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Interarrival times of message propagation on directed networks
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One of the challenges in fighting cybercrime is to understand the dynamics of message propagation on
botnets, networks of infected computers used to send viruses, unsolicited commercial emails (SPAM) or denial
of service attacks. We map this problem to the propagation of multiple random walkers on directed networks
and we evaluate the interarrival time distribution between successive walkers arriving at a target. We show
that the temporal organization of this process, which models information propagation on unstructured peer to
peer networks, has the same features as SPAM reaching a single user. We study the behavior of the message
interarrival time distribution on three different network topologies using two different rules for sending messages.
In all networks the propagation is not a pure Poisson process. It shows universal features on Poissonian networks
and a more complex behavior on scale free networks. Results open the possibility to indirectly learn about the
process of sending messages on networks with unknown topologies, by studying interarrival times at any node
of the network.
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I. INTRODUCTION

A botnet is a network of infected computers which are under
command and control of a single person, the “botmaster.”
Botnets are abstract overlay networks on top of the physical
network topology. They are used for sending unsolicited
commercial emails (SPAM), viruses, denial of service attacks,
for stealing identity data, and for other sorts of cybercrime.
Botnets are the primary security threat on Internet today.
They grew up to be a global and multimillion dollar business.
Fighting botnets is a hard task since their structure is constantly
evolving, and their inner working is not known. Understanding
the dynamics of communication on such networks is a big
challenge and could be crucial for finding effective tools for
fighting botnets. This problem can be successfully approached
from the network theory perspective.

Botnets can have different structures. The new generations
of botnets, which are more robust against attacks and very
difficult to track, are based on peer to peer communication [1].
This type of communication can be modeled as a random walk.
When the botmaster sends an order to its bots, it sends it only
to a fraction of nodes in the botnet, which can then forward it to
only those bots whose IP addresses they know. These addresses
are randomly assigned to bots. There is no centralized point
in such networks since all the nodes are equally important;
they are all clients and servers at the same time. This is the
reason for botnets’ robustness against attacks. Even if a node
of the botnet is identified, its communication with the rest
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of the botnet can be tracked back only to a limited number
of bots. Therefore no attack would destroy the whole botnet,
or lead to the botmaster. Links in peer to peer networks do
not have to be bidirectional, and the unstructured peer to peer
networks, often used for constructing botnets since they are the
most difficult to track, have random topology. Therefore we
will model botnets as random directed networks, and we will
study the propagation of random walkers on them in order to
attack the problem of understanding the internal mechanisms
of message propagation on these networks. Random walks on
directed networks are also an interesting fundamental problem,
important for understanding the communication in any other
peer to peer network [2], wireless sensor networks [3],
ad hoc networks [4], or different processes on the World Wide
Web, such as tagging [5]. The results we present are general,
not botnet specific, and are valid for any system in which
data packets propagate in a random fashion on the directed
network.

Random walks and related stochastic processes have mainly
been studied on regular lattices and d-dimensional Euclidean
spaces in the past [6], due to their obvious relevance to physical
problems. In recent years networks are becoming the preferred
model to study complex systems [7,8] and this triggered
studies of random walks on them [9–22]. However, most
of the previous results concern random walks on undirected
networks. Random walks on directed networks have been
mainly investigated to find communities in citation networks
[23], identify subgraph structures on the World Wide Web [24],
or in calculations of the PageRank [25,26]. This is a measure
used by the search engine Google (as well as by several
other search engines) to determine the prestige of Web pages.
When a user submits a query, the hits returned by Google are
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ranked according to the value of their PageRank. The algorithm
determining this value is based on a modified random walk on
the web graph, were nodes are Web pages and edges between
them are naturally directed hyperlinks connecting Web pages.
In each step the modified random walker either follows a
randomly chosen outgoing link of the present node, or with
a small probability, called the damping factor, it jumps to a
randomly chosen node in the network.

We study random walks on directed networks to model
peer to peer communication on botnets as the spreading of
messages. The spam propagation problem is quite complex
since it consists of a first process, where the botmaster gives
orders to its bots, and of a second process, where bots
send spams to a list of users. Whereas it is reasonable to
suppose that the botmaster gives orders in a random fashion
to its bots, and therefore this process can be modeled by a
random walk propagation on directed networks, very little
is known about the second process, which can vary from
bot to bot and is continuously updated by botmasters. In
this sense, the comparison with spam data is not strictly
justified since the simulation models only the first process.
However, it may provide an indication on the real bot
topology. We are interested in the temporal organization of this
dynamic process and therefore we investigate the distribution
of interarrival times between two successive messages arriving
at a given receiver. The interarrival time distribution has been
first introduced to characterize the temporal occurrence of
earthquakes [27]. It has been then studied in the context of
different stochastic processes, as solar flares [28–31], forest
fires [32], or in package transport in computer science [33,34].
The interesting property of this quantity is that it is able
to provide information about the temporal organization of
processes whose detailed mechanisms are unknown. If the
temporal occurrence of events is completely decorrelated
(Poisson process), the interarrival time distribution can be
derived analytically and is an exponential function. Detection
of a nonexponential behavior of interarrival time distribution
enlightens the presence of temporal correlations among events.
In contrast to exponential distribution in Poisson processes,
the presence of a power law regime in the distribution is
the indication of an occurrence rate decaying in time as a
power law (result derived analytically by Utsu for earthquake
occurrence [35]), which is the clear signature of temporal
clustering. For earthquakes, this is the well known Omori
law for aftershock occurrence: after a large earthquake, the
occurrence rate abruptly increases and then decreases in time
as a power law. Indeed aftershocks occur close in time just
after the mainshock and then their occurrence rate decays as
time goes on. The interarrival time distribution for earthquakes
presents a power law regime, confirming that events occur in
bursts.

A recent paper [36] has investigated the statistical prop-
erties of the SPAM delivery interarrival times. Results have
suggested that SPAM messages delivered to a given recipient
are time correlated: if the interarrival time between two
consecutive SPAM messages is small (large), then the next
SPAM message will most probably arrive after a small
(large) interarrival time. SPAM temporal correlations have
been reproduced by a numerical model based on the random
superposition of SPAM sequences, each one described by the

Omori law [37]. This and other experimental findings [36]
suggest that statistical approaches may be used to infer how
spammers operate.

Our motivation to study the distribution of message interar-
rival times on model networks is to detect the eventual presence
of temporal correlations and their relation with the network
topology. The interarrival time distribution of messages sent
only to one or a small fraction of nodes could then provide
information about the dynamical process taking place on a
real network. In the case of botnets this would imply that
we would be able to get information about their organization
and structure by studying interarrival times of either SPAM
emails or of contaminated packages, both sent by a botnet,
by analyzing data even of a single user. These data are
easily accessible, cheap, and easy to monitor. Since botnets
are difficult to identify, this indirect way of learning about
their organization would give a boost in fighting botnets and
cybercrime in general.

The paper is organized as follows: In the next section
we will describe the model and the implemented networks.
In the third section we discuss results obtained for random
networks and show their comparison with the real data. In the
following two sections we extend our investigation to networks
with random topologies without dead ends and to scale free
networks. Finally in the last section we discuss the results and
give some concluding remarks.

II. MODEL

We start by constructing a randomly connected directed
network with a given degree distribution of inputs and outputs.
We implement the Poisson distribution, the Poisson without
dead ends, and the power law distributions. We choose a
random node in the network to be the one where we measure
the interarrival times between two successive random walker
arrivals, dt = ti+1 − ti . We call this node the target node or the
receiver. The target node is chosen at random among nodes
with a given number of inputs. The number of outputs of
the target is not fixed since it does not influence the number
of message arrivals. Next, we choose a node from which
messages depart, the sender. This node is chosen at random,
with a fixed number of outputs. Since only the number of
outputs determines the number of different ways a message
can leave on its way to the receiver, we do not fix the number
of inputs of a sender. In our process the sender is the botmaster
sending orders to its bots, and what we measure at the receiver
can be compared to the arrivals of messages to a generic user.
We have found that increasing the number of senders does not
affect the basic properties of the interarrival time distribution
of messages reaching the receiver.

After a message departs from the sender, it performs a
random walk, namely it follows at each time step one randomly
chosen outgoing link of the occupied node. The messages
are sent one after the other and the time needed to reach the
target is recorded. Messages are also sent with a constant
delay. In this case the delay time is added to the measured
length of the walk, the two giving together the arrival time.
The walker arrival times (with and without delays) are listed
and sorted. In this way the sorted list represents correctly
the process we simulate. The interarrival times are calculated
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from this sorted list in which the first walker is the one with
the shortest arrival time (including possible starting delay), no
matter when in the simulation this walk has been measured.
This procedure simulates the process in which the messages
propagate simultaneously. The walk continues until either the
target node is reached, or an initially fixed maximal number
of steps is exceeded. It is necessary to introduce a limit on
the number of steps since, due to the fact that the links are
directed, the network may have regions that the walker can
enter but cannot escape from. This limit also exists in real
internet protocols where it is called the time to live (TTL).
This is a limit on the number of transmissions that a data
package can experience before it should be discarded. In all
simulations presented here we fix this value to twice the size
of the network.

To simulate the dynamical process typical for a botmaster,
who sends a large number of messages through botnets, many
random walkers depart from the sender. We send them either
one by one or all at once. The walkers are independent. We
record the times at which messages arrive to the receiver
ti and calculate the interarrival times between successive
messages, dt = ti+1 − ti . When the messages are sent all at
once, their arrival times depend solely on the length of the
paths undertaken on their way to the receiver. This is mainly
affected by the network topology. When the messages are sent
one after another, each consecutive message has an equal time
delay in starting its walk to the target node. This process is more
complex than the previous one since a message can arrive to
the target before others sent earlier due to a shorter undertaken
path. In the beginning of the process the number of messages
arriving at the target increases with time, until a stationary
state is reached. We are interested in the stationary state of
the process, where we measure the distribution of interarrival
times P (dt), normalized by the number of received messages
and the number of networks in the sample. In our model at
each time step a new walker departs from the sender. We
have, however, verified that the introduction of a longer time
delay between successive departures does not affect the main
properties of the distribution.

III. RANDOM NETWORKS

All the networks randomly connect input and output links
assigned to the nodes according to some distribution [38,39].
We call, however, the networks random only when the
distribution is Poissonian, p(k) = (〈k〉k/k!) · e〈k〉, where k is
the number of links and 〈k〉 is its mean value [40]. When we
construct random networks we choose both, the distribution
of input and of output links, to be Poissonian with the same
mean degree. The number of walkers has to be large enough to
provide good statistics for the distribution of interarrival times.

We sample data from 500 different network realizations
for a given degree distribution and fixed values of the sender
outdegree and the receiver indegree. We fix both these values
equal to 4. We have, however, verified that the specific
value of these parameters does not affect the behavior of the
distribution. The space of possible topologies and possible
choices of a sender-receiver couple is extremely large. To get
better statistics we also fix the distance between these two
nodes, namely the shortest path between them.
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FIG. 1. (Color online) Distribution of interarrival times in net-
works with Poisson degree distribution and different values of the
mean degree. The networks have N = 104 nodes, the number of sent
messages is M = 106, and the distance between the sender and the
receiver is fixed to 8. The messages are sent one by one.

We first study the case when messages are sent one by one.
We find that the distributions of interarrival times for networks
with Poisson distributed links and different average degree
〈k〉 exhibit similar behavior (Fig. 1). Only for networks with
a small value of the average degree, and therefore a lower
level of connectivity, are longer interarrival times measured.
The average interarrival time indeed increases exponentially
as the average connectivity, 〈k〉, decreases (inset Fig. 2). In
order to check if the distribution is a universal function, solely
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FIG. 2. (Color online) Distributions of interarrival times in
networks with Poisson degree distribution and different values of
the mean degree, rescaled by the average rate of message arrivals.
The networks have N = 104 nodes, the number of sent messages is
M = 106, and the distance between the sender and the receiver is
fixed equal to 8. The messages are sent one by one. The inset shows
the dependence of the mean interarrival time on the average degree
of the network.
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controlled by the average rate R of walkers arriving at the
target, we verify the following scaling relation [41]:

P (dt) = Rf (Rdt).

Therefore we evaluate the average rate for each distribution,
as the inverse of the mean interarrival time R = 1/ 〈dt〉, and
rescale the interarrival time by the average rate. We find that
the different distributions collapse quite well onto a universal
curve (Fig. 2), if the total number of links in the network is large
enough. Small deviations are observed only for large dt . If the
network is too sparse, i.e., if 〈k〉 � 3, the mean interarrival time
increases and the probability of longer dt becomes larger. This
effect is caused by the fact that in sparse networks only a small
number of messages reaches the target. The space of possible
paths leading to it is not fully explored and the trapping regions
in sparse networks are more prominent.

The universal scaling function in Fig. 2 exhibits an initial
almost constant regime followed by an exponential like decay.
If the messages would arrive to the target independently of each
other, interarrival times would be distributed exponentially,
as it happens in Poissonian processes. In our process the
distribution of interarrival times deviates from the exponential,
which indicates that the process is more complex, and possibly
correlations are present, coming from the networks topology
or the message sending process itself. We have also studied the
influence of the distance d between the sender and the receiver
on the distribution of interarrival times. If the nodes are not
too far away (for d < 8), the rescaling of the distributions by
the average rate of message arrivals provides a good collapse
(Fig. 3) with fluctuations at large interarrival times only for
d = 8. The inset shows that the mean interarrival time grows
linearly with the sender-receiver distance.
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FIG. 3. (Color online) Distributions of interarrival times in
networks with Poisson degree distribution with mean degree equal
to 4 and different distances between the sender and the receiver.
The distributions are rescaled by the average rate of message arrival.
The networks have N = 104 nodes, the number of sent messages is
M = 106. The messages are sent one by one. The inset shows the
dependence of the mean interarrival time on the distance between the
sender and the receiver.
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FIG. 4. (Color online) Rescaled distributions of interarrival times
of SPAM emails sent from two different domains and sampled in
three different junk mailboxes (empty symbols) from Ref. [36], and
of our model (full symbols) with messages sequentially sent through
random networks with different 〈k〉 values and the distance between
the sender and the receiver fixed to 8. The networks have N = 104

nodes, the number of sent messages is M = 106.

The present model simulates propagation of messages in
unstructured peer to peer botnets where the botmaster is
sequentially sending a large number of messages to the bots.
The dynamics of sending orders inside the botnets influences
the dynamics of arrival of messages sent from bots to the
final destination, which could be a computer of a simple user
receiving SPAM. Therefore the fingerprint of the dynamics of
message propagation inside the botnets should be visible in
the distribution of interarrival times of SPAM emails collected
in the mailbox of a single user, although our model does
not simulate the whole process of message propagation from
the spammer to its victim. We compare our results with the
distribution of interarrival times for SPAM data, presented in
Ref. [36]. The experimental data in Fig. 4 are sampled from
three different junk mailboxes, and the spam emails are se-
lected on the basis of their geographical origin, Europe and the
United States. Surprisingly, already our simple model is able to
reproduce quite well the basic characteristics of the interarrival
time distribution of the real data, as can be seen in Fig. 4.

In order to understand the characteristics of the dynamical
process, and thus the behavior of the interarrival time distribu-
tion for experimental data, we study in detail different aspects
of the dynamics on model networks. If the walkers are sent one
after the other the interarrival time does not depend only on the
different paths taken by the walkers but also on their starting
time. To understand the effect of this time delay on the process
we also analyze the case where all the messages are sent at
the same time. In this case interarrival times are uniquely
determined by the complexity of the undertaken paths. The
distribution of interarrival times rescaled by the average rate
shows universal behavior, well fitted by a power law with
the exponent close to 2 (Fig. 5). We show results for only the
networks which are not too sparse, since for sparse networks
the distribution shows large statistical fluctuations. The power
law behavior suggests that even if the walkers are completely
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FIG. 5. (Color online) The rescaled distributions of interarrival
times in networks with Poisson degree distribution with different
mean degrees. All the messages are sent at the same time and the
distance between the sender and the receiver is equal to 8. The
networks have N = 104 nodes, the number of sent messages is
M = 106.

independent during their propagation, they arrive in bursts
originating temporal clustering in the process. The probability
for the shortest dt depends on the level of connectivity in the
network, moreover the higher the average degree the smaller dt

is with respect to the average rate. In general, we observe that
the average degree controls the extension of the scaling regime:
the more interconnected is the network the wider is the variety
of possible paths and therefore the range of observed dt .

The maximal value of interarrival times is determined by
the TTL in the case where all messages are sent at once.
In the case when messages are sent one after the other, the
time delay between messages affects the interarrival time,
which can become as large as M + T T L, since the number
of sent messages M is the maximal possible additional delay
between two messages. This maximal value corresponds to
the particular situation where the first message arrives and the
only other message reaching the target is the one sent as last,
which takes the longest possible path.

Since the outputs of random networks are distributed
according to the Poisson degree distribution, a fraction of
nodes in the network has k = 0 outputs. Such nodes exist also
in real networks. These nodes serve as a trap for the random
walker. Similarly to the trapping problem on networks [42], the
message reaching such a node cannot proceed any further. In
random networks this is a dominant mechanism for preventing
messages from finding the target. A large number of messages
gets lost and the interarrival times can become extremely large
(only up to 1% of messages actually reaches the target). It is
highly unlikely that a message will be stopped because the
length of its path has reached the limit given by TTL. It rather
appears that on random networks messages either reach the
target after a relatively short period of time, or they never
reach it. We check this point by studying the distribution of
hitting times. The hitting time, or the first passage time, is
the time that a random walker takes to reach the target for
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FIG. 6. (Color online) The distributions of hitting times in
networks with Poisson degree distribution with mean degree equal
to 4 and different distances between the sender and the receiver.
The networks have N = 104 nodes, the number of sent messages is
M = 106. The messages are sent all at once. The fit is a stretched
exponential function of the form y = 0.02 · exp(−0.02 · x0.96).

the first time. In our model the distribution of hitting times
is equivalent to the distribution of the lengths of the paths
taken by the random walkers to reach the target node. This
is at the same time the distribution of arrival times in the
model where all the messages are sent at the same time.
In Fig. 6 we see that only a small number of walkers takes
the maximal number of 1000 steps, which is relatively small
for the N = 104 networks. The most probable hitting time
has a value equal to the distance between the sender and the
receiver, meaning that many messages take the shortest path
between the two nodes. Its probability is higher for smaller
distances. The other possible paths are distributed according
to a stretched exponential distribution (Fig. 6) independent of
the sender-receiver distance.

The hitting time, or the first passage time distribution, is an
important property of random walks that has been studied in
the past [11,43,44]. A number of nice and complete analytical
results are known for random walks on undirected networks
[9,12]. For simple processes, the interarrival time distribution
can be calculated if the first passage time distribution is known.
For instance, if p(dt = tb − ta) is the probability that the
interarrival time is dt , and p(ti) is the probability that the
first passage time of a walker is ti , i.e., it reaches the target
time ti , then

p(dt = tb − ta) = p(ta)

(
1 −

b−1∏
i=a+1

p(ti)

)
p(tb).

However, in the present case, where networks are directed
and not completely connected, the random walk does not
have a stable steady state, which makes analytical calculations
much more complex. The properties of random walks are for
these networks much different than in the undirected case. Our
numerical results confirm that this is due to lost walkers, which
are here present mainly due to the existence of nodes without
outputs.
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FIG. 7. (Color online) The distribution of interarrival times in
networks with Poisson degree distribution without dead ends and
with different values of the mean degree, rescaled by the average
rate of message arrival. The networks have N = 104 nodes, the
number of sent messages is M = 106, and the distance between the
sender and the receiver is fixed equal to 5. The messages are sent
one by one. The fit is a stretched exponential function of the form
y = 2.2 · exp(−1.5 · x0.8). The inset shows the dependence of the
mean interarrival time on the average degree of the network.

IV. RANDOM NETWORKS WITHOUT DEAD ENDS

In order to better understand the influence of nodes without
outputs on the distribution of interarrival times, we study the
same dynamical process on networks with slightly different
topology. When we assign the number of ingoing or outgoing
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FIG. 8. (Color online) The distribution of interarrival times in
networks with Poisson degree distribution without dead ends and
with different distances between the sender and the receiver, rescaled
by the average rate of message arrivals. The mean of the Poissonian
distribution is 〈k〉 = 4. The networks have N = 104 nodes, the
number of sent messages is M = 106, and the distance between the
sender and the receiver is fixed equal to 5. The messages are sent
one by one. The inset shows the dependence of the mean interarrival
time from the distance between the sender and the receiver.

links to a node, we choose a random number between zero and
N − 1 from the Poisson distribution, but we assign to the node
this number plus 1. In this way there are no nodes with zero
ingoing or outgoing links and there are no dead ends in the
network. The only trap in the network is now the target node.

For the process where walkers are sent one by one we find
that the distributions depend weakly on the average degree and
the distance between the sender and the receiver. Indeed, the
average rate varies on a much smaller range (insets in Figs. 7
and 8). Very good collapse is therefore observed rescaling
the distributions by the average rate (Figs. 7 and 8). The
universal function behaves as a stretched exponential and is
therefore different than the one in Fig. 2. The main mechanism
preventing the message from arriving at the target is now
time exceeding the TTL limit. Many messages arrive to the
target (up to 90%), which results in small interarrival times.
In this case the walkers explore most of the paths existing
between the two nodes. Similarly to previous cases, we show
the results only for networks which are not too sparse, where
the distributions show larger statistical fluctuations.

Conversely, for the process where all messages are sent at
once, the interarrival times are in the majority of cases either
zero, i.e., two messages arrive to the target at the same time, or
equal to 1. This is due to the large number of messages arriving
at the target and to the ability of the walkers to explore well
the space of all possible paths, with lengths ranging between
the shortest path and the TTL. At each time step then at least
one walker arrives to the target leading to an interarrival time
equal to 1.

The distribution of hitting times when all messages are sent
at once is also quite different than in the case where dead ends
exist. In this case the walkers have the possibility to sample
paths of all lengths and therefore the hitting time can assume
values up to the threshold TTL. As we can see in Fig. 9,
the distribution has an exponential behavior. Deviations from
the exponential function can be seen only for small values
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FIG. 9. (Color online) The distributions of hitting times in
networks with Poisson degree distribution without dead ends and
for different 〈k〉. The distance between the sender and the receiver
is equal to 5. The inset shows the same distribution for the average
degree equal to 4 and different distances between the sender and
the receiver. The networks have N = 104 nodes, the number of sent
messages is M = 106.
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of the hitting time, with this region getting smaller when
the connectivity is larger. The coefficient of the exponential
distribution increases with 〈k〉, namely the probability for
longer hitting times is higher for larger average degrees. The
walker takes more tortuous paths in a network with a higher
level of connectivity. Conversely, the coefficient is independent
of the distance between the sender and the receiver (see the
inset of Fig. 9).

The results obtained for random networks without dead
ends confirm our conclusion that the behavior of the interar-
rival time distribution for random networks is a consequence
of the existence of dead ends, the nodes without outputs which
serve as traps for the messages. Since these traps exist in
real networks, it is important to understand their influence on
propagation of messages through random networks.

V. SCALE-FREE NETWORKS

To explore further the influence of the network topology on
the propagation of random walkers, we study this process on
scale free networks. We find that in this case the characteristics
of the process are much different. In order to measure the
distribution we wait for the process to become stationary.
Whereas in the case of Poisson distributed links this happens
very fast, for scale free networks the stationary regime is
reached after a long transient. A large number of messages
has to be sent to obtain good statistics.

In Fig. 10 we show the distribution of interarrival times
for scale free networks with different exponents of the degree
distribution [P (k) ∝ k−γ ] and in the case that messages are
sent one by one. We observe that sparse networks (high γ )
behave differently than well connected networks. In fact,
the mean interarrival time rapidly increases for decreasing
γ , suggesting that the walker takes very tortuous paths in a
well connected network. In contrast to the previous cases, the
distributions of interarrival times for scale free networks do
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FIG. 10. (Color online) The distribution of interarrival times in
networks with power law degree distribution with different values of
coefficient γ [P (k) ∝ k−γ ]. The networks have N = 104 nodes, the
number of sent messages is M = 106, and the distance between the
sender and the receiver is fixed equal to 30. The messages are sent
one by one. The inset shows the dependence of the mean interarrival
time on γ .

not collapse onto a universal curve if the interarrival time is
rescaled by the average rate of the process, even when the
networks are not sparse. Therefore the average rate is not the
only relevant quantity in the process.

The number of messages arriving at the target is smaller than
in Poisson networks without dead ends, and the interarrival
times can be extremely long (the number of messages arriving
at the target varies strongly with the exponent of the distribu-
tion, and can range from 1 to 90%). In scale free networks there
are by definition no dead ends, and the main mechanism for
stopping the random walker is here time exceeding the TTL
limit. The walkers take many long paths, probably looping
through system and being able to visit different parts of the
networks through shortcuts whose probability is higher due
to hubs. In contrast to Poisson networks without dead ends,
although the walkers can explore well the space of possible
paths, many of them never reach the target since they are either
trapped in loops, or in regions typical for directed networks,
where the walker can enter but cannot escape. Moreover, the
path to the target could be longer than the TTL limit, which
is very probable on scale free networks. Since the number of
walkers reaching the target decreases, the probability of longer
interarrival times increases.

When messages are sent all at the same time, the distribution
of interarrival times shows a power law behavior. However, in
contrast to random networks with dead ends, where we find
universal power law behavior, a change in the topology by
tuning the coefficient γ changes the slope from about 0.8, in
well connected, to 2.2, in sparse networks (Fig. 11). As in
the case of consecutive departures of messages, also here we
do not observe the distribution collapse if interarrival time is
rescaled by the average rate.

The hitting times of the dynamical process on scale free
networks also show a quite different behavior. In Fig. 12
we see that networks with different power law coefficients
have different distributions of hitting times. We also see that,
similarly to the case of Poisson networks without dead ends,
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FIG. 11. (Color online) The distributions of interarrival times in
networks with scale free distribution with different coefficients of
the power law. All the messages are sent at the same time and the
distance between the sender and the receiver is 30. The networks have
N = 104 nodes, the number of sent messages is M = 106.
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FIG. 12. (Color online) The distributions of hitting times in net-
works with power law degree distributions with different coefficients
γ . The distance between the sender and the receiver is fixed to 30.
The networks have N = 104 nodes, the number of sent messages is
M = 106.

the walkers on scale free networks explore well the space of
all possible paths from shortest path to TTL, especially in the
case of well connected networks (smaller γ exponents). By
increasing γ , the number of walkers which take very long
paths to reach the target decreases.

VI. CONCLUSIONS

In this paper we study the distribution of interarrival
times of walkers sent through complex networks, with the
goal to gain understanding on the process of information
spreading inside the new generation of botnets based on peer
to peer communication. The dynamics of sending botmaster
orders inside the botnet influences the dynamics of arrival
of messages sent from bots to the final destination. This can
be a computer of a simple user receiving either SPAM or
data packages contaminated with viruses. The dynamics of
message propagation inside the botnets therefore affects the
distribution of interarrival times of SPAM emails collected in
the mailbox of a single user. We compare the results obtained
by modeling botnets as random directed networks, where
messages sent sequentially from the botmaster are random
walkers, with the distribution of interarrival times of real
SPAM data, presented in Ref. [36]. The comparison shows
that this simple model reproduces well the basic features of
interarrival time distribution.

To better understand the behavior of the distribution of the
interarrival times we study the dynamical process of message
propagation on different model networks and by two different
procedures. We find that the main ingredients controlling
the distribution of interarrival times are the distribution of
possible path lengths between the sender and the receiver,
and the number of messages not reaching the target. Possible
paths between two nodes are determined only by the network
topology while the mechanisms preventing messages from
reaching the target depend in addition on TTL. In the case
of random networks, nodes without outputs represent natural

traps for the messages, and most of the sent messages are
prevented from reaching the target leading to long interarrival
times. Since such nodes exist in real networks, this is the
situation that we expect to observe in real peer to peer
botnets. The distribution of interarrival times for the sequential
sending of messages shows an almost constant regime for
small interarrival times, followed by an exponential like cutoff
including nonvanishing probability for very long interarrival
times. When the messages are sent in parallel the interarrival
times are power law distributed up to long interarrival times.

We confirm that the nodes without outputs have a crucial
role in processes on random networks by studying networks
with the same Poisson distribution of links, but without dead
ends. In this case interarrival times are much shorter and are
distributed as a stretched exponential for sequentially sent
messages. When the messages are sent in parallel only trivial
values of interarrival times, 0 or 1, appear. Many messages
arrive to the target, the space of possible paths is well explored
and only those few messages exceeding the limit of maximal
number of steps are prevented from reaching the target.

Networks with a scale free distribution of links also show
the important role of the network topology for the behavior
of the interarrival time distribution. In these networks long
interarrival times appear, but the messages are prevented
from reaching the target by different mechanisms. Here
the limit on the maximal number of steps together with
the distribution of possible paths between the sender and the
receiver determine the distributions of interarrival times. The
interarrival times of sequentially sent messages can be very
long in the case of well connected networks, or much shorter
for the less connected networks (higher γ values), but the
behavior of the distributions are in all cases different than for
the other two network types. For messages sent in parallel
this distribution is a power law, as in the case of random
networks, but with the slope depending on the network’s
connectivity. From the three types of networks investigated,
only for scale free networks do the distributions not collapse
onto a universal curve if dt is rescaled by the average rate of the
process.

The change in topology has a different influence on the
dynamical process on networks with Poisson and scale free
distributed links. For scale free networks we change the
topology by varying the γ exponent of the link distribution.
This change has a strong influence on the distribution of
message interarrival times. The average rate is not the only
relevant quantity for the process and the universality class of
the distribution of interarrival times depends on the topology.
Tuning the exponent γ affects the number of hubs in the
network, which in scale free networks play a crucial role
in the process of message spreading. Their number changes
qualitatively the behavior of the interarrival time distribution.
It influences the length of possible paths between nodes in the
network not only by the change of local properties, such as
the number of links of a node, but also by the creation of long
range shortcuts through hubs, which increases the number of
possible paths between the nodes.

When the link distribution is Poissonian, changing the mean
number of links per node modifies the network topology and
therefore the mean rate of walker arrivals. The interarrival
time distributions, however, collapse onto a universal scaling
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function if interarrival time is rescaled by the average rate.
The distance between the sender and the receiver is also not
affecting the universality class of the universal feature of the
distribution. The behavior of the distribution is also robust
with respect to changes of other parameters, such as the time
distance between two sequential messages, the number of
output links of the sender and input links of the receiver, or even
the number of senders. The robustness of the behavior of the
interarrival time distribution seems to be typical for networks
with Poisson distributed links. Interestingly, the SPAM data,
analyzed in terms of the junk mailbox, or by the geographical
location of IP addresses of the sender, also collapse onto a
universal function when interarrival time is rescaled by the
average rate. This new approach in studying such processes

using network theory can be employed in many fields. By
applying this approach to directed networks we show that
we can learn about botnets indirectly. The results are not
botnet specific and can be applied to any other system which
can be modeled by directed networks and through which the
information propagates in random fashion.
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