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Tunneling essentially different from instanton-type tunneling, say noninstanton tunneling, is studied from both
semiclassical and quantum viewpoints. Taking a periodically perturbed rounded-off step potential for which
the instanton-type tunneling is substantially prohibited, we analyze change of the tunneling probability with
change of the perturbation frequency based on the stable-unstable manifold-guided tunneling (SUMGT) theory,
which we have recently introduced. In the large and small limits of the frequency, the tunneling rate rapidly
decays, but it is markedly enhanced in an intermediate range. We will also make a quantum interpretation of the
noninstanton tunneling by using an exactly solvable model—a periodically perturbed right-angled step potential.
Analysis with this model shows that SUMGT is considered as a sort of photoassisted tunneling through a large
energy gap induced with absorbing a huge number quanta, which is completely different from the instanton-type
tunneling. Both approaches from the semiclassical and quantum viewpoints complement each other to cause a
better understanding of noninstanton tunneling.
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I. INTRODUCTION

In last two decades, crucial developments in understanding
tunneling in multidimensional systems have been achieved.
Various novel tunneling phenomena, e.g., chaos-assisted tun-
neling and resonance-assisted tunneling, have been predicted,
found, and observed theoretically, numerically, and experi-
mentally [1–10]. The basic mechanisms of those tunneling
phenomena have been interpreted in various ways from
semiclassical and quantum points of view and further from
hybrid views. For example, resonance-assisted tunneling was
first predicted with a hybrid method of classical, semiclassical,
and quantum dynamics to understand an enhanced tunnel-
ing rate in the presence of classical resonances, which is
unexplainable by the simple fictitious integrable model [9],
and it was further improved in various ways and applied
to several different situations [10]. Furthermore, it is prob-
ably possible for its mechanism to be explained with the
very rigorous (complex) semiclassical method introduced by
Shudo et al.—Julia-set assisted tunneling [11,12]. It is consid-
ered that those methods complement each other to comprehend
all aspects of resonance-assisted tunneling.

Most studies on multidimensional tunneling have been done
for discrete time systems, i.e., mapping or kicked rotor, rather
than continuous time systems [1–3], because it is easier to
handle discrete time systems than continuous time systems,
especially in the treatment of the complex semiclassical
method [11,12]. However, to make a comparison between
novel tunneling phenomena in multidimensional systems and
instanton-type tunneling in classically integrable or nearly
integrable systems [13] one needs to study continuous time
systems [6,7,14–18]. This is because the study of instanton
tunneling created with imaginary time evolution requires
analytical continuation of the system under consideration to a
complex time domain [13,19], but the discrete time systems
have no analytical continuation to complex time, namely, δ

kick as a distribution is not an analytical function and has no
analytical extension to the complex plane.

In recent works we have found a novel tunneling phe-
nomenon different from the instanton-type tunneling for
multidimensional barrier systems and have provided its semi-
classical interpretation [14,15]. The presence of the same
semiclassical mechanism was later reconfirmed in Ref. [18] in
a slightly different situation. In this semiclassical mechanism,
trajectories contributing to tunneling are guided by complex
stable and unstable manifolds of the saddle orbit above the
top of a potential barrier, for brevity called SUMGT (stable-
unstable manifold guided tunneling). SUMGT is essentially
the same as the Julia-set assisted tunneling introduced by
Shudo et al., in which forward and backward Julia sets, almost
equivalent to complex stable and unstable manifolds [20,21],
guide tunneling trajectories even in the case that chaos exists
in the real space [11,12], although they have treated tunneling
in discrete systems.

In multidimensional barrier tunneling, two types of tun-
neling mechanisms coexist, instanton-type tunneling and
SUMGT, and which tunneling mechanism dominates the
tunneling process is determined by the competition between
them [16,17]. Actually one that is nearer in the imaginary depth
of contributing tunneling trajectories to the real plane than the
other is the winner of the competition. The dominant tunneling
mechanism, i.e., the winner of the competition, changes places
with the other with changes of parameters. The drastic change
is observed with change of the perturbation frequency [17].
In the low-frequency limit, the adiabatic approximation based
on the instanton, i.e., the time average of the instanton over
the perturbation period, works well, which is also expected
from some other works [22]. In a mid-frequency range,
which is the inherently multidimensional regime, SUMGT
governs the tunneling process instead of the instanton. In
the high-frequency limit, tunneling converges to that of the
unperturbed system, i.e., the unperturbed instanton.
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In this paper we focus on the tunneling caused by SUMGT
and investigate the change of the tunneling probability with the
change of the perturbation frequency. To extract the tunneling
caused by SUMGT, we adopt as a model system a periodically
perturbed rounded-off step potential, which was introduced in
our recent paper [23]. For the step-shaped potential extending
over the semi-infinite space, the instanton-type tunneling is
substantially prohibited. Indeed, if the energy of an input
particle is taken small enough, the instanton tunneling tail
decreases in the potential wall exponentially and becomes
infinitesimally small only at a small distance from the potential
edge.

Even for that case, if the perturbation is turned on, SUMGT
starts to work and extremely enhances the tunneling rate
in a middle range of perturbation frequency [23]. Only the
noninstanton tunneling caused by SUMGT is observed for
this case, and it is a good model to investigate characteristics
of the purely distilled SUMGT. In this paper we explore the
change of tunneling probability through the whole frequency
range from a semiclassical viewpoint and evaluate in detail the
asymptotic decay rates in low-frequency and high-frequency
limit, in which the tunneling rate is expected to decay due to the
lack of instanton-type tunneling. In the low-frequency limit,
the imaginary depth of SUMGT trajectories increases, giving
rise to a very rapid decrease in the tunneling rate. On the other
hand, at too high frequencies the particle has little chance of
gaining a piece of energy strong enough to induce noninstanton
tunneling, so that the tunneling rate decays exponentially.

We also make a quantum interpretation of the noninstanton
tunneling caused by SUMGT by using an exactly solvable
model, a periodically perturbed right-angled step potential,
although a complex semiclassical method cannot be applied to
this model due to its nonanalytical nature. For this model,
tunneling phenomena similar to those caused by SUMGT
are observed. Analysis of the tunneling by using this model
clarifies the meaning of SUMGT and the difference between
SUMGT and the instanton-type tunneling from a quantum
dynamics point of view. Actually SUMGT, especially in a
low-frequency range, is interpreted as a sort of photoassisted
tunneling through a large energy gap induced with absorbing a
huge number quanta. Both approaches, from the semiclassical
and quantum viewpoints, complement each other and seem to
be necessary in order for a better understanding of noninstan-
ton tunneling and furthermore, tunneling in multidimensional
systems.

II. MODEL SYSTEM AND QUANTUM RESULTS

As a model system for which the instanton-type tunneling
is substantially prohibited, we have introduced a periodically
perturbed rounded-off step potential in recent work [23]. In
this paper we use the same model system, whose Hamiltonian
is given by

Ĥ (Q,P,ωt) = 1

2
P̂ 2 + (1 + ε sin ωt)

1

1 + exp Q
. (1)

Let us assume that a plane wave is coming from positive
infinity in Q with a constant momentum PI (<0). So, a

scattering eigenstate, more precisely, a quasistationary state,
is formed and represented with the wave operator [24],

〈QO |�̂+
1 (tO)|PI 〉 = lim

|QI |→∞

√
|PI |
2πh̄

eiPI QI /h̄

×
∫ ∞

0
ds〈QO |Û (ωtO ωtO − ωs)|QI 〉 exp

{
i

h̄
EI s

}
,

(2)

where Û denotes the propagator of the system,

Û (θ + ωt : θ ) = T exp

{
− i

h̄

∫ t

0
Ĥ (θ + ωs)

}
, (3)

and T indicates the time-ordering operator. The subscripts
of dynamical variables I and O indicate input and output,
respectively.

The quantum probability observed at Q = QO in the
transmissive side is caused by tunneling, if the input energyEI

(= P 2
I /2) is taken so small that the corresponding classical

particle with any initial phase of the perturbation is kicked
back by the oscillating potential. Figure 1 shows scattering
eigenstates as a function of QO at four different values of ε,
ε = 0, 0.05, 0.1, and 0.2. At ε = 0, i.e., the unperturbed case,
the tunneling tail penetrating into the potential wall drops
off very quickly, which means that the instanton tunneling
is substantially prohibited. However, once the perturbation
is applied, the tunneling rate is extremely enhanced and
the probability amplitude of each eigenstate does not drop,
keeping a nearly constant value over the transmissive region
(Q < 0), which increases with ε. As shown in Ref. [23], the
physical origin of such remarkable effects can be explained by
SUMGT.

The energy spectrum of the tunneling wave is defined from
the wave operator (2) as

Sp(E) =
∣∣∣∣ 1√

2πh̄

∫ ∞

−∞
〈QO |�+

1 (ωtO)|PI 〉e i
h̄

(E−EI )tO dtO

∣∣∣∣
2

.

(4)

Figure 2 shows the resultant energy spectra at ε = 0.05, 0.1,

and 0.2. Each spectrum forms a plateau: its height increases
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FIG. 1. (Color online) Probabilistic amplitudes of scattering
eigenstates for the rounded-off step potential at ε = 0, 0.05, 0.1,
and 0.2. The parameters are chosen as EI = 0.75, ω = 0.3, and
h̄ = 1000/(3π × 210) ∼ 0.1036.
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FIG. 2. (Color online) Tunneling energy spectra calculated by
Eq. (4) at ε = 0.05, 0.1, and 0.2.

with ε and its flat top has a width nearly equal to 2ε. Such
a plateau-shaped tunneling spectrum is the fingerprint of
SUMGT [15].

III. SEMICLASSICAL WAVE OPERATOR

The semiclassical expression of the wave operator is given
by [24]

〈QO |�̂+
1 (tO)|PI 〉 ∼

∑
c.t.

lim
QI →∞

√
|PI |
2πh̄

eiPI QI /h̄

×
[

1

PI

∂2S�

∂EI∂QO

]1/2

exp

{
i

h̄
S�(QO,tO,QI ,EI )

}
, (5)

where S�(QO,tO,QI ,EI ) denotes the classical action integral
defined by

S�(QO,tO,QI ,EI ) ≡
∫ QO

QI

PdQ −
∫ tO

tI

H (Q,P,ωt) dt

+EI [tO − tI (QO,tO,QI ,EI )]. (6)

The summation in Eq. (5), i.e.,
∑

c.t., is taken over all
contributing trajectories, which satisfies the input and output
boundary conditions simultaneously.

Let us consider the boundary condition. The dynamical
variables, which are independent variables of the classical
action S�(QO,tO,QI ,EI ), become quantum observables; then
QI and EI at input, and QO and tO at output must take
fixed real values. On the other hand, the initial time tI
is canonically conjugate to EI and cannot be observed
quantum mechanically. According to Miller’s prescription
for the semiclassical method, which is necessary to treat
tunneling problems [19], any complex number can be assigned
to a quantum mechanically unobserved variable. So tI takes
an arbitrary complex number. Then to find the trajectories
satisfying the input and output boundary conditions, the initial
time tI can be used as a complex search parameter on the initial
plane I:

I ≡ {Q,P,tI |Q = QI, P = PI ,tI ∈ C}. (7)

To reproduce the scattering eigenstate as a function of Q,
QO is moved along the real axis, i.e., QO ∈ R, with a fixed
tO . So the search parameter tI moves along certain curves on

the complex plane called complex branches. This set of the
complex branches is given by [11,14,24]

M = {tI |ImQ(tO − tI ,tI ,PI ,QI ) = 0}. (8)

The set of trajectories starting from tI ∈ M forms a Lagrange
manifold at t = tO ,

L = {Q,P |Q(tO − tI ,tI ,PI ,QI ),

P (tO − tI ,tI ,PI ,QI ), tI ∈ M}, (9)

and contributes to reproducing the scattering eigenstate. We
are interested in the complex trajectories starting from the
M set and reaching a classically forbidden region, namely,
tunneling trajectories.

IV. CLASSICAL SOLUTION OF THE
UNPERTURBED SYSTEM

In this section we introduce the classical solution of the
unperturbed system and discuss the location change of its
singularities on the complex time plane, depending on the
energy. The solution for 0 < E < 1 is given as an implicit
form:

t − t0 = 1√
2E

log(4EY − 2 − 4
√

E2Y 2 − EY )

+ 1

i

1√−k
log

[
i

(
− 1 + 2E + k

(Y − 1)

)

−
√

−2k(EY 2 − Y )

Y − 1

]
, (10)

where the variable Y is defined by Y ≡ 1 + exp Q, k is given
by k = 2(E − 1), and t0 is a time origin of this solution.

The turning point of the real trajectory Qturn is determined
by E = V0(Qturn) = 1/Y (Qturn), where V0(Q) = 1

1+exp Q
, then

the time tturn at which it reaches Qturn is given by tturn = t0 +
1√
2E

log 2 − π

2
√−k

. At the turning point Q = Qturn, both square
roots in Eq. (10) vanish and it becomes a branch point of the
implicit form of the solution. Since the solution (10) gives
a trajectory for t < tturn coming from positive infinity in Q,
then the reflective trajectory for t > tturn and the instanton
trajectory from t = tturn to tturn − i∞ are obtained by analytical
continuation of the solution (10), with a full round and a half
round of Y around Y = 1/E, respectively.

The singularities of the potential given by Y = 0, i.e., Qs =
i(2n + 1)π , correspond, but not one-to-one, to singularities of
the explicit form of the solution Q(t). There are an infinite
number of singularities, but only four dominant singularities
on the first Riemann sheet,

ts − tturn = ±i
π√
2E

± π√−k
, (11)

are important for our discussion. Figure 3(a) shows the location
of the singularities and two topologically different integration
paths. The integration paths C0 and CI give reflective and
instanton trajectories, respectively.
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FIG. 3. (Color online) Singularities and integration paths on the
complex t plane: (a) EI < 1 and (b) EI > 1, and (c) EI = 1.

The solution (10) also has a branch point at E = 1, namely,
k = 0. The analytical continuation gives an appropriate form
of the solution for E > 1,

t − t0 = 1√
2E

log(4EY − 2 − 4
√

E2Y 2 − EY )

+ 1√
k

log

(
−2 + 4E + 2k + 2

√
2k(EY 2 − Y )

Y − 1

)
,

(12)

where t0 is different from t0 in Eq. (10) by a certain constant.
The dominant singularities of the explicit form Q(t) on the
first Riemann sheet are given by

ts − t0 = 1√
2E

(log 2 ± iπ ) + 1√
k

(log 2 + 2πmi). (13)

They are located along a vertical line as shown in Fig. 3(b), and
the location of the singularities is completely different from
that of the solution for 0 < E < 1. The trajectory integrated
along the path C0 reaches negative infinity in Q.

The solution at E = 1, i.e., k = 0, is given by

t − t0 = 1√
2

log(4Y − 2 − 4
√

Y 2 − Y ) +
√

2(Y 2 − Y )

Y − 1
.

(14)

As shown in Fig. 3(c), there are only two dominant singularities
of the explicit form Q(t) on the first Riemann sheet, whose
positions are given by

ts − t0 = 1√
2

(log 2 ± iπ ). (15)

This means that the other dominant singularities are diverged
to infinity at k = 0, which is necessary to induce the location
change of singularities, i.e., the topological change of Riemann
sheets, between the solutions for 0 < E < 1 and E > 1.

The divergence of a part of singularities of a solution is
the remarkable feature of stable and unstable manifolds [14].
Therefore the separatrix given by the solution (14) at k = 0 is
categorized to the group of those invariant manifolds which
possess the same property characterizing stable and unstable
manifolds from the view point of complex dynamics.

V. ANALYSIS BASED ON STABLE-UNSTABLE MANIFOLD
GUIDED TUNNELING

A. Stable-unstable manifold guided tunneling

As discussed in the previous section, the separatrix at E = 1
is the same kind of invariant manifold as the stable and unstable
manifolds. Then it is expected that the same type of tunneling
as SUMGT occurs when a periodical perturbation is applied to
the system, namely, the perturbed separatrix guides tunneling
trajectories the same way as the stable manifold does in the
multidimensional barrier tunneling.

Figure 4 shows a schematic picture of the Poincaré map of
the periodically perturbed rounded-off step-potential system.
The separatrices playing the roles of stable and unstable
manifolds are indicated by Ws and Wu, respectively. In the
case of rounded-off step potential, it may be considered that
the unstable periodic orbit moves to negative infinity in Q and
the momenta of Ws and Wu asymptotically converge on zero
as Q goes to negative infinity. The initial plane in a unit period
of the perturbation is indicated by I.

For the situation in which tunneling occurs, ReI does not
touch ReWs , and mappings of ReI form an invariant manifold
drawn by a thin black curve, which never goes to the product

P

Q

I

Wu

Ws

FIG. 4. (Color online) Brief sketch of SUMGT.
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side. However, the variation of Ws is usually amplified in
the complex domain, as shown by the dashed (red) curve, so
that an intersection between Ws and I occurs in the complex
domain forming an isolated point at tI = tIc, called the critical
point [14,15]. The SUMGT trajectories are those trajectories
which start from a small neighborhood of the critical point.
Some of SUMGT trajectories go to negative infinity in Q

guided by the complex Ws , thereby contributing to tunneling.
The others are also guided by the complex Ws but take a turn
to the opposite direction somewhere on the way and go back
to the reflective side along Wu, contributing to reflection.

Therefore, this SUMGT mechanism for the periodically
perturbed rounded-off potential is essentially the same as the
SUMGT mechanism for multidimensional barrier systems and
is completely different from the instanton-type tunneling. For
the step potential, an instanton trajectory spends a negative
infinite imaginary time to reach negative infinity in Q, thereby
gaining an infinite large imaginary action and the tunneling
probability induced by instanton substantially becomes zero.
Then SUMGT is the only semiclassical mechanism contribut-
ing to tunneling for the periodically perturbed rounded-off
potential.

B. Melnikov method: Imaginary depth of the critical point

The existence of the critical point can be proved by using
the Melnikov method [14,15,25,26]. Actually, the energy of a
trajectory on the separatrix Ws can be evaluated by

H [Qs(t),Ps(t),t] = 1 + ε sin ωt + 	HM (t), (16)

where

	HM (t) =
∫ t

∞

∂H

∂t ′
− εω cos ωt ′dt ′

=
∫ t

∞
(V0[Qs(t)] − 1)εω cos ωt ′dt ′, (17)

and V0(Q) ≡ 1
1+exp Q

is the unperturbed potential. Qs(t)
denotes the trajectory on the separatrix Ws and is replaced by
the unperturbed solution (14) for the first-order approximation,
namely, the Melnikov method [25,26]. The time origin t0 in
Eq. (14) determines the relative phase with respect to the
periodical perturbation, and the initial time tI at Q = QI is
given by

tI = t0 − QI√
2

+
√

2. (18)

As a result, the input energy for a given t0 is obtained as

lim
tI →−∞ H (tI ,t0) = εωχcos cos ωt0 − εωχsin sin ωt0

+ 1 + ε sin ωt0, (19)

where χcos and χsin are respectively defined by

χ{cos , sin} ≡
∫ 0

∞
(V0[Qs0(τ,t0 = 0)] − 1){cos , sin}ωτdτ

+
∫ −∞

0
V0[Qs0(τ,t0 = 0)]{cos , sin}ωτdτ, (20)

where Qs0(t,t0) denotes the unperturbed solution on Ws with
the time origin t0. Since the energy takes a real value EI on

the initial plane I, then the intersection tIc between the initial
plane I and the separatrix Ws , namely, t0c through Eq. (18), is
given by

EI = 1 + εA(ω) sin(ωt0c + φ) ∈ R, (21)

where

tan φ = ωχcos

1 − ωχsin
(22)

and

A(ω) =
√

(1 − ωχsin)2 + ω2χ2
cos. (23)

In the case that the intersection occurs in the complex domain,
i.e., εA(ω) < 1 − EI , the imaginary depth of the intersection
is given by

ImtIc = 1

ω
cosh−1[(1 − EI )/εA(ω)]. (24)

Even in the limit of ω → 0, each χcos , sin takes a finite value,
so that A(ω) → 1. Then the imaginary depth of the critical
point becomes

ImtIc ∼ 1

ω
cosh−1

(
1 − EI

ε

)
(25)

∼ 1

ω
log

(
2(1 − EI )

ε

)
, (ε � 1 − EI ). (26)

The approximation used in the most right-hand side (26) is
valid only for ε � 1 − EI . Figure 5 shows the change of ImtIc

with ω at ε = 0.05, 0.1, and 0.2. In a low-frequency range
ω < 0.1, ImtIc decreases inversely proportional to ω and also
decreases at a fixed ω with ε, as indicated by Eq. (25). Further,
the approximation (26) works well for ε = 0.05 and 0.1, but
not for ε = 0.2. On the other hand, it seems to converge on
π/

√
2 in the limit ω → ∞, regardless of ε. The behavior of

ImtIc with ω is essentially the same as that for the periodically
perturbed Eckart potential [17].

C. Tunneling probability estimated with SUMGT

As shown in Ref. [23], the full complex semiclassical
calculation with all contributing trajectories starting from
the M set defined by Eq. (8) reproduces every detail of
the tunneling part of a scattering eigenstate. However, it is
a very huge task. Indeed, in order to do this, summing up
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ω
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100

Im
t I

10
1

= 0.2
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FIG. 5. (Color online) Imaginary depth of the critical point with
ω at ε = 0.05, 0.1, and 0.2.
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semiclassical weights of trajectories over a number of periods
of the perturbation is necessary. Instead, here we estimate the
tunneling probability in a simpler way, where the weight of
the critical trajectory starting at the critical point tIc on Ws is
estimated with the Melnikov method [16,17,23].

The weight of SUMGT trajectories is evaluated from
the classical action (6). Actually, if the contribution of the

amplitude factor
√

∂2S�

∂EI ∂QO
in Eq. (5) is ignored, the tunneling

probability of SUMGT is estimated as

WSUMGT ∼ 1

2πh̄
exp

{
− 2

h̄
ImS�

}
. (27)

The classical action S� for SUMGT trajectories is well
approximated by that of the critical trajectory starting at the
critical point tIc, which is also evaluated by using the Melnikov
method. The classical action S� is rewritten as

S�(QO,tO,QI ,EI ) =
∫ tO

tIc

(H − 2V )dt + EI (tO − tIc), (28)

where V (Q,ωt) = a(t)V0(Q) and a(t) = 1 + ε sin ωt . The in-
tegration path is taken as tIc → t ′O → tO (Ret ′O = tO , Imt ′O =
ImtIc). Replacing the critical trajectory with the unperturbed
one Q0c(t) of the time origin t0c determined by Eq. (21) in
order to apply the Melnikov method for evaluating H and the
integral of V , and taking into account the facts that H = EI

at t = tIc and that both H and V approach a(t) as ReQ goes
to negative infinity, we get

ImS�(QO,tO,QI ,EI )

∼ (1 − EI )ImtIc − ε

ω
Im cos ωt0c

+ Im
∫ t ′O

t0c

dt

∫ t

t ′O

ds ȧ(s)(V0(Q0c(s)) − 1)

+ Im
∫ t0c

tIc

dt

∫ t

tIc

ds ȧ(s)V0(Q0c(s))

− 2Im
∫ t ′O

t0c

dt ε sin ωt(V0(Q0c(t)) − 1)

− 2Im
∫ t0c

tIc

dt ε sin ωtV0(Q0c(t)) dt. (29)

Thus, the SUMGT weight is obtained by substituting Eq. (29)
into Eq. (27). In a low-frequency range (ω � 1), the first two
terms of the right-hand side in Eq. (29) become dominant and
ImS� is estimated by

ImS� ∼ 1 − EI

ω
cosh−1

(
1 − EI

ε

)

− ε

ω
sinh

[
cosh−1

(
1 − EI

ε

)]
(30)

∼ 1 − EI

ω
log

(
2(1 − EI )

ε

)
− 1 − EI

ω
, (31)

where Eqs. (25) and (26) are made use of in evaluation of
Eqs. (30) and (31), respectively. Equation (31) cannot be used
for ε > 2(1 − EI )/e, because it takes a negative value in this
range, although Eq. (30) takes a positive value for ε < 1 − EI .
Actually, Eq. (31) takes a negative value at ε = 0.2, but it takes
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FIG. 6. (Color online) Comparison of quantum tunneling prob-
ability with the semiclassical prediction by SUMGT (27) in the
frequency range (0.03 � ω � 10) at ε = 0.05, 0.1, and 0.2. The result
of the quantum perturbation (32) is also drawn at ε = 0.2 with a thin
dotted line.

positive values at ε = 0.1 and 0.05. In any case, if ε < 1 − EI ,
the imaginary part of the classical action ImS� diverges as ∝
1/ω in the limit ω → 0, and thereby the tunneling probability
(27) decreases as ∝ exp(−C/ω).

VI. CHANGE OF TUNNELING PROBABILITY WITH ω

In Fig. 6 the maximum value of the quantum tunneling
probability defined by max−50�QO�−30 |〈QO |�̂+

1 (tO)|PI 〉|2 is
plotted as a function of ω at ε = 0.05, 0.1, and 0.2 compared
with the semiclassical evaluation WSUMGT given by Eq. (27)
with Eq. (29). In this figure, ωcq ≡ 1−EI

h̄
is the frequency above

which the particle gains a piece of energy enough to go over
the potential step by absorbing a single quantum h̄ω.

In the range ω < ωcq , WSUMGT well follows the quantum
tunneling probability, especially for ω < 1. According to
Eq. (27) combined with Eq. (30) or (31), the tunneling
probability changes as ∝ exp(−C/ω) in a low-frequency
range, but for the large ε, i.e., ε = 0.2, it starts to decay in
a lower range, namely, for ω < 0.1. The exponential decay of
the tunneling probability in the sense of ∝ exp(−C/ω) as ω

goes to zero originates from the divergence of the imaginary
depth of the critical point ImtIc in the limit of ω → 0.

Through the whole range of ω, the imaginary depth of the
critical point ImtIc takes a smaller value for a larger ε, resulting
in the increase of the tunneling probability with ε. According
to Eq. (27) combined with Eq. (31), the tunneling probability
changes as ∝ ε2ωcq/ω in the low-frequency range if ε � 1 −
EI . It turns out that the difference in the tunneling probability
between different values of ε is enhanced as ω goes to zero.

In the range ω > ωcq absorbing a single quantum h̄ω makes
a particle gain a piece of energy enough to jump over the
potential step, that is, h̄ω is too large for the semiclassical
approximation to be available. Actually, the quantum tunneling
probabilities exponentially decrease with increase of ω, while
WSUMGT seems to converge on a finite value independent of ε.
Therefore, SUMGT does not work in this range. In this regime
the quantum perturbation method should be available [17].
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Practically, the escaping probability due to the absorption of a
single quantum h̄ω is estimated by a first-order approximation:

lim
QO→−∞

|〈QO |�̂+
1 (tO)|PI 〉|2

∼ lim
QO→−∞

ε2π2Dω|〈uEI +h̄ω|V0|uEI
〉|2, (32)

where uE is a scattering eigenstate of the unperturbed system
and the coefficient Dω is given by the probability amplitude of
uEI +h̄ω observed at Q = QO [27]:

Dω = lim
QO→−∞

|〈QO |uEI +h̄ω〉|2

= 1

2πh̄|PT |

× sinh2[π (PR + |PT |)/h̄] − sinh2[π (PR − |PT |)/h̄]

sinh2[π (PR + |PT |)/h̄]
,

(33)

with PR = √
2(EI + h̄ω) and PT = −√

2(EI + h̄ω − 1).
Hence Eq. (32) indicates the transition probability from uEI

to uEI +h̄ω observed at Q = QO , and this is nothing more
than the so-called “photoassisted” tunneling. Actually the
perturbation (thin dotted line in Fig. 6) shows good agreement
with the quantum calculation. Since Dω → 1

2πh̄|PT | in the limit
h̄ω → ∞, the exponential decay is mainly attributed to the
transition coefficient |〈uEI +h̄ω|V0|uEI

〉|2, whose value may
depend on the potential shape.

As a result, the quantum tunneling probability is well
approximated by SUMGT in the range ω < ωcq , though
it is explained by the photoassisted tunneling absorbing a
single quantum h̄ω in the range ω > ωcq . The tunneling
probability takes a maximum value in the middle range of
ω and decreases exponentially in both limits of ω → 0 and
ω → ∞. In the case of multidimensional barrier systems [23],
the tunneling probability is converged to finite values in
both limits of ω → 0 and ω → ∞: it is converging to the
value estimated by the instanton averaged over the period
of the perturbation in the limit of ω → 0 and is converging
to the tunneling rate of the unperturbed system in the limit
of ω → ∞. Namely, the instanton-type tunnelings works in
the small and large limits of ω for multidimensional barrier
systems. Therefore, the fact that the tunneling probability
decays exponentially in the limits of ω → 0 and ω → ∞ is a
clear evidence that the instanton-type tunneling is substantially
prohibited for the periodically perturbed rounded-off step
potential.

VII. QUANTUM INTERPRETATION
OF NONINSTANTON TUNNELING

A. Model system and quantum solution

In this section we make a quantum interpretation of
the tunneling caused by SUMGT. To do this we need a
exactly solved model similar in tunneling behavior to the
periodically perturbed rounded-off step potential. The model
system that satisfies our requirement is a periodically perturbed
right-angled step potential whose Hamiltonian is written

ω

EI

FIG. 7. (Color online) Periodically perturbed right-angled step
potential.

by

H (Q,P,ωt) = 1
2P 2 + (1 + ε sin ωt)θ (−Q), (34)

where θ (x) denotes the unit step function.
Let us assume that an input plane wave 
I with an energy

EI is given by


I (Q) = e− i
h̄
EI te

i
h̄
PI Q(PI = −

√
2EI ). (35)

As shown in Fig. 7, through multiply absorbing or desorbing
quanta due to the interaction with the oscillating potential,
a reflective wave is formed as a superposition of plane
waves with an energy En = EI + nh̄ω and a momentum
PRn = √

2En,


R(Q) =
∑

n

Rne− i
h̄
Ente

i
h̄
PRnQ, (36)

where Rn is a reflective coefficient. On the other hand, a
transmissive wave is obtained as


T (Q) =
∑

n

Tne
i
h̄

ε
ω

cos ωte− i
h̄
Ente

i
h̄
PT nQ, (37)

where Tn is a transmissive coefficient and PT n =
−√

2(En − 1). The transmissive wave consists of plane waves
with a momentum PT n modulated with the term e

i
h̄

ε
ω

cos ωt under
the effect of the oscillating flat top of the potential [22]. If
En < 1, the momentum PT n takes a negative imaginary value
and

lim
Q→−∞

e
i
h̄
PT nQ → 0. (38)

Hence if Q takes a large negative value, the transmissive wave
is well approximated by


T (Q) ∼
∑
n�n∗

Tne
i
h̄

ε
ω

cos ωte− i
h̄
Ente

i
h̄
PT nQ, (39)

where n∗ = min{n|En > 1}.
Reflective and transmissive coefficients, Rn and Tn, are

determined with the continuity at the boundary (Q = 0). The
continuity of the wave function, i.e., 
I + 
R = 
T , is written
as

1 +
∑

n

Rne−inωt =
∑

n

Tne
i
h̄

ε
ω

cos ωte−inωt . (40)

It is also continuously differentiable at Q = 0, i.e., ∂
∂Q


I +
∂

∂Q

R = ∂

∂Q

T :

PI +
∑

n

RnPRne−inωt =
∑

n

TnPT ne
i
h̄

ε
ω

cos ωte−inωt , (41)

where −PI = PR0.
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Making use of the equality

e
i
h̄

ε
ω

cos θ =
∑

n

inJn

(
ε

h̄ω

)
einθ , (42)

where Jn(z) is the Bessel function of the first kind, Eqs. (40)
and (41) are respectively reduced to

δn,0 + Rn =
∑
n′

Tn′ in
′−nJn′−n

(
ε

h̄ω

)
(43)

and

−δn,0PRn + RnPRn =
∑
n′

Tn′PT n′ in
′−nJn′−n

(
ε

h̄ω

)
. (44)

Combining Eqs. (43) and (44) provides a system of linear
equations in {Tn}:

∑
n′

Tn′(PRn − PT n′)in
′−nJn′−n

(
ε

h̄ω

)
= 2PRnδn,0. (45)

B. Scattering eigenstate and evaluation of tunneling probability

By numerically solving Eq. (45), we get {Tn} in a physically
important energy range and substituting the resultant {Tn} into
Eq. (43) provides {Rn}. Figure 8 shows scattering eigenstates
reproduced with {Rn} and {Tn} numerically obtained at ω =
0.3 for the cases ε = 0, 0.05, 0.1, and 0.2. The wave forms in
Fig. 8 are very similar to those of the rounded-off step potential
in Fig. 1. Actually, the tunneling tail of the unperturbed system
at ε = 0 drops off exponentially in the potential wall. The tun-
neling wave of the perturbed system forms an almost flat prob-
ability in the transmissive side (Q < 0) and it increases with ε.

Figure 9 shows the transmissive weights |Tn|2 at ε = 0.05,
0.1, and 0.2 as a function of energy E. The weight |Tn|2
at each strength of the perturbation forms a plateau with
its center at E = EI and with a width of 2ε. However,
the transmissive components in Eq. (37) with a large Tn

on the flat top of this plateau do not actually contribute
to tunneling, because the energy range of the flat top is

−50

|<
Q

O
|Ω̂

+ 1
(ω

t O
)|P

I
>

|2

100

10−10

10−20

105

10−5

10−15

0−40 −30 −20 −10 10

= 0.2

= 0.1

= 0.05

= 0

QO

(ω = 0.3)

FIG. 8. (Color online) Probabilistic amplitudes of scattering
eigenstates for the right-angled step potential at ε = 0, 0.05, 0.1, and
0.2. The parameters take the same values as those of the rounded-off
step in Fig. 1.

EI

E∗
n

= 0.2
= 0.1
= 0.05
(ω = 0.3)

1010

100

10−10

10−20

10−30

E
0 10.2 0.4 0.6 0.8 1.2 1.4

|T
n
|2

FIG. 9. (Color online) Transmissive weights |Tn|2 as a function
of energy at ε = 0.05, 0.1, 0.2, and at ω = 0.3.

less than the potential height at rest, i.e., En � EI + ε < 1,
and the tunneling probability mainly determined by e

i
h̄
PT nQ

exponentially decays like instanton in the limit Q → −∞, as
shown in Eq. (38). It is natural to consider that the transmissive
components on the flat top are the components which can be
approximated with the perturbation based on the instanton
method. This is the quantum interpretation of the substantial
prohibition of the instanton-type tunneling.

The transmissive components for n � n∗ really contribute
to tunneling and the component of n = n∗ makes the dominant
contribution, because from Eq. (39) the contribution of each
component is mainly determined by |Tn|2, and |Tn∗ |2 takes the
largest value among |Tn|2’s for n � n∗ (see Fig. 9). Indeed,
|Tn∗ |2 at each strength of perturbation almost coincides with
the corresponding tunneling probability in Fig. 8. The fact that
the plateau changes in shape with ε, especially in the slope of its
upper cliff, well explains the change of tunneling probability.
The classical trajectory corresponding to the transmissive
component at n = n∗ has the smallest negative real momentum
PT n∗ among PT n’s for n � n∗ and must play the same role of
SUMGT trajectories, although due to lack of the separatrix
Ws there is no critical trajectory guiding it as the case of the
rounded-off step.

To explore the properties of the transmissive coefficients
{Tn}, we develop an approximation method. The system of
linear equations in {Tn} (45) includes the Bessel functions
{Jn( ε

h̄ω
)} in coefficients of {Tn} and the coefficients of {Tn}

substantially form a band matrix, because Jn( ε
h̄ω

) takes a large
value only in the range (|n| < ε

h̄ω
). Let us make a plausible

assumption that Tn ∼ O[Jn( ε
h̄ω

)], though we do not have any
mathematical proof, and we estimate the order of Tn by using
the asymptotic expansions of Jn.

In the range h̄ω � ε, if n � ε
h̄ω

, |Tn|2 is roughly estimated
as a constant value:

|Tn|2 ∼
∣∣∣∣Jn

(
ε

h̄ω

)∣∣∣∣
2

∼ 2h̄ω

πε
, (46)

which corresponds the flat top of the plateau in the range
(EI − ε < E < EI + ε) in Fig. 9. For n � ε

h̄ω
, the estimation

becomes

|Tn|2 ∼
∣∣∣∣Jn

(
ε

h̄ω

)∣∣∣∣
2

∼ 1

2πn
exp

(
−2n

[
log

(
2nh̄ω

ε

)
−1

])
.

(47)
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If n > e
2

ε
h̄ω

> ε
h̄ω

, then log( 2nh̄ω
ε

) − 1 > 0, and Eq. (47) in-
dicates that |Tn|2 decays with n more than exponentially. For
e
2

ε
h̄ω

� n > ε
h̄ω

, this approximation is not available, though the
numerical calculation shows that |Tn|2 decays exponentially
even in this range.

In the case that n∗ > e
2

ε
h̄ω

, the approximate tunneling
probability WT is defined by

|Tn∗ |2 ∼
∣∣∣∣Jn∗

(
ε

h̄ω

)∣∣∣∣
2

∼ 1

2πn∗ exp

(
− 2n∗

[
log

(
2n∗h̄ω

ε

)
− 1

])

∼ ω

2ωcq

exp

(
− 2

ωcq

ω

[
log

(
2(1 − EI )

ε

)
− 1

])

≡ WT , (48)

where ωcq ≡ 1−EI

h̄
and the approximation n∗h̄ω ∼ 1 − EI

is used. The probability WT is as same as the tunneling
probability WSUMGT, approximated by Eq. (27) and combined
with Eq. (31), except for the prefactor. Then it is expected
that as ω goes to zero WT decreases exponentially but more
rapidly than WSUMGT by the prefactor ω

2ωcq
. On the other

hand, it increases as ∝ ε2ωcq/ω with ε, which is the same
as that for WSUMGT if ε � 1 − EI . Note that WT does not
make a correct estimation for ε > 2(1 − EI )/e, because the
exponential function in WT takes a value more than unity.

EI

E∗
n

E
0 10.2 0.4 0.6 0.8 1.2 1.4

|T
n
|2 (ω = 0.03 = 0.1)
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E
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n

(ω = 0.3 = 0.1)

Approximation
Numerical

(a)

(b)

FIG. 10. (Color online) Comparison of |Tn|2 with the approxima-
tion given by Eq. (46) for 0 � n � e

2
ε

h̄ω
and Eq. (47) for n > e

2
ε

h̄ω
at

ε = 0.1: (a) ω = 0.03 and (b) ω = 0.3.

Actually, it cannot be applied for ε = 0.2, although it works
for ε = 0.1 and 0.05.

In Fig. 10, |Tn|2 numerically obtained as a function of
energy E is compared with the approximation gathering
Eqs. (46) and (47) at ε = 0.1 for two values of ω, ω = 0.03
and 0.3. The height of the plateau formed by |Tn|2 is well
approximated by Eq. (46) for both values of ω. Equation (47)
almost coincides with |Tn|2 in the cliff at ω = 0.3 but slightly
overestimates it at ω = 0.03. Since the cliff becomes steeper
exponentially with decrease of ω, the tunneling probability
approximated by |Tn|2 at n = n∗, i.e., |Tn∗ |2 ∼ WT , decays
exponentially with decrease of ω. As shown in Fig. 10(a),
|Tn∗ |2 at ω = 0.03 is so small that it is out of our numerical
precision.

In the range ω > ωcq , n∗ = 1, and so taking into account
only T0 and T1 in Eq. (45) and making use of the approximation
J−1( ε

h̄ω
) ∼ − ε

h̄ω
give

|T1|2 ∼
(

ε

h̄ω

)2∣∣∣∣ pI (pR1 − pT 0)

(pI + pT 0)(pR1 − pT 1)

∣∣∣∣
2

<

(
ε

2h̄ω

)2

.

(49)

Note that the same estimation is obtained for a periodically
perturbed box potential [22]. The tunneling probability decays
as ∝ 1

ω2 in the limit ω → ∞, which is different from the case
of the rounded-off step for which the tunneling probability
dumps exponentially. As discussed later, the difference in the
decay comes from the difference in the potential shapes.

C. Energy spectrum

In the same way as Eq. (4), the energy spectrum of the
tunneling wave is defined by

|
̃(E)|2 =
∣∣∣∣ 1

2πh̄

∫ ∞

−∞

T (Q)e

i
h̄
Etdt

∣∣∣∣
2

. (50)

Figure 11 shows energy spectra at ε = 0.05, 0.1, and 0.2.
As in the case of the rounded-off step, each spectrum forms a
plateau whose height increases with ε and whose flat top width
is nearly equal to 2ε.
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FIG. 11. (Color online) Tunneling energy spectra calculated by
Eq. (50) at ε = 0.05, 0.1, and 0.2.
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From Eq. (39), |
̃(E)| is approximated with the component
at n = n∗:

|
̃(E)| ∼
∣∣∣∣∣

1

2πh̄

∫ ∞

−∞
dte

i
h̄
Et

∑
n�n∗

Tne
i
h̄

ε
ω

cos ωte− i
h̄
Ente

i
h̄
PT nQ

∣∣∣∣∣
=

∣∣∣∣∣
1

2πh̄

∑
n�n∗

Tne
i
h̄
PT nQ

∑
m

imJm

(
ε

h̄ω

)

×
∫ ∞

−∞
dteimωte

i
h̄
Ete− i

h̄
Ent

∣∣∣∣∣
∼ |Tn∗ |

∑
m

∣∣∣∣Jm

(
ε

h̄ω

)∣∣∣∣δ(E − En∗ + mh̄ω), (51)

where the equality (42) is used. Then the normalized tunneling
energy spectrum is obtained as

|
̃(E)|2 ∼ |Tn∗ |2
∑
m

∣∣∣∣Jm

(
ε

h̄ω

)∣∣∣∣
2

δE,En∗ +mh̄ω, (52)

where it is normalized as δ(E − En)2 → δE,En
. The term

e
i
h̄

ε
ω

cos ωt in the first right-hand side of Eq. (51) is attributed to
the periodicity of the perturbation and creates through equality
(42) a discrete spectrum whose envelope forms a plateau. In-
deed, applying the approximations used in Eqs. (46) and (47) to
|Jm( ε

h̄ω
)|2 in Eq. (52) provides the tunneling energy spectrum,

forming a plateau as shown in Fig. 12. The approximate plateau
spectrum at ε = 0.1 shows good agreement with the numerical
result in Fig. 11. Since the same approximation in Eqs. (46) and
(47) is valid for both |Tn|2 and |
̃(E)|2, the tunneling plateau
spectra numerically obtained in Fig. 11 are very similar in
shape to numerically obtained |Tn|2’s in Fig. 9, although their
heights and centers are different between |Tn|2 and |
̃(E)|2.

D. Change of the tunneling probability with ω

Figure 13 shows the change of the tunneling probability
defined by max−50<Q<−20 |
T (Q)|2 with ω for the three cases,
ε = 0.05, 0.1, and 0.2. In the range ω < ωcq , the tunneling
probability decays exponentially with decrease of ω and is well
followed by the approximate tunneling probability WT defined
by Eq. (48), though it is shown only for the case of ε = 0.1. As

2
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FIG. 12. (Color online) The tunneling energy spectrum obtained
by Eq. (52) with the approximations in Eqs. (46) and (47) at ω =
0.3 and ε = 0.1. For comparison, the approximate |Tn|2 obtained by
Eqs. (46) and (47) is also drawn.
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FIG. 13. (Color online) Change of the tunneling probability
with ω. The three cases at ε = 0.05, 0.1, and 0.2 are drawn. The
approximate tunneling probability WT defined by Eq. (48) is also
drawn at ε = 0.1.

a result, the changes of the tunneling probability for the three
representative values of ε are very similar to those for the
rounded-off step in Fig. 6. However, the tunneling probability
of the right-angled step always takes a larger value than that
of the rounded-off step near ωcq , for example, ω = 1.

For ε = 0.05 and 0.1, the tunneling probability of the right-
angled step decays more steeply as ω goes to zero than that of
the rounded-off potential. This may be due to the effect of the
prefactor ω

2ωcq
in Eq. (48). On the other hand, for ε = 0.2 the

tunneling probability of the rounded-off step becomes larger in
a lower range of ω than that of the right-angled step and takes
the maximum value around ω = 0.3, though the tunneling
probability of the right-angled step has no maximum below
ωcq . This difference possibly comes from the difference in the
potential shapes. Figure 14 shows results for the rounded-off
step with a sharper potential edge:

VS(Q,t) = (1 + ε sin ωt)
1

1 + eQ/wd
, (wd = 0.5). (53)

As shown in Fig. 14, the tunneling probability of this potential
does not take a maximum value for ω < ωcq and behaves in
an intermediate manner between the rounded-off step and the
right-angled step. Then it may be expected that the tunneling
probability of the potential (53) converges on that of the right-
angled step in the limit wd → 0.
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FIG. 14. (Color online) Change of the tunneling probability with
ω for the potential (53). The three cases at ε = 0.05, 0.1, and 0.2 are
drawn.
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In the range ω > ωcq , the tunneling probability takes a
maximum value just above ωcq and decays as ∝ ε2/ω2 with
increase of ω, as predicted by Eq. (49). On the other hand, the
tunneling probability decreases exponentially with ω for the
rounded-off step (see Fig. 6). However, comparing Fig. 14 with
Figs. 6 and 13, the tunneling probability of the rounded-off step
(53) seems to approach to that of the right-angled step in the
limit wd → 0.

VIII. DISCUSSION

In this paper we have investigated the noninstanton tun-
neling, for which the instanton-type tunneling makes an
infinitesimal contribution while the stable-unstable manifold-
guided tunneling (SUMGT) dominates the tunneling process
in the semiclassical regime instead [23].

First we have studied the change of the tunneling probability
with the perturbation frequency ω taking the periodically
perturbed rounded-off step potential as a model system [23]. In
the range ω < ωcq(≡ (1 − EI )/h̄ω), namely, the semiclassical
regime, the change of the tunneling probability with ω is well
explained by SUMGT with the help of the Melnikov method.
The imaginary depth of the critical point, i.e., the intersection
between the complex stable manifold and the initial plane,
mainly determines the tunneling probability. The imaginary
depth of the critical point ImtIc diverges as ∝ 1/ω in the limit
ω → 0. It turns out that the imaginary part of the classical
action ImS� also diverges as ∝ 1/ω in the limit ω → 0,
thereby decreasing the tunneling probability exponentially
in the sense of ∝ exp(−C/ω). Therefore the exponential
decay of the tunneling probability in the limit ω → 0 is
the characteristic of the tunneling governed by SUMGT. In
the case that the instanton-type tunneling makes a finite
contribution, e.g., the multidimensional barrier tunneling, it
takes the place of SUMGT in the limit ω → 0 and makes
a finite tunneling probability predicted by the perturbed
instanton method, i.e., averaged instanton weight over the
period of the perturbation [17].

In the range ω > ωcq , the particle gains a piece of energy
with the absorption of a single quantum h̄ω large enough to go
over the potential step. Therefore, this is a non-semiclassical
regime, and the lowest order quantum perturbation well
approximates the tunneling probability. Actually the transition
probability |〈uEI +h̄ω|V0|uEI

〉|2 in Eq. (32) mainly determines
the tunneling probability and well reproduces the exponential
decay in the limit ω → ∞.

Next we have provided the quantum interpretation of the
noninstanton tunneling with the exactly solvable model, the
periodically perturbed right-angled step potential, for which
the tunneling wave is obtained by summing up over n

products of transition coefficient Tn and unperturbed scattering
eigenstate at En = EI + nh̄ω modulated by the periodical
perturbation. This model shows a similar change of the
tunneling probability with ω in the range ω < ωcq to that
of the rounded-off step potential. Actually it seems to decay
exponentially as ∝ ω exp(−C/ω) when ω goes to zero, as
the rounded-off potential does except for the prefactor ω. On
the other hand, it shows a power-law decay as ∝ 1/ω2 in the
range ω > ωcq , while the exponential decay is observed for
the rounded-off step. Those differences seem to be attributed

to the difference in potential shape between the rounded-off
and right-angled steps.

In the regime of the instanton-type tunneling, energy
exchange with an external force [or other degree(s) of freedom]
should occur in the classically arrowed (acceptable) energy
range, namely, (EI − ε � E � EI + ε). The tunneling prob-
ability is chiefly determined by the tunneling wave amplitudes
of unperturbed (scattering) eigenstates of an energy EI + nh̄ω

in this range, because the transition coefficients Tn are in the
same order O(h̄ω/ε). For a step-shaped potential, the tunneling
tail of an unperturbed eigenstate decays exponentially in
the potential wall so that the instanton-type tunneling is
substantially unobserved.

In the regime of SUMGT, the particle absorbs a huge num-
ber quanta nh̄ω through the interaction with an external force
[or other degree(s) of freedom] and jumps up to the energy
range over the potential top in which the classical motion
is allowed in the transmissive region. Such a huge energy
jump beyond the range (EI − ε � E � EI + ε) is classically
forbidden and the magnitude of transition coefficient Tn

becomes exponentially small with increase of n, i.e., with
increase of the amount of energy gained in the transition. Since
the transmissive wave amplitude of a scattering eigenstate is of
O(1) over the potential top, the coefficient of the transition to
the state just above potential top, i.e., Tn∗ , mainly determines
the tunneling probability. This quantum process really corre-
sponds to the mechanism of SUMGT, in which the tunneling
trajectories undergo huge jumps in energy with the guide of
the complex stable manifold. The exponential decay of the
tunneling probability as ω goes to zero is due to the exponential
decay of Tn∗ , while this is explained in SUMGT by the increase
of the imaginary depth of the critical point resulting in the
increase of the imaginary part of the classical action. Usually
it is not easy to estimate the transmissive coefficient of the
huge jump caused by the multiple absorption of quanta for
any shaped potential by using a quantum perturbation theory,
especially in the limit of ω → 0. Instead SUMGT combined
with the Melnikov method gives an appropriate semiclassical
interpretation to understand the tunneling process and provides
a practical method to estimate the tunneling probability, if the
potential under consideration is analytic.

For periodically perturbed (or multidimensional) barrier
potentials of a relatively thin wall the competition between
SUMGT and instanton-type tunneling is observed. The winner
which dominates the tunneling process is determined by the
comparison of the imaginary depths between the instanton
trajectory and the critical point, i.e., the imaginary depth of
SUMGT trajectories. Indeed, the one nearer to the real space
is the winner. It is very interesting to interpret the competition
between SUMGT and instanton from the viewpoint of a
quantum process, i.e., a competition between quantum barrier
penetration and quantum transition to the classically accept-
able energy range with the multiple absorption of quanta. A
periodically perturbed box potential may be a good model for
this research, but we postpone it for a future publication.
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