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Dimensional signature on noise-induced excitable statistics in an optically injected
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Noise-induced excitability is a prevalent feature in many nonlinear dynamical systems. The optically injected
semiconductor laser is one of the simplest such systems and is readily amenable to both experimental and
theoretical analysis. We show that the dimensionality of this system may be tuned experimentally and that this
has a strong signature on the interspike statistics. The phase of the slave laser is resolved experimentally in
the frame of the master laser, allowing an examination of the dynamics at extremely low injection strengths
where intensity measurements alone cannot determine the dynamics fully. Generic phase equations are found
for the different dimensional scenarios. When the dimensionality is greater than 1, we show that a precursor
of a homoclinic bifurcation generates a noise-induced frequency and that the homoclinic bifurcation admits a
bistability in the system.
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I. INTRODUCTION

Noise-induced phenomena are of considerable importance
in all areas of science and technology. The presence of noise
in some systems results in excitability, a feature common
to many areas of study. It was originally introduced in a
biological setting in [1] and has since been studied in many
different fields [2] and, most importantly for this work, in
systems of semiconductor lasers [3–9]. A system is excitable
if there exists a stable equilibrium and a perturbation threshold
beyond which a large phase space trajectory back to the stable
point results, typically associated with an amplitude pulsation.
(These excitations are commonly referred to as spikes.) A
deep feature of the effect of noise in excitable systems is
coherence resonance, a phenomenon that typically involves
the appearance of noise-induced frequencies even when the
system does not have any intrinsic deterministic frequency
[10–13], often resulting from noise-induced diffusion out of
a potential minimum. The seminal work on noise-induced
escape from potential minima is that of Kramers [14,15],
who showed that the probability of escape was governed by
an exponential decay with a characteristic time depending
on the noise strength (explaining at the same time the
empirical Arrhenius activation law). An important class of
such potentials is the class of tilted potentials [16], and
these have relevance in many physical systems, such as
Josephson junctions, superconductors, neuronal processes,
coupled electrical oscillators, and coupled lasers,among oth-
ers. We consider here one of the most important coupled
laser configurations: that of the optically injected laser. This
system is of interest to researchers in diverse fields because
of its relative experimental simplicity and, conversely, the
rich dynamical behavior observed, including synchronization,
excitability, multistability, and chaos [17]. What’s more, much
of the underlying physics can be described via the Adler
model [18], one of the prototype tilted potential models, first
derived for the phase coupling of electrical oscillators. For
very low injection strengths, the optically injected system

should be well approximated by the Adler model [19]. In
this approximation one should observe 2π phase rotations in
the presence of noise manifest as excitable intensity spikes or
pulsations [2,7], and the distribution of the interspike times is
predicted to be an exponential decay [10]. However, for the
very low injection strengths where it is expected to give the
most accurate description, the intensity changes are very small
compared to the free-running intensity, and for sufficiently
low levels, the pulsations can be (at least partially) masked
by the noise in the system and thus cannot be identified
unambiguously in an intensity time series. As a result, the
excitable properties of the optically injected laser have never
been systematically tested experimentally in this limit. For
higher injection strengths both the intensity and the carrier
density of the locked slave electric field can differ significantly
from the free-running intensity and carrier density, and the
intensity pulsations are easily observed [7].

In this work we use a recently developed experimental
method to resolve the phase of the slave laser at any injection
strength. This allows an analysis of the dynamics at extremely
low injection levels and thus the identification of excitable
events, even where noise hides the intensity pulsations.
This permits a direct analysis of the ability of the Adler
model to provide an accurate description of the system, and
we verify experimentally the exponential distribution. For
moderate injection strengths where the pulsations are easily
visible above the noise, we again measure the interspike
times and demonstrate a region of nonexponential behavior,
indicating that the system is no longer accurately modeled
by the Adler equation. We measure the phasor of the slave
undergoing excitable pulsations in this region and show
how it differs significantly from that at low injection levels.
Starting from the standard quantum dot rate equations, we
derive a third-order phase model for the system, generalizing
the Adler equation. From this we uncover the theoretical
explanation of the nonexponential behavior and display an
excellent agreement between numerical simulations and the
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experiment. We also show how a dimensional reduction leads
to a second-order phase model formally identical to the forced
nonlinear pendulum. Finally, we show how the results correlate
with the Fokker-Planck potential approach.

II. OPTICAL INJECTION AND THE ADLER MODEL

For low injection levels the optically injected system should
be well approximated by the Adler model, as shown in
[19]. The Adler model is a one-dimensional system with the
governing equation given by

φ̇ = −� − κ
√

1 + α2 sin(φ + φ0), (1)

where φ is the phase of the slave in the frame of the master,
� is the detuning (the angular frequency of the master minus
that of the slave), κ is a measure of the coupling strength,
α is the linewidth enhancement factor, and φ0 = arctanα.
(Note that this can be rewritten in the usual Adler form as
ψ = −� − ηsinψ by defining ψ = φ + φ0 and η =
κ
√

1 + α2.) If |�| < κ
√

1 + α2, the slave can be phase locked
to the master so that its frequency equals that of the master
and it has a fixed relative phase. The locking boundary at
|�| = κ

√
1 + α2 is a saddle-node infinite-period bifurcation

[20], where a pair of equilibria, one stable (the node) and
one unstable (the saddle), are born. Phase-locked behavior
consists of the system residing at the stable point. Outside the
locking region, the phase is unbounded. In the phasor-like
representation (cosφ,sinφ), this unbounded, running-phase
solution is periodic, and far from the locking boundary it
corresponds to the frequency beating of the two oscillators.
The period of this solution becomes infinite at the locking
boundary. Within the locking region and in the presence
of noise, the phase jiggles around the stable point, and if
it passes the unstable point, then a rotation back to the
stable point results (giving a 2π rotation in total). This is
an excitable phase slip, and as described above, such a slip
often manifests as an amplitude pulsation. Various properties
of the resulting distribution of interslip times are known for
the Adler model. For the purposes of this work the most
important feature is that the distribution has a broad peak
from which it exponentially decays with a characteristic time
TK . Thus, for a weakly injected semiconductor laser one might
expect to find such an interspike time distribution close to the
locking boundary. However, as described above, to access such
a region the injection is so weak that the intensity of the slave
laser undergoes extremely small pulsations, and these can be
below or similar to the perturbations due to noise in the time
trace. Thus, one needs to directly access the phase where the
excitable events are unambiguous as each one consists of a full
2π rotation regardless of the intensity variation. A technique
to allow such a measurement has recently been developed, and
we turn our attention to the experiment in the next section.

III. EXPERIMENT

For the experiment the master laser was a commercial
tunable device with a linewidth <100 kHz, tunable in steps
of at 0.1 pm, and the slave laser was a single mode (distributed
feedback) quantum dot (QD) based device operating at
approximately 1.3 μm, similar to those used in [21]. The setup

FIG. 1. (Color online) Experimental setup. ML is the master laser,
BS is a beam splitter, SL is the slave laser, ISO is an optical isolator
to prevent unwanted feedback, 3X3 is the passive 3 × 3 coupler, and
OSC is the digital oscilloscope.

used the interferometric system described in [22], allowing
experimental determination of the phasor of the slave electric
field. The setup is shown in Fig. 1. The output from the master
was split using a polarization maintaining beam splitter. The
light from one arm of this splitter was coupled to the slave as
injected light. The other arm of the splitter was connected to
one arm of a passive 3 × 3 coupler. The output of the slave
went to a second arm of the 3 × 3 coupler, while the final arm
did not receive any input. The use of the optical circulator
allows the output of the slave to be used as a reference
for the coupling strength using the power meter. The three
outputs from the 3 × 3 coupler were connected to a 14-GHz
real-time digital oscilloscope. Any timing skew between the
three outputs was removed. The outputs of the coupler have
a fixed phase relationship, and through suitable combinations
of the intensities one can calculate the phase of the slave laser
in the frame of the master. Each output is phase dependent,
while the sum may be phase independent. (See [22] for
details.)

For sufficiently low values of the detuning between the
master and slave frequencies the slave laser can be phase
locked to the master. (We consider only negative detuning in
this work.) We quantify the injection strength via the ratio of
the intensity of the master field, which enters the slave cavity
to the intensity in the slave’s cavity in the injection-free case.
In these units the injection strengths we consider are from
3 × 10−6 to 0.02. (To put this in perspective, levels greater
than 0.1 are required for the observation of a Hopf bifurcation
[21].) At the lowest levels considered, the change in intensity
between the injection-free laser and the injection-locked laser
is not clearly observable above the noise in the experiment, and
the locking region is approximately 50 MHz wide. Figure 2
shows the intensity of the slave (plus a constant offset) in a
regime where noise can excite phase slips. Also shown are the
corresponding traces from the arms of the interferometer. The
spike in each of these phase sensitive traces corresponds to a
large phase excursion. Thus, the phase sensitive readings show
that something significant is taking place in the phase, while
the intensity is almost unchanged within the confines imposed
by noise on the measurements. We resolve the phase of the
slave in the frame of the master laser and find that the spikes
correspond to a 2π rotation of the electric field. Figure 2 also
shows the phasor for the rotation. The blue (“wiggly”) line
shows the experimental phasor of the slave laser. However,
any variation in the intensity is almost entirely masked by the
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FIG. 2. (Color online) (top) The intensity of the slave undergoing
extremely weak injection and the three outputs from the interferome-
ter. The highest time series (black) is the intensity of the slave output,
while the three lower traces (green, red, and blue, from top to bottom)
with the sharp features are the outputs of the individual channels of
the interferometer. The sharp features show that a large excursion
is taking place in the phase, although the intensity is approximately
constant (modulo noise). (bottom) The corresponding phasor plot.
The dense part of the experimental (blue “wiggly” line) plot is the
steady state position. The phase excursion is a 2π rotation and within
the confines imposed by noise is approximately circular, as can be
seen by comparing the trace with the (black) circle fitted using the
steady state value to find the radius. The arrow shows the direction of
rotation of the phasor during the excitable event.

noise, and so within the confines imposed by the experiment,
the behavior is close to one-dimensional. To demonstrate how
close it is to a circle we plot (in black) a circle with a radius
given by the mean of the steady state intensity over a long
time between two consecutive events. We note that much of
the noise in the measurements is actually instrument noise,
and so the identification of the pulsations may be significantly
hampered by the measurement rather than the actual behavior
of the slave laser.

The interspike statistics for a long time trace were analyzed,
and a representative example of the histograms of interspike

FIG. 3. (Color online) A histogram of interspike times for the
weak injection case. The characteristic time TK is also shown with
the solid (red) line, showing the best fit exponential.

times is shown in Fig. 3 and yields an exponential decay. The
characteristic time TK of the exponential in the case shown is
2μs. The identification and measurement of the phase rotations
even when the intensity pulsation is almost entirely masked by
the noise is one of our key results.

The effect on the intensity of increasing the injection
strength is clear. The phase-locked intensity no longer even
approximately matches the free-running intensity in general.
For an injection strength of 0.01 clear intensity pulsations are
already associated with the phase slips, and so the system
is no longer even approximately one-dimensional. In Fig. 4
a train of such pulses is shown. A phasor plot of one pulse
is also shown. From the intensity it is clear that the rotation
cannot be on a circle, and the phasor confirms this directly.
Indeed, the behavior is fully three-dimensional: that the carrier
density also changes was confirmed by direct measurement by
simultaneously measuring the gain of the slave laser using an
extension of the phase technique as described in [22]. The
corresponding distribution of interspike times is shown in
Fig. 5. Again, there is an exponential tail (which becomes
progressively steeper as the magnitude of the detuning is
increased: that is, the Kramers time TK decreases), but now
there is also a sharp early peak over this tail. In this case
the characteristic time of the tail is 67 ns, while the early
peak is at approximately 6 ns. At this injection strength, the
separation of time scales is also evident in the time series where
the early peak is characterized by clusters of intensity pulses.
These statistics are not consistent with the saddle-node, infinite
period bifurcation as found in the Adler system. The signature
on the statistics arising from the change of dimensionality in
the system is another of our key results.

A noticeable contrast between the two injection levels is
the influence of noise on the trajectory during the rotations
shown in Figs. 2 and 4. For the low injection case each
rotation takes a (relatively) long time. A full rotation occurs
on a time scale of the order of tens of nanoseconds, and
so the effect of noise can be easily seen in the trace and is
manifest by the many loops and twists in the trajectory during
the rotation. In the higher injection case a rotation occurs
on the order of a nanosecond, and so the influence on the
observed trajectory during a rotation is greatly decreased, and
the trace is much sharper. The evolution from the exponential
distribution to the nonexponential distribution is gradual, and
there is no clear transition. Rather, an early peak develops
and becomes progressively more prominent as the injection
level is increased. In the time series one observes, in general,
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FIG. 4. (Color online) (top) An experimental pulse train. The
injection strength was approximately 0.01. The detuning was approx-
imately −0.25 GHz. (bottom) A phasor plot for one of the pulses. The
dense part of the experimental (blue) plot is the steady state position.
The phase excursion is a 2π rotation and is very noncircular, as can
be seen by comparing the trace with the (black) circle fitted using the
steady state value to find the radius. The arrow shows the direction of
rotation of the phasor during the excitable event.

both individual isolated pulses and clusters of pulses. As the
injection strength is decreased, the individual pulses dominate,
and when it is increased, the clusters dominate.

To investigate the meaning behind the observations we use
the machinery of laser rate equation models.

FIG. 5. (Color online) Experimental distribution of interspike
times. The characteristic time TK is shown with the solid (red) line,
showing the best fit exponential for the tail. The inset shows a zoom
of the peak in the histogram. The detuning and injection strength are
the same as for Fig. 4.

IV. THEORY AND NUMERICAL SIMULATIONS

Let us take as our starting point the rate equations for an
optically injected quantum dot laser.

E′ = 1

2
(1 + iα)

[
1 − 2(1 + |E|2)

BεN

]
E + Kei�t , (2)

N ′ = ε−1η[J − N − 2(1 + |E|2)]. (3)

Here N is the carrier density in the wetting layer, B ≡ ττ−1
cap ,

and η ≡ τphτ
−1, where τ , τcap, and τph denote the carrier

recombination time, the capture time from the wetting layer to
the dot, and the photon lifetime, respectively. J is the pumping
current above threshold, and K is the injection rate. In these
equations a prime means differentiation with respect to s =
εt/τph. The rate equations for a quantum dot laser usually
include a further equation for the probability of occupation
of the dot. Here we have adiabatically removed this equation,
as described in [21,23]. While the full model can explain the
observations, we derive a phase model valid for weak injection
levels that allows the physics of the system to be more easily
identified. Reductions to phase models have also been used
in the mutually coupled (bidirectionally coupled) laser system
[24,25] and to analyze mode hopping in semiconductor ring
lasers [26], and such reductions can provide both accurate
approximations and aid intuition, and this is also the case
here. We consider the injection strength K to be very low so
that κ ≡ K

R
�1, and we restrict the system to either be in or

near the synchronized region, in which case the detuning must
also be of order κ . We assume then that the resulting changes
in the intensity and carriers are also of order κ . The derivation
proceeds as follows. We write E = Reiφ+�s . Equations (2)
and (3) can then be rewritten as

R′ = 1

2

[
1 − 2(1 + R2)

B1N

]
R + Kcos(φ), (4)

φ′ = −� + α

2

[
1 − 2(1 + R2)

B1N

]
− K

R
sin(φ), (5)

N ′ = d[J − N − 2(1 + R2)], (6)

where B1 = Bε and d = ε−1η. Using Eq. (5) we can rewrite
Eq. (4) as

R′ = 1

α
(φ′ + �)R + K

√
1 + α2

α
sin(φ + φ0), (7)

where φ0 = arctan α. We assume now that κ ≡ K
R

� 1. Then,
we also assume that R = Rf(1 + r), with Rf being the free-
running value of R and r � Rf, and that N = Nf + n, with Nf

being the free-running value of N and n � Nf. To first order
we find the following:

r ′ = 1

α
(φ′ + �) + κ

√
1 + α2

α
sin(φ + φ0), (8)

φ′ = −� + 1

2
α

[
n

Nf
− 4R2

f r

B1Nf

]
− κsinφ, (9)

n′ = −d
[
n + 4rR2

f

]
. (10)
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Rearranging Eq. (9), we can write n in terms of φ′,φ, and r .
Differentiating this, we find

n′ = Nf

[
2

α
(φ′′ + κφ′sinφ) + 4R2

f r
′

B1Nf

]
. (11)

Now, here we implement our slow phase approximation. We
are only interested in the behavior near or in the locking region,
and so we restrict the detuning to be of order κ . Then from
Eq. (9), φ′ is also of order κ , and so, in the last expression, the
term involving κφ′ can be ignored to first order. Substituting
for r ′, equating with the right hand side of Eq. (10), and
differentiating, we find

φ′′′ + 2�φ′′ + �2[φ′ + � + κ
√

1 + α2sin(φ + φ0)] = 0,

(12)

where

� = 1
2 (d + 1 − Jth/J ) (13)

and

�2 = d(1 + B1)[1 − Jth/J ], (14)

where Jth is the threshold current, � is the relaxation oscillation
damping, and the relaxation oscillation frequency is given by√

�2 − �2 [23]. Finally, dividing across by �3 and rescaling
the time so that a dot means differentiation with respect to �s,
we find

...
φ + 2�̂φ̈ + φ̇ + χ sin(φ + φ0) + �̂ = 0, (15)

where Â ≡ A
�

and χ = κ̂
√

1 + α2. Defining ψ = φ + φ0, we
can rewrite this equation as

...
ψ + 2�̂ψ̈ + ψ̇ + χ sinψ = −�̂, (16)

so that it now resembles clearly a generalization of the forced
nonlinear pendulum to a third-order system. This equation can
also be derived for quantum well (QW) lasers using the same
approximations, and so it provides a quasicanonical form for
weakly injected semiconductor lasers within the slow phase
region [27]. It is also a natural generalization of both the
Adler equation and the forced nonlinear pendulum to three
dimensions and as a result should be of interest to researchers
in diverse fields. The ratio of the damping � and the frequency
� is a crucial parameter in our system. For quantum dot lasers
this can be of order unity, while for conventional QW lasers
� << �, with the result that there are large regions of chaotic
operation [28]. For our numerical simulations, we take �̂ to be
0.8 for the quantum dot laser operating at 1.5 times threshold.

There are two main bifurcations associated with this
equation. The first is a saddle-node (SN) bifurcation, and

FIG. 6. (Color online) Bifurcation diagram for Eq. (15). The
solid (blue) line is the saddle node, and the dashed (red) line is the
homoclinic. UL, BIS, and EXC are unlocked, bistable, and excitable,
respectively.

the second is a homoclinic bifurcation. The SN bifurcation
corresponds to the locking boundary and the creation of
a phase-locked solution, while the homoclinic corresponds
to the death of the running-phase solution. As described
earlier, for the Adler system the two bifurcations coincide,
forming a saddle-node infinite period bifurcation. However,
in the three-dimensional system, they do not always coincide.
Rather, above a critical value of the injection strength the
homoclinic bifurcation is located inside the locked region,
and so there is a region of bistability between a stable locked
steady state and the running-phase solution. (This bistability
is quite different to that described in [21], where a bistability
results from the interaction of SN and Hopf bifurcations.) A
bifurcation diagram is shown in Fig. 6. The solid (blue) line
shows the saddle-node bifurcation, and the dashed (red) line
shows the homoclinic. The first realization that a separation
between the saddle-node and homoclinic bifurcations can
occur in the optically injected system was in [6], where
weakly damped quantum well lasers were considered. There
it was shown that a separation could lead to complicated
multipulse excitability in so-called homoclinic teeth. We see
now that for highly damped lasers such as the QD laser used
in our experiment, a separation between the two bifurcations
also arises, but in this case it leads to a bistability between
phase-locked behavior and an unlocked limit cycle rather than
the complicated multipulse excitability. It is this bistability that
is responsible for the nonexponential distributions. In [23] it
was shown that the low damping in quantum well lasers leads
to chaotic regions associated with the homoclinic teeth and
that the high damping of quantum dot lasers removes these
chaotic regions and the corresponding teeth. We will see here
that the phase model allows the identification of the physical
mechanism responsible for the bistability in the highly damped
system. First, let us consider some numerically generated time
series.

To obtain noise-induced pulses and bistable switching, a
white noise term

√
2Dξ (T ), with 〈ξ (T ),ξ (T ′)〉 = δ(T − T ′),

was added to Eq. (15). From numerical time series of
the data one can examine the interspike time distributions.
(Some considerations of numerically generated interspike time
distributions in optically injected QW lasers were presented
in [29].) In the excitable region and far from the homoclinic
bifurcation, the distributions are close to exponential, but as the
homoclinic bifurcation is approached, an early peak develops
and becomes increasingly prominent, although there is always
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FIG. 7. (Color online) Numerical distributions. (top) The system
is in the bistable region, and the parameters are χ = 1 and � = 0.9.
(bottom) The system is in the excitable region, and the parameters
are χ = 0.8 and � = 0.67. D = 0.036 and �̂ = 0.8 for both plots.

an exponential tail. In the bistable region the distributions are
also of this shape, with the early peak becoming increasingly
sharp. Two examples of the numerical histograms generated
are shown in Fig. 7. For the first distribution, the parameters
were chosen to match the experimental situation illustrated
in Fig. 4. With these parameters the theoretical system is in
the bistable region. The agreement with the experiment is
excellent. For the second histogram the system is explicitly
in the excitable region, and yet the early peak is still clearly
visible, although there is no deterministic frequency. Thus, this
early peak is a noisy precursor of the homoclinic bifurcation
[30]. A similar effect in semiconductor ring lasers was recently
analyzed in [26] for bistable switching but in a system where
the dimensionality was fixed. The histograms in the two
regions are qualitatively similar, and this leads to a problem
identifying the boundary of bistability. In an idealized, noise-
free system one can easily identify the boundary between the
excitable region and the bistable region, as in the bifurcation
picture of Fig. 6. For example, one could sweep the detuning
from the phase-locked region through the bistable region
and into the unlocked region and then reverse the sweep
direction and thereby find the boundaries. However, in the
real system, noise obscures these boundaries. This was also
clear in the experimental case. This ambiguity is particularly
prominent in a situation where the region of bistability is
small.

V. REDUCTION TO TWO-DIMENSIONAL SYSTEM

We note that in certain circumstances Eq. (12) can be
simplified even further, yielding a second-order phase equation
formally identical to that of the forced nonlinear pendulum.
To derive the second-order equation there are two possible
routes. The first is to take the Class A approximation [31,32],
where both � and � are much greater than 1 (usually because
of the inherent time scales in the device). Then one can

neglect the third-order term in Eq. (12) and find the following
second-order equation:

φ′′ + �2

2�
[φ′ + χ sin(φ + φ0) + �] = 0. (17)

A second route is to take J to be only slightly above Jth.
This is interesting as it is independent of the inherent time
scales in the device, unlike the usual Class A system. As J

approaches Jth, � approaches zero while � remains finite and
approaches 1

2d. Then Eq. (12) becomes

φ′′′ + 2�φ′′ = 0. (18)

Integrating this and demanding consistency with the low
injection Adler limit, we find

φ′′ + 2�φ′ = −2�[� + κ
√

1 + α2 sin(φ + φ0)]. (19)

In both of these cases we can write the equation as

ψ ′′ + 2γψ ′ + ω2 sinψ = F, (20)

which is formally identical to that of the forced nonlinear
pendulum, by employing a suitable relabeling and defining γ

and F appropriately. This reduction from a three-dimensional
system to a two-dimensional system preserves the existence
of excitable and bistable regimes separated by a homoclinic
bifurcation, and a similar effect is observed close to this
bifurcation [33]. We note that in both of these cases one
could begin with the rate equations and justify an adiabatic
elimination of the carrier equation. This would lead to a
two-dimensional system from which the second-order phase
equation could be found via the weak injection and slow phase
approximations.

VI. TILTED WASHBOARD POTENTIAL

A standard physical analogy is to consider a particle in
the tilted washboard potential. In the infinite friction limit of
the forced nonlinear pendulum one recovers the Adler system.
This is amenable to analysis using Fokker-Planck methods,
and many of the results are well known [34,35]. For finite
friction one recovers the standard forced pendulum [and our
Eq. (20)] where now, as well as the velocity, the equation of
motion depends on the acceleration of the phase, and this is
also treated in [35] (but from a different point of view to our
treatment in this work). Finally, if as well as phase acceleration
one has jerk of the phase (the derivative of the acceleration),
then one arrives at our full three-dimensional equation. In each
case the potential is of the same general form:

V (φ) = T φ − Scos(φ), (21)

where T provides the tilt (and is analogous to the detuning),
and the value of S relative to T corresponds to the depth of the
minima (and is analogous to the injection strength). In all cases,
phase locking corresponds to the particle residing at a local
minimum of the potential. In the infinite friction Adler case this
is the only stable solution when the minima exist. The intro-
duction of higher derivatives of the phase allows very different
dynamics. When these are introduced, given appropriate initial
conditions, one can also find a solution where the particle runs
down the potential even in the presence of the local minima.
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The creation of this running-phase solution corresponds to
the homoclinic bifurcation. This allows a physical picture
of the generation of the bistability. The running-phase solution
essentially amounts to throwing the particle quickly enough
down the potential to overcome the friction and the attraction
of the potential minima. Phase-locked behavior corresponds
to a stationary solution in one of the potential minima. In the
presence of noise one can find switching between these two
behaviors.

VII. CONCLUSION

We have presented a phenomenon hitherto unobserved in
the optically injected semiconductor laser, a scientifically and
technologically important system. Specifically, we showed
that depending on the injection strength, the noise-induced
excitability can show markedly different statistics. For ex-
tremely low injection strengths the system is effectively
one-dimensional, and the interspike distribution resembles an
exponential decay, while for increasing injection strength, the
system becomes three-dimensional and an early peak develops
in the distribution. In the low injection strength case a novel

technique was required to identify the excitable events as the
intensity pulsations are masked by the noise at such low levels,
and so the phase of the slave laser has to be directly measured
to identify the rotations. Generic phase equations were derived
generalizing the Adler equation. The experimentally relevant
equation reproduced the experimental distributions identifying
the emergence of the early peak with the presence of a
homoclinic bifurcation.
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A. Scirè, G. Mezosi, M. Sorel, and J. Danckaert, Phys. Rev. Lett.
101, 093903 (2008).

[27] We note that this equation was also derived in A. Gavrielides,
V. Kovanis, P. M. Varangis, T. Erneux, and G. Lythe, Quantum
Semiclass. Opt. 9, 785 (1997) for quantum well lasers but
under the assumptions of large α and low RO damping,
rather than a slow-phase approximation. We use the slow-phase

026208-7

http://dx.doi.org/10.1016/S0006-3495(61)86902-6
http://dx.doi.org/10.1016/S0006-3495(61)86902-6
http://dx.doi.org/10.1016/S0006-3495(61)86902-6
http://dx.doi.org/10.1109/JRPROC.1962.288235
http://dx.doi.org/10.1109/JRPROC.1962.288235
http://dx.doi.org/10.1016/j.physrep.2003.10.015
http://dx.doi.org/10.1209/epl/i1997-00205-7
http://dx.doi.org/10.1103/PhysRevE.55.6414
http://dx.doi.org/10.1103/PhysRevLett.88.023901
http://dx.doi.org/10.1103/PhysRevLett.88.063901
http://dx.doi.org/10.1103/PhysRevLett.88.063901
http://dx.doi.org/10.1103/PhysRevLett.98.153903
http://dx.doi.org/10.1364/OL.34.000440
http://dx.doi.org/10.1117/12.781568
http://dx.doi.org/10.1117/12.781568
http://dx.doi.org/10.1103/PhysRevA.82.063841
http://dx.doi.org/10.1103/PhysRevA.82.063841
http://dx.doi.org/10.1007/BF01044713
http://dx.doi.org/10.1103/PhysRevLett.71.807
http://dx.doi.org/10.1103/PhysRevLett.71.807
http://dx.doi.org/10.1103/PhysRevE.50.3249
http://dx.doi.org/10.1103/PhysRevE.50.3249
http://dx.doi.org/10.1103/PhysRevLett.78.775
http://dx.doi.org/10.1103/PhysRevLett.78.775
http://dx.doi.org/10.1016/S0031-8914(40)90098-2
http://dx.doi.org/10.1103/RevModPhys.62.251
http://dx.doi.org/10.1103/RevModPhys.62.251
http://dx.doi.org/10.1103/PhysRevE.65.031104
http://dx.doi.org/10.1103/PhysRevE.65.031104
http://dx.doi.org/10.1016/j.physrep.2005.06.003
http://dx.doi.org/10.1109/JRPROC.1946.229930
http://dx.doi.org/10.1109/PROC.1973.9292
http://dx.doi.org/10.1109/PROC.1973.9292
http://dx.doi.org/10.1364/OL.35.000937
http://dx.doi.org/10.1140/epjd/e2010-00063-2
http://dx.doi.org/10.1103/PhysRevE.83.026207
http://dx.doi.org/10.1103/PhysRevE.83.026207
http://dx.doi.org/10.1103/PhysRevLett.94.163901
http://dx.doi.org/10.1103/PhysRevLett.94.163901
http://dx.doi.org/10.1103/PhysRevE.81.036204
http://dx.doi.org/10.1103/PhysRevLett.101.093903
http://dx.doi.org/10.1103/PhysRevLett.101.093903


B. KELLEHER et al. PHYSICAL REVIEW E 84, 026208 (2011)

approximation here as it removes any dependence on the material
properties.

[28] V. Kovanis, A. Gavrielides, and J. A. C. Gallas, Eur. Phys. J. D
58, 181 (2010).

[29] S. Wieczorek and D. Lenstra, Phys. Rev. E 69, 016218
(2004).

[30] K. Wiesenfeld, J. Stat. Phys. 38, 1071 (1985); A. Neiman, P. I.
Saparin, and L. Stone, Phys. Rev. E 56, 270 (1997).

[31] F. T. Arecchi, G. L. Lippi, G. P. Puccioni, and J. R. Tredicce,
Opt. Commun. 51, 308 (1984).

[32] C. Mayol, R. Toral, C. R. Mirasso, and M. A. Natiello, Phys.
Rev. A 66, 013808 (2002).

[33] M. C. Eguia and G. B. Mindlin, Phys. Rev. E 61, 6490 (2000).
[34] R. L. Stratonovich, Topics in the Theory of Random Noise

(Gordon and Breach, New York, 1963).
[35] H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1984).

026208-8

http://dx.doi.org/10.1140/epjd/e2010-00061-4
http://dx.doi.org/10.1140/epjd/e2010-00061-4
http://dx.doi.org/10.1103/PhysRevE.69.016218
http://dx.doi.org/10.1103/PhysRevE.69.016218
http://dx.doi.org/10.1007/BF01010430
http://dx.doi.org/10.1103/PhysRevE.56.270
http://dx.doi.org/10.1016/0030-4018(84)90016-6
http://dx.doi.org/10.1103/PhysRevA.66.013808
http://dx.doi.org/10.1103/PhysRevA.66.013808
http://dx.doi.org/10.1103/PhysRevE.61.6490

