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Stochastic waves in a Brusselator model with nonlocal interaction
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We show that intrinsic noise can induce spatiotemporal phenomena such as Turing patterns and traveling waves
in a Brusselator model with nonlocal interaction terms. In order to predict and to characterize these stochastic
waves we analyze the nonlocal model using a system-size expansion. The resulting theory is used to calculate
the power spectra of the stochastic waves analytically and the outcome is tested successfully against simulations.
We discuss the possibility that nonlocal models in other areas, such as epidemic spread or social dynamics, may
contain similar stochastically induced patterns.
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I. INTRODUCTION

The underlying idea of the theory of complex systems is that
complex patterns or structures can be generated from simple
models; one of the key papers leading to this insight was
the classic paper of Turing [1] on what are now known as
reaction-diffusion equations. Most of the theoretical studies
of pattern formation have followed Turing and used partial
differential equations (PDEs) to specify the model describing
the system [2]. However, there is a potential problem with this
approach: The parameter range for which the patterns exist in
the model can be very restricted, in contrast with what is seen in
real systems. For instance, to observe Turing patterns in simple
reaction-diffusion systems described by PDEs requires that
the diffusivities of the species be of different orders [2,3]. The
limited range of parameters for which patterns are seen could
be attributed to the simplicity of the model chosen to describe
the process; however, for systems with an underlying molec-
ular basis another explanation has recently been put forward
in Refs. [4–6]. Those authors have observed that Turing-like
patterns exist for a much greater range of parameter values
if the discrete nature of the molecules comprising the system
is taken into account. The resulting patterns are sometimes
referred to as stochastic Turing patterns [5] or quasi-Turing
patterns [7] and they may be analyzed using the theory of
stochastic processes, which is appropriate given the noise is
created as a consequence of the discreteness of the system.

In this paper we investigate a model that shows not only
Turing and stochastic Turing patterns, but also traveling waves
and stochastic traveling waves (referred to as stochastic waves
in the following), the latter having the same relation to traveling
waves that Turing patterns have to stochastic Turing patterns.
One interesting aspect of stochastic waves is that they can
clearly be seen in computer simulations of the model. In
contrast, while there is unambiguous evidence for the existence
of stochastic Turing patterns from, for instance, the form of
the power spectrum of the fluctuations, direct visual evidence
is less clear due to the noisy nature of the patterns. The model
we study is a Brusselator with a nonlocal interaction term;
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this choice is largely made on the grounds that the model is
simple and so allows the effect to be clearly demonstrated.
The nonlocality seems to be an important ingredient in finding
stochastic waves, similar to the observation that traveling
waves disappear in deterministic models when interactions
are made more local [8]. Traveling waves have been observed
in chemical reaction systems in [9–11] and also in other types
of population-based systems [12–15].

The description of patterns through an analysis of PDEs
of the reaction-diffusion type is well developed [2], but
the analogous stochastic systems have received very little
attention. The common starting point of the work that has been
carried out [4–6] has been the master equation (continuous-
time Markov chain), although the details of the techniques used
to analyze this equation have differed. However, the whole
idea of stochastic patterns as well as the methods that may
be used to analyze them follows from the idea of stochastic
cycles, or quasicycles, and their detailed study over the past
few years. Since the essential idea behind stochastic patterns
can be clarified with reference to the well-studied mechanism
behind stochastic cycles, we turn to their description.

The context in which stochastic cycles appear is in the
relation between stochastic individual-based models and the
corresponding deterministic descriptions of their dynamics.
Interacting many-particle systems are typically defined by a
set of stochastic rules at the microscopic level. Such systems
are common in chemistry and in biology [16], but they are
also used to model stochastic dynamics in epidemiology
[17,18], in population dynamics [19,20], and in the social
sciences [21]. Frequently, in formulating descriptions of these
systems intrinsic noise, due to the discrete nature of the
constituents, is treated as a negligible perturbation to the
dominant deterministic dynamics. It has been known for many
years that neglecting such fluctuations is not always justified;
on the contrary, intrinsic noise can fundamentally change
the temporal evolution of these systems. The activity in this
area over the past few years is due to the realization that a
method imported from statistical physics—the van Kampen
system-size expansion [16]—can be used to quantitatively
understand the deviations to the deterministic dynamics caused
by these stochastic effects. Effectively, one uses some measure
of the inverse system size, for instance, its inverse volume
V −1, as a perturbation parameter to investigate the stochastic
dynamics.
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If truncated after the lowest order, the system-size expan-
sion provides a systematic path from stochastic microscopic
interacting-particle models to a deterministic description in
terms of differential equations. This truncation effectively
corresponds to taking the thermodynamic limit, i.e., to
considering the limiting case of infinite systems. If carried
out to next-to-leading order the system-size expansion can
successfully characterize stochastic effects in the limit of large
but finite systems. Of particular interest is the case where the
deterministic model has a stable fixed point, which is a spiral,
so that perturbations away from the fixed point decay in an
oscillatory manner. The effect of the stochasticity is to excite
this decaying mode and create sustained oscillations, which
have an amplitude larger than might naively be expected—
stochastic amplification [19]. These are the stochastic cycles.

In this description of stochastic cycles no mention has been
made of the spatial degrees of freedom and indeed most of the
studies of stochastic cycles have been confined to well-mixed
systems where spatial effects are ignored. However, in a
similar way, intrinsic fluctuations can excite more complicated
spatiotemporal modes in spatially extended systems, as seen,
for example, in a predator-prey model of the Volterra type [22].
In this spatially extended model the intrinsic noise leads to
spatially uniform temporal oscillations, i.e., at a zero wave
number. Stochastic Turing patterns, just like stochastic cycles,
are triggered by internal fluctuations, but they occur at a
nonzero wave number. To date they have been found in a
spatial version of the Levin-Segel predator-prey model [4], in
the spatial Brusselator model [5], and in a model of embryonic
patterning [6]. What does not change is the ability of the
system-size expansion to accurately predict the features of
the excitations.

The main purpose of the present paper is to show that in
addition to uniform spatial oscillations and time-independent
Turing patterns, intrinsic noise can also trigger traveling
waves, i.e., phenomena that are both spatial and temporal
simultaneously. To show that such effects may occur we study
a variation of the Brusselator model with a nonlocal interaction
term, mediated by an exponential kernel in space. We believe
that the existence of stochastic traveling waves is widespread
and we choose the Brusselator model because it is probably
the most widely used model to illustrate such phenomena
and so is familiar to a wide number of researchers in the
field. A disadvantage is that nonlocal interactions that seem
to be required to see the effect are less easy to motivate in a
chemical model such as the Brusselator, but we believe that
this is outweighed by the advantage of using a simple model to
illustrate the idea. So while several physical mechanisms for
nonlocal interactions are given in Ref. [8], and in biological
and social systems such effects are far easier to describe and
motivate, our desire in this paper to avoid specific mechanisms
and extraneous details leads us to formulate the nonlocal
interaction in a simple and generic way.

We show that the presence of such a nonlocal term
promotes traveling waves and that stochasticity can bring about
stochastic traveling waves in situations where the deterministic
system has a stable uniform fixed point. All this is carried
out analytically through use of the system-size expansion—
extended to deal with the nonlocal interaction—and checked
numerically using the Gillespie algorithm [23,24].

The remainder of the paper is structured as follows. In
Sec. II we introduce the model and discuss its behavior on the
deterministic level. In Sec. III we carry out a detailed analysis
of the stochastic dynamics by means of an expansion in the
inverse system size. Section IV contains our main results,
including an analytical characterization of stochastic waves
and confirmation through numerical simulations. Our findings
are summarized in Sec. V, where we also discuss possible
future lines of research. Two appendixes contain mathematical
details: the first a summary of the conditions under which
Turing and wave instabilities occur and the second aspects of
the calculations and results from the system-size expansion.

II. MODEL DEFINITION

The stochastic model is defined as a collection of uniform
cells, indexed by i, each of which has volume V . For conve-
nience these can be thought of as cubes in three dimensions,
but other regular shapes in other dimensions can also be
considered. In fact, since our main aim here is to illustrate the
idea of stochastic waves and their characterization, our results
will largely apply to a one-dimensional system, i.e., a chain
of cells. Simulations are then less time consuming, but the
model still exhibits all features we are interested in studying.
Generalization of the analytic results to higher-dimensional
models is straightforward. Unlike previous work [22], we
will assume that the number of cells is infinite, that is, the
underlying space is of infinite extent. This avoids technical
complications when nonlocal interactions are present.

In every cell molecules of two species X and Y interact
through the reactions of the Brusselator model [25]:

∅i
a→ Xi,

Xi
b→ Yi,

(1)
2Xi + Yi

c→ 3Xi,

Xi
d→ ∅i .

The rates at which the reactions occur are denoted by a, b, c,
and d and Xi and Yi are molecules that are in cell i at the time
the reaction occurs. The third reaction may occur between an
X molecule in cell i and a Y molecule in any other cell (with
rates depending on the distance between the two cells), but the
effect is to reduce the number of Y molecules in cell i by 1. This
constitutes the nonlocal interaction; other choices are possible,
but this was made on grounds of simplicity. The notation used
to describe the chemical types and the rates in the Brusselator
model in the literature is not standard, but we follow most
closely Ref. [26]. The number of X and Y molecules in cell i

will be denoted by ni and mi , respectively. We will also use n
and m to represent the spatial vectors with components ni and
mi , respectively.

The transition rate from the state (n,m) to the state (n′,m′)
will be denoted by T (n′,m′|n,m), but to lighten the notation
we will only list the variables that have changed in a given
reaction. These functions are found by invoking mass action:

T1(ni + 1,mi |ni,mi) = a,

T2(ni − 1,mi + 1|ni,mi) = b
ni

V
,
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T3(ni + 1,mi − 1|ni,mi) = c
ni

2

V 2
�

∞∑
j=−∞

e−σ |i−j | mj

V
, (2)

T4(ni − 1,mi |ni,mi) = d
ni

V
,

where the subscripts on the rates refer to the four reactions in
Eq. (1). These transition rates are as in the usual Brusselator
model [26], except for the third, which has the nonlocal
character mentioned earlier. We stress again that it is the
influence of the Y molecule in cell j that causes the reaction,
but that the effect is in cell i, which is a distance |i − j |
away. The effect is to increase the number of X molecules
in cell i by one and to decrease the number of Y molecules
in cell i by one. The form of interaction was taken to be
exponential because this is a frequent choice, but once again
on grounds of simplicity. The constant σ expresses the range of
the interaction and � is a normalization constant whose choice
will be discussed later. As a technical aside, the third transition
rate should also have a factor of θ (mi)—the Heaviside step
function—present to prevent the number of Y molecules in
cell i from becoming negative, but given we will be looking at
a regime far from mi = 0, this condition is irrelevant.

In addition to the reactions given in Eq. (1), migration
reactions, which describe molecular diffusion from one cell
to another, have to be specified. For a given cell i, molecules
of the two species X and Y may diffuse into or diffuse out of
a neighboring cell j :

Xi
α→ Xj, Xj

α→ Xi,
(3)

Yi

β→ Yj , Yj

β→ Yi.

These reactions have transition rates given by

T5(ni − 1,nj + 1|ni,nj ) = α
ni

V z
,

T6(ni + 1,nj − 1|ni,nj ) = α
nj

V z
,

(4)
T7(mi − 1,mj + 1|mi,mj ) = β

mi

V z
,

T8(mi + 1,mj − 1|mi,mj ) = β
mj

V z
.

Here z is the number of nearest neighbors of a cell and the index
j denotes a nearest neighbor of cell i. For the one-dimensional
model z = 2 and j ∈ {i − 1,i + 1}. It is also worth remarking
that we have not imposed a fixed limit on the number of
molecules permitted in a cell (in contrast with some previous
work [5,22]; this is reflected in the fact we use the inverse
volume V −1 rather than the inverse total number of molecules
as the expansion parameter).

Since we have assumed that the transition rates depend
only on the current state of the system, the stochastic process
is Markovian and so the probability distribution for the system
being in state (n,m) at time t , Pn,m(t), satisfies the master
equation [16]

d

dt
Pn,m(t) =

∑
(n′,m′)�=(n,m)

[T (n,m|n′,m′)Pn′,m′(t)

− T (n′,m′|n,m)Pn,m(t)]. (5)

In what follows we will write discrete variables as subscripts
and continuous variables as arguments of functions [such
as in Pn,m(t)]. The sole exception is for the transition rates
T (n′,m′|n,m), where for the sake of clarity we have written
the discrete variables as arguments of the function T .

We will discuss the analysis of the master equation (5) using
the system-size expansion in Sec. III. For the rest of this section
we will obtain directly the deterministic equation that holds in
the limit V → ∞, without using the system-size expansion,
and then study the stability of the homogeneous state.

We begin by defining the concentrations of the X and Y

molecules in cell i in the infinite volume limit by

φi(t) = lim
V →∞

〈ni〉
V

, ψi(t) = lim
V →∞

〈mi〉
V

, (6)

where 〈 〉 is the mean with respect to the probability distribu-
tion Pn,m(t). Multiplying Eq. (5) by ni and mi , respectively,
and using the fact that in the deterministic limit the probability
distribution is a delta function so that 〈n	

i 〉 = 〈ni〉	, etc., one
finds the following ordinary differential equations:

d

dτ
φi = a − (b + d)φi + cφ2

i �

∞∑
j=−∞

e−σ |j |ψi−j + α�φi,

d

dτ
ψi = bφi − cφ2

i �

∞∑
j=−∞

e−σ |j |ψi−j + β�ψi, (7)

where τ = t/V is a rescaled time and �fi = fi+1 − 2fi +
fi−1 is the discrete one-dimensional Laplacian.

We choose the normalization constant � so as to satisfy

�

∞∑
j=−∞

e−σ |j | = 1. (8)

By doing so, the deterministic equations (7) have the homoge-
neous solution

φi = φ∗ = a

d
, ψi = ψ∗ = bd

ac
, (9)

which are the same as those of the conventional Brusselator
model (obtained from our model by replacing the nonlocal
interaction by a local term). The expression for � can be
summed to yield

� = eσ − 1

eσ + 1
. (10)

Equations (7) are a set of reaction-diffusion equations of
the type usually defining the starting point for finding Turing
patterns. The analysis starts by examining if the homogeneous
solution in Eq. (9) is unstable to spatially inhomogeneous small
perturbations. To do this we introduce small perturbations

δφi(t) = φi(t) − φ∗, δψi(t) = ψi(t) − ψ∗ (11)

into the deterministic equations (7) and keep only linear terms
in δφi(t) and δψi(t). This gives

d

dτ
δφi = −(b + d)δφi + cφ∗2�

∞∑
j=−∞

e−σ |j |δψi−j

+ 2cφ∗ψ∗δφi + α�δφi, (12)
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d

dτ
δψi = bδφi − cφ∗2�

∞∑
j=−∞

e−σ |j |δψi−j

− 2cφ∗ψ∗δφi + β�δψi. (13)

The structure of these equations makes it clear that they will
simplify considerably if we go over to a Fourier representation.
We therefore introduce the spatial Fourier transform for the
infinite discrete system of cells:

f̃ (k) =
∞∑

j=−∞
e−ijkfj , fj = 1

2π

∫ 2π

0
dk eikj f̃ (k). (14)

Note that k is a continuous variable that takes values in the
first Brillouin zone [0,2π ]. Fourier transforming Eqs. (12) and
(13) gives

∂

∂τ
δφ̃ = −(b + d)δφ̃ + cφ∗2�ẽ(k)δψ̃

+ 2cφ∗ψ∗δφ̃ + α�̃δφ̃, (15)

∂

∂τ
δψ̃ = bδφ̃ − cφ∗2�ẽ(k)δψ̃ − 2cφ∗ψ∗δφ̃ + β�̃δψ̃, (16)

where δφ̃ = δφ̃(k,τ ) and similarly for δψ̃ . The two functions
ẽ(k) and �̃ ≡ �̃(k) are, respectively, the Fourier transform of
the exponential function and of the Laplacian, i.e.,

�̃f (k) =
∞∑

j=−∞
e−ikj (fj+1 − 2fj + fj−1)

= 2 [cos(k) − 1] f̃ (k) ⇒ �̃ ≡ 2 [cos(k) − 1] ,

ẽ(k) =
∞∑

j=−∞
e−σ |j |e−ikj = sinh(σ )

cosh(σ ) − cos(k)
. (17)

The system in Eqs. (15) and (16) may be written in a more
compact form

∂

∂τ

(
δφ̃

δψ̃

)
= J ∗(k) ·

(
δφ̃

δψ̃

)
, (18)

where

J ∗(k) =
(

−(b+d)+2cφ∗ψ∗+α�̃ c�φ∗2ẽ(k)

b − 2cφ∗ψ∗ −c�φ∗2ẽ(k)+β�̃

)
.

(19)

The eigenvalues of the Jacobian matrix Eq. (19), λ1(k)
and λ2(k), yield information about whether perturbing the
homogeneous solution leads to pattern formation. If both
λ1 and λ2 have a negative real part (i.e., Re[λi(k)] < 0 ∀k,

i = 1,2), the homogeneous state is stable: Every perturbation
will eventually die out and no pattern will develop. If, on
the other hand, there is an eigenvalue at a nonzero k with a
positive real part, then a spatially modulated instability occurs:
A perturbation will grow in magnitude, taking the system
from the homogeneous state to one with the wave number
defined by k. This growth will eventually be saturated by the
nonlinear terms leading to a pattern of characteristic wave
number k.

This linear analysis of the homogeneous state is also
able to determine whether the resulting pattern is steady or

oscillatory by looking at the imaginary part of the eigenvalues
ωi ≡ Im[λi]. Steady patterns correspond to Im[λi(k)] = 0 for
all unstable modes k, the case in which the instability is
called a Turing instability. When Im[λi(k)] �= 0 for an unstable
mode at a nonzero k, the system is said to undergo a wave
instability as the resulting pattern will consist of traveling
waves [2].

When multiple instabilities occur simultaneously, say, of
the Turing type for some k1 and the wave type for some k2, it
becomes harder to predict if the final pattern will be steady
or oscillatory. However, for model parameters sufficiently
close to the region in which the homogeneous state is stable,
only a single instability occurs. We will therefore study the
instabilities at the border of the stable region, saying that there
is a Turing instability (wave instability) when the instability
near the border is of the Turing type (wave type). The criteria
we use to determine the stability boundaries are discussed in
Appendix A.

The above analysis applied to Eq. (19) is discussed in
Sec. IV. However, as explained in the Introduction, we
wish to go beyond this deterministic approximation and
examine patterns that emerge from stochastic effects that are
a consequence of the underlying discreteness of the system.
We therefore now go on to discuss the stochastic analysis of
the model before collecting together results of the determinstic
and stochastic regimes in Sec. IV.

III. STOCHASTIC ANALYSIS

The analysis of the model, without making the deterministic
approximation, begins by writing down the master equation (5)
in a form that is more amenable to application of the system-
size expansion. This is done by introducing step operators [16]

ε±
X,if (n,m) = f (. . . ,ni ± 1, . . . ,m),

(20)
ε±
Y,if (n,m) = f (n, . . . ,mi ± 1, . . .).

For example, the term in the master equation that involves the
first reaction in Eq. (1), and thus corresponds to the function
T1 in Eq. (2), would be given by

∑
i

(ε−
X,i − 1) T1(ni + 1,mi |ni,mi)Pn,m(t)

=
∑

i

(ε−
X,i − 1) a Pn,m(t). (21)

The master equation rewritten in this way, with all eight terms
present, is given by Eq. (B1).

We will now carry out the system-size expansion. It is
important to realize that, for our model, this is an expansion
in powers of V −1/2, where V is the volume per cell. The
expansion therefore captures stochastic effects at large, but
finite cell volumes. This limit should not be confused with the
limit of an infinite number of cells. When we use the term
“system-size expansion” we always refer to an expansion in
the size (volume) of a single cell. Even if the volume per cell
is finite, the total number of molecules in the system (summed
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over all cells) may well be infinite if the system is composed
of an infinite number of cells.

The system-size expansion itself involves making the time-
dependent change of variables (n,m) �→ (ξ ,η):

n �→ V φ(t) +
√

V ξ , m �→ V ψ(t) +
√

V η, (22)

where φ(t) and ψ(t) are two time-dependent vectors defined
by Eq. (6), each of these vectors having as many components as
there are different cells in the system. From the leading-order
term in the expansion one finds that these quantities satisfy the
deterministic equation (7).

We now change the degrees of freedom of the stochastic
system to ξ and η and consider the probability distribution in
terms of these variables as

�(ξ ,η,t) = Pn,m(t). (23)

The left-hand side of the master equation (5) has the form [16]

dP

dt
= ∂t� −

√
V ∇ξ� · ∂tφ −

√
V ∇η� · ∂tψ, (24)

where ∂t = ∂/∂t .
To determine the nature of the expansion of the right-hand

side of the master equation we begin with the form of Eq. (B1)
given in terms of the step operators. This is because the step
operators have a natural expansion in V −1/2 given in Eq. (B2).
The introduction of a rescaled time τ = t/V brings the master
equation into the general form (see Appendix B)

1

V
∂τ� − 1√

V
(∇ξ� · ∂τφ − ∇η� · ∂τψ)

=
(

− 1√
V

[ f (φ,ψ) · ∇ξ + g(φ,ψ) · ∇η] + L
V

)
�, (25)

where L is a linear operator containing various derivatives in
η and ξ and f and g are functions of φ and ψ .

It is now possible to match terms on both sides of the trans-
formed master equation (25). The order 1/

√
V contributions

lead to

d

dτ
φi = fi(φ,ψ),

(26)
d

dτ
ψi = gi(φ,ψ),

which are just the deterministic equations for the concentra-
tions in cell i derived in a more direct fashion earlier and given
explicitly by Eq. (7). Matching the order 1/V contributions
leads to an equation for the probability distribution � that
describes the fluctuations:

∂τ�(ξ ,η,t) = L�(ξ ,η,t). (27)

We have analyzed the leading order result Eq. (26) in Sec. II;
our aim in this section is to study the stochastic corrections
given by Eq. (27). The explicit form of the operator L given
in Appendix B shows Eq. (27) to be a Fokker-Planck equation
describing a linear stochastic process. It is more convenient for
our purposes to use the equivalent description of the process in
terms of a linear stochastic differential equation, or Langevin
equation, since this allows us to take the spatial and temporal

Fourier transforms. If we carry out a Fourier transform only
with respect to the spatial variable, we obtain the form [27,28]

∂ ζ̃

∂τ
= Ã(ζ̃ ) + μ̃(k,τ ), (28)

where μ̃(k,τ ) is a Gaussian noise with zero mean and correlator

〈μ̃(k,τ )μ̃T(k′,τ ′)〉 = B̃(k) 2π δ(k − k′)δ(τ − τ ′) (29)

and we have introduced the convenient notation ζ = (ξ ,η).
The explicit forms for Ã and B̃ are given in Appendix B.

Since the stochastic process is linear, Ã is a linear function
of ζ̃ and B̃ is independent of it. Both Ã and B̃ are explicit
functions of τ through their dependence on the solutions
of the deterministic equations φ(τ ) and ψ(τ ). However, we
are interested in fluctuations about the homogeneous state
and so we evaluate these solutions in this state. In this
case both Ã∗ and B̃∗ lose their explicit time dependence.
If the noise term μ̃ is omitted from Eq. (28) [effectively
by taking B̃ = 0; see Eq. (29)], then ζ̃ is nothing other
than a deterministic perturbation of the deterministic dy-
namics. So it is not surprising that Ã∗ is related to the
elements of the Jacobian in the homogeneous state given by
Eq. (19):

Ã∗
r (k,τ ) =

2∑
s=1

J ∗
rs(k)ζ̃s(k,τ ). (30)

Of course Ã retains an implicit dependence on time through
ζ̃ (k,τ ). The form for B̃(k) is given by Eq. (B11). The Langevin
equation (28) can now be solved by taking the temporal
Fourier transform and determining the Fourier-transformed
fluctuations ξ̃ (k,ω) and η̃(k,ω) [22].

For parameter values for which the homogeneous state
is stable no pattern arises in the deterministic description.
However, as discussed in the Introduction, we can ask if in
this region of parameters the spatial system exhibits ordered
structures once fluctuations are taken into account. To probe
this possible fluctuationally induced order, a useful tool is the
power spectrum of the fluctuations about the homogeneous
state, defined by

PX(k,ω) = 〈|ξ̃ (k,ω)|2〉, PY (k,ω) = 〈|η̃(k,ω)|2〉. (31)

In the absence of order the spectra will show an almost
flat profile. If instead some type of order is present, the power
spectra will typically have a characteristic peak. The position
of the peak in combined (k,ω) space determines the type of
structure that is present. For example, a global oscillation in
time will correspond to a peak of P (k,ω) at a nonzero value of
ω and at k = 0, whereas the power spectrum peaks at ω = 0
and at a nonzero value of k for stochastic Turing patterns. As
we are looking for stochastic waves we shall seek parameter
values for which the power spectra display a peak at values of
(k,ω) where both k �= 0 and ω �= 0. The spectra are found both
through simulations and analytically from the form of ξ̃ (k,ω)
and η̃(k,ω), derived from Eq. (28). The analytical calculations
required to determine the power spectra are similar to those
discussed in Ref. [22], but with different forms for the matrices
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J ∗(k) and B̃∗(k). One finds

PX(ω,k) = CX + B̃∗
11ω

2(
ω2 − �2

0

) + �2ω2
,

(32)

PY (ω,k) = CY + B̃∗
22ω

2(
ω2 − �2

0

) + �2ω2
,

where �0 = √
detJ ∗(k), � = −trJ ∗(k), and CX(k) and CY (k)

are given in Appendix B. The expressions in Eqs. (32)
constitute a full analytical characterization of the spatiotem-
poral power spectra of fluctuations or, equivalently, of their
spatiotemporal correlation properties. This completes the
mathematical analysis within the van Kampen formalism. The
form of the spectra obtained and their interpretation will be
discussed in the following section.

IV. RESULTS

The main purpose of this paper is to investigate how
intrinsic fluctuations can bring about stochastic waves. Before
we turn to the stochastic dynamics it is convenient to
characterize the behavior of the nonlocal Brusselator model
in the deterministic approximation. Having derived analytical
expressions for the homogeneous state of the deterministic
system [see Eq. (9)], as well as for the corresponding Jacobian
Eq. (19), it is straightforward to obtain the stability properties
of the system as a function of the model parameters. This
is discussed at the end of Sec. II and in Appendix A. Given
the comparatively large number of parameters, we focus on a
representative selection of phase diagrams.

The properties of the deterministic dynamics at varying
values of the parameters β and c (and keeping all other
parameters fixed) are illustrated in Fig. 1. For a fixed value
of c we find a phase at intermediate values of β ∈ [βW ,βT ]
in which the homogeneous state is stable against fluctuations

Stable homogeneous

Turing

waves

state

0 1 2
β9

9.5

10
c

FIG. 1. Phase diagram in the (c,β) plane for the deterministic
equations (7) obtained with a linear analysis of the homogeneous state
Eq. (9) for a = d = α = 1, σ = 2, and b = 10. The model exhibits
a phase in which the homogeneous fixed point is stable, along with
phases with Turing patterns and traveling waves. The two lines in the
diagram, βW (c) and βT (c), indicate the onset of these instabilities. Far
from these lines simultaneous instabilities may occur (e.g., traveling
waves and Turing patterns).

Stable homogeneous
state

waves

0 1 2 3
σ9

30

50
c

FIG. 2. Phase diagram for the deterministic dynamics, obtained
from Eqs. (7) for a = d = α = 1, β = 0.1, and b = 10. The solid
line marks the onset of a wave instability c = cW (σ ). The diagram
illustrates the role of the nonlocal interaction in generating a wave
instability.

of any wave number. At a critical value β = βT (c) a Turing
instability sets in, i.e., an unstable mode occurs at a nonzero
wave number, with the corresponding eigenvalue being real.
At values of β lower than some second critical value βW (c)
the instability occurs again at a nonzero wave number, but
now the corresponding eigenvalue is complex, indicating a
wave instability. We have thus established that the nonlocal
Brusselator model exhibits Turing instabilities as well as
traveling-wave instabilities in the deterministic limit.

In order to illustrate the role of the nonlocal interaction
term we show a second phase diagram, now in the (σ,c) plane,
in Fig. 2. Recall that the model parameter σ characterizes
the range of the nonlocal interaction: For small values of σ

the interaction kernel in Eqs. (7) decays slowly with distance
and the interaction is therefore long range. For large σ the
interaction range is small; in the limit σ → ∞ one recovers
the standard Brusselator model with purely local interactions.
This is clear from Eq. (2): The only term in the sum that is
independent of σ is the j = 0 term; all the others exponentially
decay with σ and so vanish as σ → ∞. Thus the sum tends to
mi/V as σ → ∞.

As seen in Fig. 2, the long-range nature of the interactions
can promote the occurrence of traveling waves in the determin-
istic system. By varying σ at a fixed value of c (and all other
model parameters fixed as indicated in the caption of Fig. 2)
one finds that the homogeneous state is stable at large values
of σ , i.e., when interactions are localized. As σ is reduced (the
interaction range is increased) a wave instability sets in.

We now turn to the stochastic system and show the
spatiotemporal behavior of the concentration of Y molecules
in Fig. 3. It is important to stress that we have chosen values
of the model parameters such that the deterministic system
has a stable homogeneous state. More specifically, for the
parameters chosen in Fig. 3, the system is in the stable phase
of Fig. 2, but near the line along which a wave instability
occurs in the deterministic model. As demonstrated by the
diagonal structures in the space-time representation of Fig. 3,
the stochastic system displays traveling stochastic waves for
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FIG. 3. (Color online) Spatiotemporal dynamics of the concen-
tration of Y molecules in the stochastic wave regime. The number
of particles, obtained from a single run of the stochastic dynamics,
is reported on a scale of shades (with lighter shades indicating a
larger number of Yi particles per cell and dark shades representing
low concentrations). Stochastic waves are seen as diagonal structures
in the figure, representing both right-moving and left-moving waves.
The system considered is a one-dimensional ring of 20 cells, each of
which has a volume V = 5000. The parameter values are a = d =
α = 1, σ = 2, c = b = 10, and β = 0.1.

this choice of parameters, even if such waves are absent in
the deterministic system. In order to illustrate the mecha-
nism producing these stochastic waves we plot the dispersion
relations of modes near the wave instability of the deterministic
system in Fig. 4 (model parameters other than c are as in
the simulations shown in Fig. 3). For c � 9.35 all modes are
stable and the least stable mode (i.e., the mode for which the
real part of the corresponding eigenvalue is maximal among
all modes) has an eigenvalue with a nonzero imaginary part
and a negative real part. At c ≈ 9.35 the wave instability

π
k

3

4

Im λ
c = 9

c = 9.35

c = 9.6

π
k

− 0.2

− 0.1

0.1

Re λ

FIG. 4. Real part (solid line) and imaginary part (inset, dashed
line) of λ(k), one of the eigenvalues of the Jacobian matrix Eq. (19)
(the other is its complex conjugate). The model parameters are a =
d = α = 1, σ = 2, b = 10, and β = 0.1. Using symmetry, we restrict
the range of k to half of the Brillouin zone [0,π ]. The onset of the
traveling-wave instability occurs at c ≈ 9.35.

line is crossed; one mode is now marginally stable and the
corresponding eigenvalue is purely imaginary. Crucially, the
instability occurs at a nonzero wave number and with a nonzero
imaginary part of the corresponding eigenvalue (see inset). For
c � 9.35 the deterministic system has unstable modes and it
exhibits traveling waves.

The stochastic simulations of Fig. 3 are carried out at
c = 10. Here all modes are stable in the deterministic system;
the least stable mode has a nonzero wave number and a
complex eigenvalue. In the absence of intrinsic stochasticity
the system would converge to the deterministic homogeneous
state. Fluctuations due to demographic noise at finite cell
volumes, however, constantly cause random motion about
the homogeneous state. At large but finite cell volumes, a
linear approximation is in order and the fluctuations can
be decomposed into their Fourier modes. The fluctuations
corresponding to the least stable mode decay the slowest, on a
time scale set by the real part of the corresponding eigenvalue.
This effect conspires with fluctuations persistently occurring
due to the mechanism now known as coherent stochastic
amplification [19]. Modes that are stable in the deterministic
model can effectively be excited by random fluctuations and
are observed with sizable amplitude in the stochastic system. In
our model this amplitude scales as V −1/2 in the cell volume,
but the prefactor multiplying this factor can be significant,
resulting in stochastic waves with appreciable amplitude even
at large cell volumes.

To illustrate the occurrence of stochastic waves further,
we show a time series of the (re-scaled) concentration of Y

molecules in a fixed cell in the top panel of Fig. 5. Coherent
stochastic oscillations are clearly visible; their amplitude is
seen to scale as V −1/2 with the cell volume. Plotting the time

2 4 6 8
Time

0.1

−0.1

m3

V
−ψ∗

1 5 10 15 20
Cell

−0.1

0.1

mj

V
−ψ

∗

FIG. 5. Top panel: Temporal evolution of the Y concentration in
a selected cell in the stochastic wave regime. Data are obtained from
one run of the stochastic dynamics, with the parameter values as in
Fig. 3. Bottom panel: Snapshot of the concentration of Y molecules
as a function of position at a fixed time t .
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series of the Y concentration in one cell, we have effectively
disregarded the spatial structure of the system and focused
instead on the temporal dynamics only. In this sense the
top panel of Fig. 5 is similar to observations of amplified
stochastic oscillations in the time series of nonspatial systems
(see, for example, Ref. [19]). The bottom panel of Fig. 5
shows the concentration of Y molecules as a function of
position at a fixed time. Spatial modulations, again with an
amplitude scaling as V −1/2, are seen, even though of a lower
coherence than the temporal oscillations shown in the top
panel. In this bottom panel we have effectively disregarded
the temporal dynamics of the system and have instead focused
on its spatial character. The modulations of the concentration
of Y molecules as a function of position therefore constitutes
the analog of stochastically driven Turing patterns reported
in Refs. [4–6]. The difference between our model and those
proposed previously is that it combines the spatial and the
temporal aspect; the stochastic waves seen in the nonlocal
Brusselator model are noise-driven patterns with structure
both as a function of position and as a function of time.

The theory developed in Sec. III allows us to characterize
the observed stochastic waves further. Based on the results
of Eqs. (32), we are able to predict the power spectra of

FIG. 6. (Color online) Power spectrum of the fluctuations of
the Y species obtained analytically (top panel) from Eq. (32) and
numerically (bottom panel) by simulating the stochastic process
using the Gillespie algorithm. The agreement between the two
power spectra is clearly very good. The system is in the stochastic
wave regime with a = d = α = 1, σ = 2, c = b = 10, and β =
0.05. The spectra show a peaked profile, which corresponds to
spatiotemporal organization despite the deterministic prediction of
a stable homogeneous state. The numerical spectrum is obtained by
averaging 200 realizations of a finite system of 28 cells, each of which
has a volume V = 1500.

spatiotemporal fluctuations about the homogeneous state for
any choice of model parameters. Stochastic waves are to be
expected whenever the highest peak of these power spectra is
found simultaneously at a nonzero wave number k (indicating a
nontrivial spatial structure) and at a nonzero angular frequency
ω (indicating a complex eigenvalue and hence oscillatory
behavior as a function of time). An example of a power
spectrum with these properties, obtained from the theory of
Sec. III, is shown in the top panel of Fig. 6; for comparison we
show measurements from direct numerical simulations in the
bottom panel. As seen from this figure, the agreement between
theory and simulations is excellent.

V. CONCLUSION

This paper has been concerned with the investigation of
stochastic effects in a nonlocal extension of the Brusselator
model. An analysis of this model on the deterministic level
reveals that nonlocal interactions can promote the occurrence
of traveling-wave instabilities, similar to what has been seen
before in other chemical reaction models with long-range
interactions [8]. As the main result of our work we show
that the nonlocal Brusselator model can also exhibit traveling
waves driven by internal fluctuations in parameter regimes in
which the deterministic system converges to a homogeneous
state. Based on a stochastic formulation of the model in terms
of a chemical master equation and a subsequent expansion in
the inverse system size, we derived analytical expressions for
the power spectra of these spatiotemporal patterns, in excellent
agreement with direct numerical simulations.

These findings extend previous results on noise-driven
instabilities. In Ref. [19] nonspatial systems were considered
and it was shown that intrinsic fluctuations can generate
coherent stochastic oscillations for parameters for which the
deterministic system spirals into a fixed point. The work of
Refs. [4–6] instead focused on spatial systems and it was
shown that intrinsic noise can generate stochastic Turing
patterns, i.e., spatial structures with a constant amplitude
in time. Our model combines both aspects and produces
stochastic patterns with a full spatiotemporal dynamics.

These stochastic waves are seen in the power spectra
of fluctuations, computed from the theoretical approach, as
isolated peaks at nonzero wave number and nonzero angular
frequency. While in the past it has been rather difficult to
observe spatial stochastic patterns directly and most of the
previous work was limited to an indirect identification in
Fourier space, we have also been able to obtain direct visual
confirmation of the stochastic waves in the Brusselator model
with nonlocal interaction. Criteria that distinguish stochastic
cycles or stochastic patterns from their deterministic analogs
(limit cycles and Turing-like patterns) have been proposed
[4,7,29]. However, these are not applicable to systems with
nonlocal interactions of the type we have considered here
due to the extra k dependence that comes about because of
the nonlocality. It would be interesting to devise criteria that
encompass nonlocal models as well.

The purpose of the current work is to illustrate a generic
phenomenon that is expected to occur in a wide class of
systems; the Brusselator model was chosen to illustrate the
basic idea because it is simple and widely studied. The effects
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of noise on traveling waves has been investigated in the past,
but most of these studies depended on the properties of the
specific system under consideration. For example, a simple
reaction-diffusion equation displaying traveling waves is the
Fisher equation [30]. For this system it is known that noise may
alter the properties of the waves (see, for instance, Ref. [31])
and may also be responsible for the emergence of noise-driven
traveling waves [32]. However, these waves are different from
those we have discussed here, as they do not arise from an
underlying unstable homogeneous state. A related point is
that the Fisher equation has only one species, whereas we
need at least two interacting species since we require complex
eigenvalues to trigger the wave instability [2].

We expect that the mechanism of coherent amplification
applies to more complicated linear instabilities as well [2]
and that the concept of stochastic waves is relevant in other
models with traveling fronts. We also expect that the analytical
formalism we have developed here for spatial systems with
nonlocal interaction can successfully be employed to study
broader classes of individual-based models. This may include
models of the spread of epidemics, in which infection can occur
at a distance; deterministic models of such processes have been
considered [33,34]. As stochastic patterns are found in more
and more model systems, we expect the search for them in real
systems to intensify and the understanding of the underlying
causes of pattern formation in physical, biological, and social
systems to broaden.
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APPENDIX A: TURING AND WAVE INSTABILITIES

In this appendix we derive the conditions that allow the
onset of Turing or wave instabilities to be located. Such
criteria exist in the literature [1–3], but most of them rely
on the standard reaction-diffusion paradigm and will not be
applicable in our case, which includes a nonlocal kernel and
thus an extra k dependence over and above that coming
from the diffusion terms. We need therefore a more general
approach, described below, which closely follows Ref. [35].

We start by defining the region of parameter space in
which the homogeneous state is stable. Its borders delimit the
instabilities whose type can be determined from the analysis
below. The stability condition Re[λi(k)] < 0 for all k can be
conveniently rewritten using the trace and determinant if the
Jacobian is a 2 × 2 matrix as

detJ ∗(k) > 0, trJ ∗(k) < 0 ∀k. (A1)

The stability region is the set of parameters in which the
above inequalities hold. By plotting detJ ∗(k) against trJ ∗(k)
we see that we may leave the stability region by violating
one of these inequalities, that is, (i) when there exists a
kC �= 0 such that detJ ∗(kC) = 0 whereas trJ ∗(k) < 0 ∀k

or (ii) there exists a kC �= 0 such that trJ ∗(kC) = 0 whereas
detJ ∗(k) > 0 ∀k. It is also possible that the determinant and
trace become simultaneously zero, but this is a degenerate
case, which we do not consider here.

Now recall that the eigenvalues of the Jacobian are given by

λ1,2 = 1
2 [trJ ∗ ±

√
(trJ ∗)2 − 4 detJ ∗], (A2)

from which the imaginary part of the eigenvalues may be
found. From the discussion at the end of Sec. II we can
see that the above conditions defining the boundaries of the
stability region correspond respectively to a Turing instability
(case (i) above) and to a wave instability (case (ii) above).

The stability conditions as given are not so convenient to
deal with directly because of the presence of inequalities that
must be solved for every k. To overcome this we suppose
that trJ ∗(k) has a global maximum at kM and detJ ∗(k) has
a global minimum at km, a hypothesis that will be discussed
further below. In this case the two conditions may be rewritten
as detJ ∗(km) = 0 and trJ ∗(kM ) < 0 (Turing instability) and
trJ ∗(kM ) = 0 and detJ ∗(km) > 0 (wave instability). These
are the conditions we have used to obtain Figs. 1 and 2.

We can now check that the specific forms of trJ ∗(k) and
detJ ∗(k) in our model have the required extrema. Finding
the extremal points of trJ ∗(kM ) can easily be achieved
analytically; for detJ ∗(km) it is a little more difficult. However,
checking the existence of a global maximum or minimum
numerically is straightforward and we have verified that for
the range of parameters of interest to us in this paper such
extrema always exist and moreover give the boundaries shown
in Figs. 1 and 2.

APPENDIX B: THE VAN KAMPEN SYSTEM-SIZE
EXPANSION

A description of the general structure and methodology
behind the system-size expansion, as applied to the system
under consideration, is given in Sec. III. In this appendix we
give some of the technical details that would otherwise disrupt
the flow of the arguments in the main text.

The application of the method is facilitated by writing down
the master equation (5) in terms of the step operators Eqs. (20).
An example is given in Eq. (21) for the first reaction of the
set of reactions given by Eqs. (1). When all eight reactions are
included the master equation is given by

d

dt
Pn,m(t)

=
∞∑

i=−∞

⎛⎝(ε−
X,i − 1)T (ni + 1,mi |ni,mi)

+ (ε+
X,i − 1)T (ni − 1,mi,|ni,mi)

+ (ε+
X,iε

−
Y,i − 1)T (ni − 1,mi + 1|ni,mi)

+ (ε−
X,iε

+
Y,i − 1)T (ni + 1,mi − 1|ni,mi)

+
∑

j∈{i−1,i+1}
[(ε+

X,iε
−
X,j − 1) T (ni − 1,nj + 1|ni,nj )

+ (ε+
X,j ε

−
X,i − 1)T (ni + 1,nj − 1|ni,nj )

+ (ε+
Y,j ε

−
Y,i − 1)T (mi + 1,mj − 1|mi,mj )

+ (ε+
Y,iε

−
Y,j − 1)T (mi − 1,mj + 1|mi,mj )]

⎞⎠
×Pn,m(t). (B1)
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The fundamental ansatz of the system-size expansion is
given by Eq. (22) in the main text. It leads to the expression
Eq. (24) for the left-hand side of the master equation. The
right-hand side can be evaluated by observing that the step
operators Eqs. (20) can be expanded in the inverse of the square
root of the system size V −1/2, giving rise to the following
expressions [16]:

ε±
X,i ≈ 1 ± 1√

V
∂ξi

+ 1

2V
∂2
ξi
, ε±

Y,i ≈ 1 ± 1√
V

∂ηi
+ 1

2V
∂2
ηi
.

(B2)

This, together with the substitution of the ansatz Eqs. (22) into
the transition rates Eqs. (2) and the replacement of Pn,m(t) by
�(ξ ,η,t), allows us to expand the right-hand side in powers of
V −1/2.

Equating the left- and right-hand sides of the master
equation gives the general form

∂t� −
√

V ∇ξ� · ∂tφ −
√

V ∇η� · ∂tψ

=
(

− 1√
V

[ f (φ,ψ) · ∇ξ + g(φ,ψ) · ∇η] + L
V

)
�, (B3)

where L is a linear operator containing various derivatives in
η and ξ and f and g are functions of φ and ψ . After the
introduction of a rescaled time τ = t/V , Eq. (25) is obtained.
This is now in a form where the various terms on both sides of
the equation can be balanced.

Equating the leading-order terms in Eq. (25) gives equations
whose general structure is displayed in Eqs. (26) and whose
specific form is in Eqs. (7). Equating the next-to-leading-order
terms gives an equation with a general structure Eq. (27) and
specific form

∂τ� =
∞∑

i=−∞

(
−

2∑
r=1

∂ζr,i
(Ar,i�)

+ 1

2

2∑
r,s=1

i+1∑
j=i−1

∂ζs,i
∂ζr,j

[Brs,ij�]

⎞⎠ , (B4)

where for convenience we have introduced the notation ζ1 ≡
ξ and ζ2 ≡ η. The precise forms of Ar,i and Brs,ij will be
discussed below, but as mentioned in the main text it is easier
for our purposes to work with the equivalent Langevin equation
[27,28]

dζ i

dτ
= Ai(ζ ) + μi(τ ), (B5)

where μi is a Gaussian noise with zero mean and correlator〈
μi(τ )μT

j (τ ′)
〉 = Bij δ(τ − τ ′). (B6)

We are then able to take the Fourier transform of this equation
in both space and time to give Eq. (28).

The Langevin equation (28) is defined by two contributions:
the drift term and the diffusion matrix. Since the drift term is
related to the Jacobian of the system, as presented in Eq. (30),
we will give only the expression for the diffusion matrix.

The diffusion matrix B has elements Brs,ij , where r and s

index the species and i and j the cell. In the following the
expressions are given for each r and s and for a given cell i.
The only nonzero values of Brs,ij occur when j = i − 1, i, or

i + 1, which are given respectively as the first, second, and
third entries of a row vector:

B11,i =
⎛⎝−α(φi + φi−1), a + (b + d)φi

+ c�

∞∑
j=−∞

e−σ |j |φ2
i ψi−j + α(φi−1 + 2φi + φi+1),

−α(φi + φi+1)

⎞⎠ ,

B12,i = B21,i =
⎛⎝0, −bφi − c�

∞∑
j=−∞

e−σ |j |φ2
i ψi−j ,0

⎞⎠ ,

B22,i =
⎛⎝−β(ψi + ψi−1), bφi + c�

∞∑
j=−∞

e−σ |j |φ2
i ψi−j

+β(ψi−1 + 2ψi + ψi+1), −β(ψi + ψi+1)

⎞⎠ . (B7)

Evaluating them in the homogeneous state gives

B∗
11,i =

[
−2aα

d
, 2a + 2ab

d
+ 4aα

d
, − 2aα

d

]
,

B∗
12,i = B∗

21,i =
[

0, − 2ab

d
,0

]
, (B8)

B∗
22,i =

[
−2bdβ

ac
,
2ab

d
+ 4bdβ

ac
, − 2bdβ

ac

]
.

The structure of B∗
rs,ij can be seen from Eqs. (B8) to be

B∗
rs,ij = b(0)

rs δi−j,0 + b(1)
rs δ|i−j |,1, (B9)

where the two matrices b(0) and b(1) can be read off from
Eqs. (B8). It is then straightforward [22] to calculate the spatial
Fourier transform B̃rs ≡ B̃rs(k) of the matrices Eqs. (B8) with
respect to the variable i − j :

B̃∗
rs(k) = (

b(0)
rs + 2b(1)

rs

) + b(1)
rs �̃, (B10)

where �̃ is given by Eq. (17). The explicit forms are

B̃∗
11(k) = 2a

d
(b + d) − 2aα

d
�̃,

B̃∗
12(k) = B̃∗

21(k) = −2ab

d
, (B11)

B̃∗
22(k) = 2ab

d
− 2bdβ

ac
�̃.

The power spectra of the stochastic oscillations, defined by
Eqs. (31), have the form of Eqs. (32). The functions CX and
CY are defined by

CX(k) = B̃∗
11(k)J ∗

22(k)2 − 2B̃∗
12(k)J ∗

12(k)J ∗
22(k)

+ B̃∗
22(k)J ∗

12(k)2,

CY (k) = B̃∗
22(k)J ∗

11(k)2 − 2B̃∗
12(k)J ∗

21(k)J ∗
11(k)

+ B̃∗
11(k)J ∗

21(k)2. (B12)
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