. (39)

The asperities that obey this condition are referred to as “sharp”
boundary inhomogeneities.

In the limiting case (39), the operator potential (25) may be
expanded in a power series of the inverse operator R̂−1. The
expression located between projection operators in Eq. (25) is
then transformed to

Û(1 − R̂)−1R̂ ≈ −Û − Ĝ(V )−1 − Ĝ(V )−1Û−1Ĝ(V )−1. (40)

Here, the symbol Ĝ(V ) denotes the diagonal (in mode represen-
tation) operator on Mμ whose matrix elements are trial Green’s
functions, Eq. (20), with all indices ν �= μ. Substituting
expansion (40) into potential (25) we obtain the following
asymptotic expression for the diagonal mode propagator,

Gμμ ≈ G
(V )
μ

2

[
1 + 1

2
(R̂−1)μμ

]−1

= G
(V )
μ

2

[
1 + 1

2
G(V )

μ

−1
(Û−1)μμ

]−1

. (41)

The second term in square brackets in Eq. (41) is a small
(in the parameter ‖R̂‖−1 � 1) correction to the first one.
Moreover, this corrective summand turns out to be less
the closer the external frequency ω is to the resonance
frequency of the “unperturbed” μth resonator harmonics (the

latter corresponding to vanishing the real part of G
(V )
μ

−1
).

4In classical chaos theory the characteristic size of this region is
specified as the dynamic localization length [39,40].

This implies that strong intermode scattering caused by the
resonator boundary roughness does not have a great impact
upon the spectral energies’ analytical structure against the
weak scattering situation. In both limiting cases the resonance
frequencies are specified to a good parametric accuracy by the
poles of the trial Green’s function G

(V )
μ , i.e., they can be found

from the equality k ≈ κμ.
At first glance, the width of the resonance lines behaves in

a somewhat abnormal fashion. In the absence of random inho-
mogeneities on the resonator side boundary it is determined by
dissipation loss only, being equal, by the order of magnitude,
to the rate 1/τdis (in units of “energy” k2). On sharpening
the asperities within the range � � 1, the resonance line Q
factors decrease as their widths are defined by the sum of
the dissipation rate and the rate of scattering-induced mode
decoherence.

On passing to the region � > 1, as the notions of ray
dynamics suggest, an increase of chaotic nature should be
observed, which inevitably changes over to the ergodic stage.
In the mode language this would imply the rearrangement of
the excited mode energy between a large number of resonator
modes and, as a consequence, the quasihomogeneous infilling
of the resonator volume by the electromagnetic field, irrespec-
tive of the field structure of the mode supposedly excited by
the source.

As a matter of fact, the result of the wave equation
solution is different. Specifically, the resonator spectrum is
back to its original, formally undisturbed form (18) when the
asperities are gradually sharpened. As to the disorder-induced
composite mode decay rate [the analog of the weak-scattering
formula, Eq. (33b)], with infinite sharpening of the asperities
it progressively vanishes. In the limit of � → ∞ the width of
resonance lines returns to the initial state, being governed by
dissipation loss only.

Such peculiar behavior of resonance line width cannot
be interpreted in terms of classical, i.e., trajectory-based,
chaos theory as the classic analog of the system we study
here is definitely the K system [41]. A decrease in the
scattering-related portion of the resonance line width, as the
random component of the resonator boundary increases, may
solely be explained by the interference of scattered modes,
whose contribution is lowered (according to the random-phase
summation principle) with an increase in the number of
interfering modes.

V. NUMERICAL ANALYSIS OF THE
ROUGH-RESONATOR SPECTRUM

Now we present the results of numeric analysis of spectral
properties of the rough resonator in the study, using the
analytical formulas obtained in the previous section. The
subject of the analysis is the statistical distribution of nearest-
level spacings (NLS) conventionally defined through unfolded
spacings si ,

si ≈ (Ei+1 − Ei) g(Ei), (42)

where g(Ei) is the mean density of states evaluated at
energy Ei .

According to the long-standing conjecture of Berry and
Tabor [42], the spectrum of an integrable system (normally
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referred to as a regular spectrum) is described by the NLS
distribution following Poisson’s law, p(s) = exp(−s). This
distribution is normally associated with the absence of level
correlation and, as a consequence, with their clusterization
near s = 0. If there exists some chaotic component in the
spectrum, the levels become correlated to a certain extent
and subjected to a kind of repulsion, which is manifested
through the gradual transformation of p(s) from Poissonian-
to Wigner-type distribution, p(s) = (π/2)s exp(−πs2/4). The
latter distribution is typical for systems with extremely chaotic
classical dynamics [43].

One can infer from our results, Eqs. (33) and (41), which
apply to weak and strong intermode scattering, respectively,
that in the idealized dissipation-free resonance system the line
width should be zero, whatever the strength of the seed-mode
scattering induced by surface inhomogeneities. Yet, the mere
presence of this type of scattering, even though it is weak,
results in substantial redistribution of resonance frequencies
in comparison with the case where boundary asperities are
entirely absent. The shift of each resonance line from its
starting position (at � = 0) is determined by the sum of
seed energy (18) and the correction to this energy resulting
from composite mode scattering. In the smooth roughness
domain corresponding to �2 � 1 the correction to energy,
Eq. (18), has the form of Eq. (33a). In the opposite limiting
case, where asperities are strongly sharp (�2 � 1), we regard
this correction as negligibly small, using expression (41)
with no corrective term for the μth mode trial Green’s
function, G

(V )
μ .

Figure 2 shows NLS histograms for inhomogeneity-free
resonator side-walls (� = 0) and for some instances where
parameter � is of finite but small value, as compared to unity.
It is evident that if the dissipation loss is not taken into account
(upper plots in Fig. 2) then the level spacings are distributed
close to Poisson law, however rough the resonator may be.
Considering the dissipation and, consequently, the resonance
line finite width leads to partial “Wignerization” of the NLS
distribution, specifically, to the appearance of a significant dip
of the function p(s) in the region of s ≈ 0. This is due to
the fact that, when counting the number of resonances in a
given frequency window, only resonance frequencies spaced
at distances larger than the width of the corresponding lines

should be taken into account. All other resonances, which
are positioned very closely with a given one, in our calcu-
lations were considered as merging into a single resonance
peak.

On gradual sharpening the asperities, specifically, in the
domain where � � 1, the resonance frequency distribution
may well be described by formula (18) only. The broadening
related to roughness-induced mode scattering (the analog of
Eq. (33b) for � � 1) monotonically decreases with growing
parameter �, and in the limit � → ∞ the width of all
resonance lines is again determined by solely the dissipation
loss. Figure 3 shows the dependence of several composite
mode energies on the asperity sharpness. With increasing
parameter � all the energies monotonically increase. The
intervals between neighboring levels tend to increase as
well.

This particular fact allows one to neglect (under the
condition of strong scattering, � � 1) not only the scattering-
induced decoherence but also the initial dissipative broaden-
ing, which was chosen to be small from the outset so as to
resolve the bulk of the resonance lines. As can be seen from
the graphs in Fig. 3, the composite modes “float up” in energy
as the asperities get sharpened. In each prescribed frequency
interval the number of resonances decreases with growing �,
going to zero as this parameter tends to infinity.

In Fig. 4, NLS histograms for very sharp boundary
asperities are given, when composite mode scattering is
particularly strong. One can see that on sharpening the
boundary irregularities the interfrequency interval distribution,
being of Poisson nature at small � and in the absence of
dissipation, transforms gradually to the bell-shaped curve with
a maximum placed at s = 1. With � → ∞ this distribution,
allowing for its normalization, approaches the δ function,
namely, δ(s − 1). Such a form is characteristic for NLS
distributions of a fortiori integrable systems, in particular, of a
set of harmonic oscillators with commensurable frequencies.
Note that this particular system can always be specified with
a single governing parameter; i.e., it can be thought of to be,
in a way, one-dimensional.

Such a behavior of NLS distribution for a randomly rough
resonator, which is at first glance unusual, can be explained
in the following way. As an example, consider a resonator

FIG. 2. (Color online) NLS distribution for different values of slope parameter �2 in the small-slope domain. Histograms are obtained
from Eqs. (33). In each diagram, Wigner and Poisson distributions (solid and dashed lines, respectively) are shown for reference purposes.
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FIG. 3. (Color online) The dependence of composite mode energy (18) on the degree of sharpness of side boundary asperities.

with no dissipation and follow the transformation of p(s) with
an increase in the gradient parameter �. At the early stage,
in the region of small (as compared to unity) values of this
parameter, the distribution retains Poissonian form (upper plots
in Fig. 2), which may be accepted as a signature of small
interlevel correlations. In this case, the set of energy levels
of weakly rough two-dimensional wave billiard (we consider
the case of a single z mode, k = 1) in any reasonably large
frequency interval is governed by two parameters (two mode-
index components), as one can see from Eq. (18).

With growing the parameter �, the NLS distribution
gradually transforms from the distribution of the Poisson type,
with the maximum at s = 0, to the bell-shaped distribution
whose maximum moves up to the point s = 1 (see Fig. 4).
In doing so, in view of the above discussed “float-up” effect,
the system of resonance levels in any prespecified frequency
interval approaches ever more the one-parameter set, which is
characteristic of regular physical systems. Indeed, the effective
(gradient-renormalized) azimuth indices entering eigenenergy
(18) for oscillations with different l’s simultaneously go to
zero when � unlimitedly increases, and resonances tend to
become differentiated (quantized) by the radial index only.
If azimuth indices of all oscillations were really strictly
the same we would get the δ-shaped distribution, p(s) =
δ(s − 1), instead of actual peaked distributions with finite
widths.

The finite width of the actually obtained peaked distribu-
tions is accounted for by the peculiar fact that at arbitrary large

but finite values of the parameter � one can always indicate
frequency intervals (maybe, of quite large frequency values)
where the bulk of resonance levels having the same azimuth
index n and distinguished by radial index only is supplemented
with a certain number of levels (the lesser is the number the
larger is �) with different azimuth indices. In the classical
phase space such admixing of “foreign” levels results in the
deformation of energy contours out of the phase plane, which
normally is associated with the onset of chaos. Meanwhile,
in the wave mechanics we deal with in the present work the
resonance levels, even though intermixed, in the absence of
dissipation remain perfectly stable (i.e., of zero width). This
is the main reason why we cannot speak about the presence of
quantum (or wave) chaos in the rough-side resonator unless it
is dissipative.

The analogous situation was already discussed in the paper
by Berry and Tabor (see Ref. [42]), where the authors, using
the definitely integrable system of harmonic oscillators as an
example, have put forward and substantiated the concept of
level clustering in the vicinity of either s = 0 or s = 1. Obvi-
ously, the distribution of single-oscillator energy levels, which
are entirely correlated, obeys the law p(s) = δ(s − 1). It was
exactly the presence of other oscillators with incommensurable
frequencies (the condition preventing the set of energy levels
from being one-parametric) that has led the authors of Ref. [42]
to the NLS distributions similar in form to those depicted in
Fig. 4 for the two largest values of the gradient parameter,
namely, for �2 = 150 and �2 = 300.

FIG. 4. (Color online) NLS distributions for large values of the slope parameter �2. Gradual level clustering in the vicinity of s = 1 is
clearly seen in the case where mean sharpness of the asperities measures extremely large values.
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VI. DISCUSSION

In summary, we have suggested a new calculation method
for finding the spectra of resonators with nonhomogeneous
boundaries. The method is based on direct solution of wave
equations rather than on the system symmetry properties, and
it is tried out for a cylindrical cavity resonator with a randomly
rough side boundary (randomly rough two-dimensional wave
billiard). Although in the context of the classical-billiard-
system theory this resonator is obviously nonintegrable,
being considered from a position of wave/quantum theory
its governing equation is shown to be separable, even if
the system boundary is of quite complicated form. The
condition mandatory for the corresponding multidimensional
wave equation to be separable is the violation of either P or
T symmetry of the wave operator. For the inhomogeneities of
random nature, P symmetry is manifestly broken. This made
it possible for us to study both dissipative and nondissipative
rough cavity resonators within the unified approach.

Using exact mode separation, which is carried out with
our method at an arbitrary level of the disorder at resonator
boundaries, it is shown that the quality factors of resonance
lines can become finite only if there is dissipation and/or
radiation loss in the system. In the absence of dissipation,
despite the boundary complexity, the oscillation spectrum of
randomly rough resonator appears to be regular and possesses
no signs of chaos.

We also have found that the intensity of intermode
scattering, and thus the degree of entanglement of resonator
modes, is predominantly determined by the average sharpness
of surface asperities rather than by their mean height. In the
absence of dissipation and under conditions of weak oscillation
scattering produced by the resonator wall roughness (i.e., in
the case of smooth boundary asperities) the interfrequency
interval distribution in the resonator spectrum is close to
Poissonian distribution. The resonance lines, being strictly
discrete when there is no dissipation, with the presence of
the latter become manifestly widened. The lines positioned
tightly on the frequency axis begin to merge with one
another and cannot thus be considered as independent ones.
The distribution of intervals between neighboring resonances
broadened concurrently by dissipation and roughness-induced
scattering acquires a significant Wigner component. The
numerical estimations we have carried out on the basis of
our formulas for nonsharp asperities, Eqs. (33), are in good
qualitative agreement with our recent experimental results
reported in Ref. [44].

Within the suggested approach we were also able to
consider, besides the case of smoothly rough resonators, the
resonators whose boundary inhomogeneities are arbitrarily
sharp. The sharpening of the asperities results in the increase
in energies of the effective (composite) oscillation modes,
which gradually leave upward of any frequency interval chosen
for spectral measurements. The spectrum of the quasioptical
resonator, being initially dense within any sufficiently large
frequency range, in view of the mode “floating-up” effect
that arises due to boundary inhomogeneities is substan-
tially rarefied, thereby approaching monofrequency, or even
zero-frequency regime if the asperities become sufficiently
sharp.

The results we have obtained in this study are pertinent
to billiard-type wave systems, which are ballistic from the
viewpoint of classical dynamics. The conclusions we arrived at
differ drastically from those obtained previously for resonators
of similar cylindric form, though randomly inhomogeneous in
the bulk infill rather than on the surface. The wave transport
in disordered resonators with continuously varying bulk
permittivity is always of diffusion nature [9–11],5 irrespective
of whether the dissipation is taken into account or not. For
this reason, the state of chaos in their spectrum, which
is determined, according to the Chirikov criterium, by the
resonance line width [45,46], is always finite. Hence, the
conclusion results that the spectra of wave and quantum
resonance systems with continuous inhomogeneities in their
bulk are always to some extent chaotic, whereas the analogous
systems of truly billiard configuration reveal chaotic properties
only provided that there exist some dissipation channels.

ACKNOWLEDGMENTS

This work is partially supported by the Ministry of Educa-
tion and Science of Ukraine under the project “Fundamental
Problems of Nanostructured Systems, Nanomaterials, and
Nanotechnologies,” Project No. 0107U003985.

APPENDIX: EVALUATION OF THE MODE-MIXING
OPERATOR NORM

When estimating the norm of the mode-mixing operator R̂
through Eq. (27), for the trial Green’s function G

(V )
ν we apply

expression (20) with the intramode potential Vν put equal to
zero based upon arguments presented in Sec. IV A 1.

As to the intermode scattering, to estimate the contribution
to the norm (27) of the height potential V̂ (h) one has to evaluate
the correlator 〈U (h)∗

ν′μ U (h)
νμ 〉. Substituting the potential V̂ (h) into

Eq. (19) in the asymptotic form (26) and performing the
averaging we obtain〈

U (h)∗
ν′μ U (h)

νμ

〉 = 4

(
σ

R

)2[
k2 −

(
πqμ

H

)2]2

× W̃ (nν − nμ)δνν′δqνqμ
δlν lμ . (A1)

Then, upon inserting Eq. (A1) into Eq. (27) and taking
account of the normalization

∑
n W̃ (n) = 1 we arrive at the

following estimate for the height-potential contribution to the
intermixing operator R̂,

〈‖R̂(h)‖2〉 ∼
(σ

R

)2
� 1. (A2)

The correlator 〈U (s1)∗
ν′μ U (s1)

νμ 〉, which arises in estimating the

norm of the gradient-potential operator R̂(s1), after averaging
can be recast as follows:〈
U (s1)∗

ν′μ U (s1)
νμ

〉 = (σ

R

)2
δqν′ qν

δnν′nν
δqνqμ

(
n2

ν − n2
μ

)2
W̃ (nν −nμ)

×
∫ R

0
dr ′〈r ′; lν ′ | ∂

∂r ′ |r ′; lμ〉∗
∫ R

0
dr〈r; lν | ∂

∂r
|r; lμ〉. (A3)

5The classic analogs of such resonators are nonconservative
dynamic systems, where energy is not conserved in time.
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It is easy to verify, subject to the particular form of eigen-
function (14c), that the product of integrals in Eq. (A3) is
appropriately estimated by the following expression:∫ R

0
dr ′〈r ′; lν ′ | ∂

∂r ′ |r ′; lμ〉∗
∫ R

0
dr〈r; lν | ∂

∂r
|r; lμ〉

∼ 1

R4

γ
(|̃nμ|)
lμ

γ
(|̃nμ|)
lμ

+ γ
(|̃nν |)
lν

γ
(|̃nμ|)
lμ

γ
(|̃nμ|)
lμ

+ γ
(|̃nν |)
lν′

. (A4)

For estimation purposes we set ñμ ∼ kR in Eq. (A4) and
then, based upon the relationship

√|̃n|(|̃n| + 2) < γ
(|̃n|)
1 <√

2|̃n|(|̃n| + 1) known from the Bessel function theory [47],
we use the inequality ∀γ

(|̃nμ|)
l � kR. Substituting the asymp-

totic expression

γ
(|̃n|)
l ≈

(
l + |̃n|

2
− 3

2

)
π (l � |̃n|) (A5)

into Eq. (A4) instead of the exact roots γ
(|̃n|)
l , one can make

sure that replacing the product of integrals in Eq. (A3) with the
product (A4) not only enables one to make a correct estimate
of each of the terms in the sum (27) but also to carry out
twofold summation over radial mode indices. The estimation
formula for the operator R̂(s1) norm is then reduced to

〈‖R̂(s1)‖2〉 ∼ max
μ

1

(kR)2

(σ

R

)2 ∑
nν

(
n2

μ − n2
ν

)2
W̃ (nμ − nν),

(A6)

whereupon we arrive at the outcome

〈‖R̂(s1)‖2〉 ∼
(

σ

sc

)2

∼ �2. (A7)

To estimate the norm of the operator R̂(s2) originating from
the square-gradient potential (13b) one has to evaluate the
following correlator:

〈
U (s2)∗

ν′μ U (s2)
νμ

〉 = δqν′qν
δqνqμ

4

R4
B

(̃nν )
lν

B
(̃nν′ )
lν′

[
B

(̃nμ)
lμ

]2
∫ 1

0
tdt J|̃nν′ |

(
γ

(|̃nν′ |)
lν′ t

) [(
γ

(|̃nμ|)
lμ

)2 − ñ2
μ

t2

]
J|̃nμ|

(
γ

(|̃nμ|)
lμ

t
)

×
∫ 1

0
t ′dt ′ J|̃nν |

(
γ

(|̃nν |)
lν

t ′
) [(

γ
(|̃nμ|)
lμ

)2 − ñ2
μ

t ′2

]
J|̃nμ|

(
γ

(|̃nμ|)
lμ

t ′
)

×
∮

dϕ

2π
ei (̃nν′ −ñμ)ϕ

∮
dϕ′

2π
e−i (̃nν−ñμ)ϕ′

{
1

R4
〈[ξ ′(ϕ)ξ ′(ϕ′)]2〉 − �4

}
. (A8)

The integrals over ϕ and ϕ′ can be easily calculated with the
use of the Gaussian model for the random process ξ (ϕ), and
as a consequence we have∮ ∮

dϕdϕ′

(2π )2
· · · = 2

R4

∮ ∮
dϕdϕ′

(2π )2
exp[−i (̃nν ′ − ñμ)ϕ

+ i (̃nν − ñμ)ϕ′]W 2(ϕ − ϕ′)

= 2
(σ

R

)4
δnν′nν

∞∑
k=−∞

W̃ (k)W̃ (k + ñμ − ñν)

(A9)

In addition, if one takes the function W (ϕ) in the form of a
Gaussian exponential, then W̃ (k) = (ϕc/

√
2π ) exp(−k2ϕ2

c /2),
and the double integral over azimuth angles in Eq. (A9) are
estimated by the simple formula∮ ∮

dϕdϕ′

(2π )2
· · · ∼ ϕc

(σ

R

)4
exp

[
− (̃nμ − ñν)2ϕ2

c

4

]
. (A10)

The integrals in Eq. (A8), which contain the Bessel func-
tions, can be estimated by substituting the asymptotic expres-
sions valid for large arguments for those functions. The sums
over radial mode indices are then easily calculated, and one ob-
tains the following estimate for the operator R̂(s2) square norm:

〈‖R̂(s2)‖2〉 ∼
(σ

R

)4
ϕc max

μ

∑
ñν

exp

[
− (̃nμ − ñν)2ϕ2

c

4

]
.

(A11)

In so far as the angle correlation parameter is small in
magnitude, ϕc � 1, one can approximately replace the sum
in Eq. (A11) with the integral, thereby obtaining

〈‖R̂(s2)‖2〉 ∼
(σ

R

)4
� 1. (A12)

From this estimation it follows that the quadratic in the ξ ′(ϕ)
potential in Eq. (6), in contrast to the linear potential V̂ (s1), is
adequately taken into account through the substitution into all
of the formulas of the mean value of this potential.
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