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We investigate the daily correlation present among market indices of stock exchanges located all over the
world in the time period January 1996 to July 2009. We discover that the correlation among market indices
presents both a fast and a slow dynamics. The slow dynamics reflects the development and consolidation of
globalization. The fast dynamics is associated with critical events that originate in a specific country or region
of the world and rapidly affect the global system. We provide evidence that the short term time scale of
correlation among market indices is less than 3 trading months (about 60 trading days). The average values of
the nondiagonal elements of the correlation matrix, correlation-based graphs, and the spectral properties of the
largest eigenvalues and eigenvectors of the correlation matrix are carrying information about the fast and slow
dynamics of the correlation of market indices. We introduce a measure of mutual information based on link co-
occurrence in networks in order to detect the fast dynamics of successive changes of correlation-based graphs in a
quantitative way.
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I. INTRODUCTION

The correlation structure of financial asset returns is
informative for stock return time series [1] (for a recent
review, see [2]), market index returns of stock exchanges
worldwide [3–9], and currency exchange rates [10–13]. The
correlation-based clustering procedures [2] allow us also
to associate correlation-based networks with the correlation
matrix. Useful examples of correlation-based networks are
the minimum spanning tree [1], graphs obtained by using
thresholding procedures [14,15], and the planar maximally
filtered graph (PMFG) [16].

In this paper we investigate the daily correlation present
among indices of stock exchanges located all over the world.
The study is performed by using the index time series of 57 dif-
ferent stock markets recorded during the time period January
1996 to July 2009. By investigating this set of stock market
indices we show that the correlation among world indices has
both short term and long term dynamics. The long term dynam-
ics is a slow monotonic growth associated with the develop-
ment and consolidation of globalization, while the short term
dynamics is associated with events originating in a specific part
of the world and rapidly affecting the entire system. Examples
are the 1997 Asian crisis, the 1998 Russian crisis, the 2007
development of the subprime crisis, and the onset of the 2008
global financial crisis. The presence of multiple time scales in
the dynamics of correlation structure among stocks traded in a
market was already noticed in Ref. [17]. The presence of both
short term and long term time scales in the dynamics of the
correlations among world indices make their analysis difficult.
In fact, an estimation of the empirical correlation matrix
minimizing the unavoidable statistical uncertainty associated
with the evaluation needs a large number of records to be used
in the evaluation time period. However, an extended evaluation
time period reduces the ability to resolve the fast dynamics of
correlation. In the present study, we first perform our analyses

by using different evaluation time periods, and we then analyze
the dynamics of the correlation at the shortest time scale
accessible by ensuring that the correlation matrix is invertible
(the correlation matrix is no longer invertible when the number
of records in the evaluation time period is less then the number
of elements in the investigated set). We provide empirical evi-
dence that the short time scale of correlation among world in-
dices can be less than 3 trading months (about 60 trading days)
and that there are quite stable factors driving the dynamics of
stock market indices located in specific regions of the world.

We also show that the interrelation between stock market
indices can be efficiently described by using correlation-based
networks and principal component analysis. Unsupervised
cluster detection is performed on a correlation-based network
obtained by using the correlation matrix estimated using all
daily records available. The cluster detection is done by
applying a community detection algorithm to the correlation-
based network. We show that the characteristics of fast
dynamics of the interrelations among stock indices are well
described by the PMFGs and by the two largest eigenvalues
and eigenvectors of the correlation matrix. Abrupt short term
alterations are detected at the onset of several financial crises,
but the changes detected in the structure of graphs and in the
principal component analysis profile are of difficult economic
interpretation due to the high level of statistical uncertainty
associated with the correlation estimation and because dif-
ferent events might be crisis specific and therefore specific
only to each single event. To quantify in an efficient way
successive changes of correlation-based networks estimated
with the shortest evaluation time period we introduce a new
way to compute a mutual information measure between two
networks based on link co-occurrence.

The paper is organized as follows. In Sec. II, we briefly
present the set of investigated data, and we discuss the time
scales of the dynamics of correlations of market indices. In
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Sec. III, we analyze the unconditional correlation-based graph
associated with index returns, and we perform a community
detection on it. In Sec. IV, we discuss the short term dynamics
of correlations of stock indices. In Sec. V, we discuss
the time evolution of PMFGs computed with the shortest
evaluation time period, and we compare successive networks
by using a newly introduced mutual information measure
based on link overlap. In Sec. VI, we investigate the dynamics
of the largest eigenvalues and eigenvectors associated with
correlation matrices computed at the shortest time scale. In the
last section we present our conclusions.

II. DATA AND TIME SCALES

In this study, we investigate a set of 57 stock market indices
of 57 exchanges located in different countries on several
continents. The complete list of stock market indices is given in
the Appendix. Data are sampled daily. We have selected these
57 stock market indices because we have access to them for a
long time period ranging from January 1996 to July 2009. We
perform our analysis on the daily logarithmic return, which,
for each index i, is defined as

ri(t) = ln Pi(t) − ln Pi(t − 1), (1)

where Pi(t) is the closure price of index i on day t . Starting
from the return time series we compute the correlation
matrix of this multivariate set of data at time T by using
past return records sampled during evaluation time periods
of different length �T ranging from 3 calendar months
(�T = 0.25, approximately 60 trading days) up to 5 calendar
years (�T = 5, approximately 1250 trading days). For each
month t (converted to T in units of years) and for each
different evaluation time interval �T , we compute the Pearson
correlation coefficient

ci,j (T ,�T ) = 〈[ri(k) − μi][rj (k) − μj ]〉
σiσj

, (2)

where μi and μj are the sample means and σi and σj are the
standard deviations of the two stock index time series i and j ,
respectively.

In Fig. 1 we plot the average correlation value 〈ci,j (T ,�T )〉
of the nondiagonal elements of the correlation matrix com-
puted at time T using a set of past daily records spanning
a �T interval. In Fig. 2 we show the contour plot of the
average correlation value of the correlation matrix. The results
summarized in Figs. 1 and 2 show that a dynamics is present
in the time evolution of the correlation among the indices of
different stock exchanges. Important aspects to be investigated
concern both the fast and the slow dynamics of the correlations.
Ideally, one would like to estimate correlation among indices
by using a short estimation interval. Unfortunately, by using a
short estimation interval the level of the statistical uncertainty
in the estimation is increased, and eventually, one ends up with
not well-characterized correlation matrices when the number
of time records used in the estimation is less than or close to the
number of investigated market indices [18]. On the other hand,
when a long estimation interval is used, successive estimations
of the correlation are not independent, and therefore localized
jumps of the average correlation are smeared out over a long
time period.

FIG. 1. Average correlation of the nondiagonal elements of the
correlation matrix as a function of the evaluation time T and of the
evaluation time period �T . The gray levels are the same as in Fig. 2.

In fact, by looking at Figs. 1 and 2, we notice that both
a short term and a long term dynamics are present in the
evolution of correlation. We also conclude that to detect
properly the short time scale of correlation dynamics we need
to use a short evaluation time period because the contour plot
of Fig. 2 shows that the localization of the onset of sizable
changes is affected by the length of the evaluation time period
�T . For example, the onsets of the Asian 1997 crisis, the
Russian 1998 crisis, the 2007 subprime crisis, and the 2008
global crisis are quite clearly detected when an evaluation time
period of 3 months is used, whereas the onset is smeared out
and postponed when longer evaluation time periods are used.

Closure index values of different stock exchanges located
all over the world are, in general, settled at different times of
the trading day. For example, the Tokyo Stock Exchange closes
at 6:00 a.m. Greenwich Mean Time (GMT), the London Stock
Exchange closes at 4:30 p.m. GMT, and the New York Stock
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FIG. 2. Contour plot of the average correlation of the nondiagonal
elements of the correlation matrix as a function of the evaluation time
T and of the evaluation time period �T . The white region in the top
left is the region where the past records are not enough to estimate
the correlation matrix with the same statistical accuracy of other T

values for the same �T .
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Exchange closes at 9:00 p.m. GMT. The time shift between the
market trading hours of each pair of different stock exchanges
affects the estimation of the correlation coefficient estimated
by using daily closure index values. This problem has been
recognized and discussed in several papers (see, for example,
[3,5] and, more recently, [9]). Although an effect of the absence
of synchronicity is certainly present and detectable, there is
no unique way to take this problem into account. For this
reason and considering that the main focus of the paper is
to detect the simultaneous presence of different time scales,
longer than a trading day, affecting the correlation dynamics
of stock exchange indices over a wide period of time covering
more than 13 years, we decide to consider all the indices at the
same calendar date, as also recently done in Ref. [9].

III. CORRELATION-BASED GRAPHS

Correlation-based graphs provide a powerful tool to detect,
analyze, and visualize part of the most robust information that
is present in the correlation matrix [2]. Here we first investigate
the PMFG of the 57 selected market indices obtained from the
correlation matrix estimated by using all the daily records of
the selected time period (1 January 1996 to 31 July 2009). The
unconditional PMFG is shown in Fig. 3. As already observed
in previous studies [8], the relationship between market indices
pointed out by the PMFG is primarily of geographical origin.
In the top left of Fig. 3 we recognize the market indices of
American stock exchanges (blue circles); market indices of
European stock exchanges (green circles) are found in the
central part of the graph, and the bottom part of the graph links

primarily market indices of Asian (yellow squares), Oceanian
(magenta squares), Middle Eastern (cyan diamonds), and
African (maroon diamonds) stock exchanges. An unsupervised
cluster analysis of the indices can be performed on the PMFG
by applying a community detection algorithm used to find a
community of elements in networks (for a recent review on
this topic, see Ref. [19]).

Specifically, we obtain clusters of elements of the PMFG by
using the INFOMAP method proposed by Rosvall and Bergstrom
[20]. This algorithm is considered one of the best algorithms
of community detection in networks [21]. The method uses the
probability flow of random walks to identify the community
structure of the system in the investigated network. This
approach implies that two independent applications of the
method to the same network may produce (typically slightly)
different partitions of vertices. We repeat the application of
the method 100 times to detect a minimum value of the fitness
parameter estimating the goodness of the partition.

The result of the application of the method to the uncondi-
tional PMFG is given in Fig. 4. The method identifies four
distinct clusters. The bottom right cluster in Fig. 4 is the
cluster of American stock exchanges. Two other clusters (top
right and bottom left) are clusters of primarily European stock
exchanges, whereas the fourth cluster (top left) is primarily
composed of Asian and Oceanian stock exchanges. In the
following, we will use this unsupervised classification when
we present the results of our analysis on the fast dynamics of
correlations. In fact, the remaining part of this paper is devoted
to an analysis of the properties of the correlation matrices
and of the correlation-based graphs estimated by using short

FIG. 3. (Color online) PMFG of the set of 57 market indices obtained from the correlation matrix of daily index returns estimated by using
all daily records of the January 1996 to July 2009 time period. The color (shape and gray shading) of the symbols indicates the geographical
location of the country hosting the stock exchange of the market index. American stock exchanges are blue (dark gray circles), European are
green (light gray circles), Asian are yellow (light gray squares), Oceanian are magenta (dark gray squares), Middle Eastern are cyan (light gray
diamonds), and African are maroon (dark gray diamonds).
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FIG. 4. (Color online) Clusters (communities) of market indices detected into the unconditional PMFG by the INFOMAP community detection
algorithm. The colors and shapes of the vertices are as in Fig. 3. The four detected clusters correspond primarily to different geographical
regions: top left, Asia and Oceania; top right, northern and eastern Europe; bottom left, central and southern Europe; bottom right, America.

evaluation time periods with a limited number of daily records
so that they might provide information about the fast dynamics
of correlation as a function of time.

IV. SHORT TERM DYNAMICS OF THE CORRELATION
AND OF CORRELATION-BASED GRAPHS

In Fig. 5 we show the average correlation of the nondiagonal
elements of correlation matrices estimated for the 57 selected
indices by using the evaluation time period of 6 months (�T =
0.5) and the shortest evaluation time period of 3 months
(�T = 0.25), which is the shortest accessible for this set of
indices while requiring that the correlation matrix is invertible
(in fact, a 3 month window typically presents, on average,
63.7 daily records, a number that is only 1.12 times the number
of indices in the investigated set). Figure 5 clearly shows that
the time scale of the average correlation among indices is
certainly shorter than 6 trading months. By using an evaluation
time window of 6 months we already observe the smearing
out of the correlation dynamics. A detailed analysis of some
prominent financial crises clearly supports our conclusion. In
fact, in Fig. 5 the analysis of the 1997 Asian crisis (see arrow
labeled A) and of the 1998 Russian crisis (labeled B) is quite
resolved only when the 3 month evaluation time period is
used. Similarly, the 11 September 2001 shock is visible as a
sharp increase of the average correlation (labeled C) only when
the 3 month evaluation time period is used. The onset of the
subprime crisis (labeled D), the Lehman’s failure (labeled E),
and the peak of the onset of the recent global financial crisis
(labeled F) are much more resolved again when the evaluation
time period is 3 months.

We therefore conclude that a short time scale of less than
3 trading months is present in the time evolution of the
dynamics of correlation coefficient of market indices of stock
exchanges located all over the world. In the following sections

FIG. 5. (Color online) Time evolution of the average correlation
of the nondiagonal elements of correlation matrices estimated by
using an evaluation time period of 6 months [red (gray) line and
circles] or 3 months (black line and circles). The fast dynamics is
better described by the shortest evaluation time period. Labels A to
F refer to the following events: A, Asian crisis October 1997; B,
Russian crisis August 1998; C, 9/11 terrorist attack September 2001;
D, onset of the subprime crisis August 2007; E, Lehman’s failure
September 2008; F, onset of the global financial crisis October 2008.
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we will focus our attention on the changes of the correlation
matrix estimated by using a 3 month evaluation time period.

V. DYNAMICS OF THE PMFG

For each month of the investigated time period ranging
from March 1996 to July 2009 we estimate a correlation
matrix by using a 3 month interval comprising, on average,
63.7 daily records (for example, the first record is computed
by using the daily records of the period 1 January 1996 to
31 March 1996). From each correlation matrix we construct
the PMFG, and we investigate how links change from month
to month. Specifically, we consider the mutual information of
links computed between two successive PMFGs. The way we
compute the mutual information of links is explained in the
following section.

A. Mutual information

We consider two networks with the same vertices but, in
general, with different sets of links. Let N be the number of
vertices in both networks. Let us indicate the number of links in
the first network with n1 and the number of links in the second
network with n2. We associate a binary random variable x with
all pairs of vertices in the first network and a binary random
variable y with all pairs of vertices in the second network.
The variable x takes the value 1 if two vertices are linked in
the first network, and it is 0 otherwise. Similarly, y describes
links between vertices of the second network. The probability
p1(1) [p2(1)] is the probability that a randomly selected pair of
vertices is linked in the first (second) network. This definition
implies that

p1(1) = 2n1/(N2 − N ),

p1(0) = 1 − p1(1),

p2(1) = 2n2/(N2 − N ),

p2(0) = 1 − p2(1).

The joined probability p(x,y) of the two variables x and y is
given by

p(1,1) = 2n1,2/(N2 − N ),

p(1,0) = 2(n1 − n1,2)/(N2 − N ),

p(0,1) = 2(n2 − n1,2)/(N2 − N ),

p(0,0) = 1 − 2(n1 + n2 − n1,2)/(N2 − N ),

where n1,2 is the number of the same links that are present
in both networks. The mutual information of the random
variables x and y is given by

I (x,y) =
∑

x=0,1

∑

y=0,1

p(x,y) log
p(x,y)

p1(x)p2(y)
. (3)

The mutual information I (x,y) can be suitably normalized by
dividing it by the geometric mean of the entropies H (x) and
H (y) [22,23]:

i(x,y) = I (x,y)/
√

H (x)H (y), (4)

where H (x) is the entropy of variable x and H (y) is the entropy
of variable y:

H (x) = −p1(0) log p1(0) − p1(1) log p1(1),

H (y) = −p2(0) log p2(0) − p2(1) log p2(1).

It should be noted that the normalized mutual information
i(x,y) between identical networks is equal to 1.

B. Empirical analysis of PMFG graphs

In Fig. 6 we show the mutual information between the
PMFG at month t and the PMFG at the successive month
t + 1. In Fig. 6 we also highlight for reference the months
when events A to F described in Fig. 5 occur. From Fig. 6 we
notice that the structure of the PMFG is significantly altered
during these months of big events. In fact, the correlation-based
graphs carry relevant information about the correlation profile
of the indices. We now move to the analysis of (i) the
time evolution of the degree profile of the different market
indices in the PMFGs and (ii) the assessment of the statistical
differences observed between the set of links defined by
different correlation-based graphs.

The result of the first investigation is summarized in Fig. 7.
In Fig. 7 we show a grayscale representation of the time
evolution of the degree of each market index observed in
the PMFGs computed for all the 161 investigated months.
Different market indices are ordered accordingly to the rank
of the four clusters obtained by the INFOMAP partitioning of
the unconditional PMFG computed by using the correlation
matrix estimated using all daily records (see Figs. 3 and 4).
Specifically, cluster 1 (C1) is the cluster of American market
indices, cluster 2 (C2) is a cluster of primarily European indices
with market indices from continental and Mediterranean
countries, cluster 3 (C3) is a cluster of primarily European
indices with market indices from the United Kingdom, Ireland,
and continental and northern European countries, and cluster
4 (C4) is a cluster of Oceanian and Asian market indices.

FIG. 6. (Color online) Mutual information of links between a
PMFG estimated at month t and the PMFG estimated at the successive
month t + 1. Red (gray) vertical lines indicate events A to F
highlighted in Fig. 5.
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FIG. 7. Grayscale representation of the time evolution of the
degree of market indices of the PMFGs computed by using a 3 month
evaluation time period. Market indices are ordered from left to right
according to the clusters detected by the INFOMAP algorithm in the
unconditional PMFGs of Fig. 3. C1 to C4 clusters are the clusters
shown in Fig. 4.

By analyzing Fig. 7 we notice an overall persistence of the
level of degree specific to each index. In particular the indices
of highest rank within each cluster (rank is given within
each cluster by the INFOMAP algorithm and reflects the role
played by the element in the cluster detection), which are
located at the left side of each cluster area, are characterized
by higher degree. Examples are market indices of France
(label 8), Netherlands (label 9), Germany (label 11), and the
United Kingdom (label 21) in Europe and indices of Australia
(label 38) and Hong Kong (label 39) in the Pacific Asian
region.

The second of our investigations shows that an alteration of
the structure of the correlation-based graphs is present around
specific months. Specifically, a t test for difference in mean
is used to compare the correlation values associated with the
links of two basic correlation-based graphs, namely, the PMFG
discussed so far and the minimum spanning tree (MST) [1].
The p value provided by the test is reported for each month
of the investigated period in Fig. 8. The p value is larger
than 5% for all five considered crises, indicating that the
average correlations of PMFG links and MST links are sta-
tistically consistent. A different behavior is observed in those
periods of time not characterized by widely spread financial
crises. We interpret this second result as a manifestation of a
significant alteration of the overall structure of the correlation
matrix. The nature of these changes in the PMFG structure
seems not to be of a topological nature (in fact, the degree
profile of Fig. 7 is quite stable during time evolution) but,
rather, might involve specific links. We have not been able
so far to interpret in a simple and convincing way these
changes, mainly due to the high level of statistical uncertainty
associated with the need for a short evaluation time period.
In other words, we are able to see that useful information
is there, but it is dressed with a relevant level of noise
that unavoidably reflects the statistical uncertainty associated

FIG. 8. (Color online) The p value of Welch’s t test comparing
the average values of correlation coefficients of MST links and of
PMFG links over time. Red (gray) vertical lines indicate events A to
F of Fig. 5, whereas the horizontal line indicates a 0.01 threshold.

with the correlation matrix estimation. Specific alterations
associated with specific crises cannot be reliably detected
without a procedure assessing the statistical robustness of each
link.

VI. SPECTRAL ANALYSIS OF THE
CORRELATION MATRICES

We lastly complement our analysis of the correlation-based
graphs with a spectral analysis of the correlation matrices. In
our analysis we mainly focus on the time dynamics of the
largest eigenvalues and of their corresponding eigenvectors.
In Fig. 9 we show the time evolution of the first, second,
and third eigenvalues of the correlation matrices computed
with a 3 month evaluation time period. The time profile
of the first eigenvalue is highly correlated with the time
profile of the average correlation. The second eigenvalue
shows abrupt changes in the presence of, or immediately
after in the case of event C, special events (A–F), such as
the ones highlighted in Fig. 9. The third eigenvalue has a
more limited excursion, and it is unclear whether it carries
information. In fact, the average number of eigenvalues above
the random matrix theory threshold determined as suggested
in Refs. [24,25] is equal to 3.00, and its standard deviation
is 0.65. Therefore the first two eigenvalues are the only
large eigenvalues whose presence cannot be consistent with
a statistical uncertainty of the correlation matrix due to the
finiteness of the market index time series. Again, we conclude
that information not compatible with a random null hypothesis
is therefore present in these correlation matrices in spite of
the high degree of statistical uncertainty associated with their
estimation.

It should be noticed that the fact that the two largest
eigenvalues are not compatible with a random null hypothesis
does not necessarily imply that smaller eigenvalues occurring
in the bulk eigenvalues predicted by random matrix theory
do not carry economic information. Indeed, they might carry
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FIG. 9. (Color online) Time evolution of the first [black (top)
line], second [red (middle) line], and third [green (bottom) line]
eigenvalue of correlation matrices computed by using a 3 month
evaluation time period. The vertical lines indicates events A to F of
Fig. 5.

information [26], but the detection and extraction of this
information is out of the scope of the present work.

One way to investigate the nature of this information is
to analyze the profile of the eigenvectors associated with
the largest eigenvalues. In Fig. 10 we show a grayscale
representation of the components of the eigenvector associated
with the first eigenvalue for all 161 investigated months. The
direction of the eigenvector is arbitrary. In Fig. 10 we select
the direction associated with a positive component of the
US market index as the positive direction. The eigenvector
components are mainly positive, indicating the presence of a

FIG. 10. Grayscale representation of the components of the first
eigenvector as a function of time (vertical axis). The direction of the
eigenvector is selected by making positive the component of the US
market index. Market indices are ordered from left to right according
to the clusters detected by the INFOMAP algorithm in the unconditional
PMFGs of Fig. 3. C1 to C4 are the clusters shown in Fig. 4.

FIG. 11. Grayscale representation of the components of the
second eigenvector as a function of time (vertical axis). The direction
of the eigenvector is selected by making positive the component of
the US market index. Market indices are ordered from left to right
according to the clusters detected by the INFOMAP algorithm in the
unconditional PMFGs of Fig. 3. C1 to C4 are the clusters shown in
Fig. 4.

common factor driving a large number of market indices. This
driving factor has high positive components in the majority of
the European indices. American and Asian indices also show
medium to high positive components. Negligible components
or negative components are observed for some indices of
emergent countries located in Europe, the Middle East, Africa,
and Asia. In summary the components of the first eigenvector
reflect a common factor driving mature markets located in all
continents.

Similar to the case of the first eigenvector, in Fig. 11 we
show a grayscale representation of the components of the
second eigenvector. Also in this case, the positive direction
of the eigenvector is associated with a positive component
of the US index. The components of the second eigenvector
have a more complex structure than the ones of the first
eigenvector. In fact, we note that Asian and Oceanian market
indices have components characterized by a sign opposite to
the sign of American and some European indices. In other
words the factor associated with this second eigenvalue is
affecting indices of different regions of the world in a different
manner. Differences are more pronounced between Asian-
Oceanian and European-American indices, but also differences
between European and American indices are sometimes
observed. The behavior of the European indices is not as
homogeneous as it is in the case of the components of the first
eigenvector.

In summary, our analysis of the first two largest eigenvalues
and eigenvectors of the correlation matrices shows that relevant
information is present in them and in their dynamics. Two
global factors are present, the first affecting primarily mature
markets and the second discriminating quite well between
market indices of different world regions.
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VII. CONCLUSIONS

In this paper we investigate the daily correlation present
among market indices of stock exchanges located all over
the world. The study is performed by using the index time
series of 57 different stock exchanges located all over the
world and continuously monitored during the time period
January 1996 to July 2009. By investigating this set of
market indices we discover that the correlation among market
indices presents both a fast and a slow dynamics. The slow
dynamics is a gradual growth associated with the development
and consolidation of globalization. We show that the fast
dynamics is associated with events that originate in a specific
part of the world and rapidly affect the global system. We
provide evidence that the short term time scale of correlation
among market indices is quite fast and less than 3 trading
months (about 60 trading days). By computing correlation
matrices each trading month using a 3 month evaluation time
period we show that correlation matrices contain information
about the global system that can be investigated by using
average values of the correlation, correlation-based graphs,
and the spectral properties of the largest eigenvalues and
eigenvectors. The overall changes of the correlation-based
graphs are investigated by using a newly introduced mutual
information of link co-occurrence in networks with the same
number of elements. Changes affecting specific links during
prominent crises are of difficult interpretation due to the high
level of statistical uncertainty associated with the correlation
estimation and because successive rewiring of links might
be crisis specific and therefore specific to each single event.
Earlier results for the evolution of correlation-based networks,
specifically MSTs, obtained by investigating currency rates
reached similar conclusions [12,13]. In a future study we aim
to achieve a more robust statistical validation of the rewiring of
links occurring in the presence of short term, abrupt changes
of the correlation profile with a method based on the bootstrap
method [27].
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APPENDIX: SET OF MARKET INDICES

We investigate the daily synchronous dynamics of 57 stock
market indices located in 57 different countries. The countries
and stock indices investigated are as follows: Argentina (MER-
VAL), Australia (AS30), Austria (ATX), Belgium (BEL20),
Bermuda (BSX), Brazil (IBOV), Canada (SPTSX), Chile
(IPSA), China (SHASHR), Costa Rica (CRSMBCT), Czech
Republic (PX), Denmark (OMX Copenhagen 20), Egypt
(HERMES), Spain (IBEX 35), Finland (OMX Helsinki),
France (CAC 40), Germany (DAX), Greece (Athex Com-
posite), Hong Kong (Hang Seng), Hungary (BUX), In-
donesia (Jakarta Composite), India (SENSEX 30), Ireland
(ISEQ), Iceland(OMX Iceland All-Share), Israel (TA-100),
Italy (IT30), Jamaica (JMSMX), Japan (TPX), Kenya (KNS-
MIDX), Korea (KOSPI), Saudi Arabia (SASEIDX), Morocco
(CFG25), Malaysia (FTSE Bursa Malaysia), Mexico (IPC),
Mauritius (SEMDEX), The Netherlands (AEX), Norway
(OBX), New Zealand (NZSE10), Oman (MSM30), Pakistan
(KSE100), Peru (IGBVL), Philippines (PSEi), Poland (WIG),
Portugal (PSI General Index), South Africa (INDI25), Russia
(RTSI), Slovenia (SBI20), Sri Lanka (CSEALL), Switzerland
(CH30), Slovakia (SKSM), Sweden (OMX Stockholm),
Thailand (SET), Turkey (XU100), Taiwan (TAIEX), United
Kingdom (FTSE All-Share), United States (Dow Jones Indus-
trial Average), and Venezuela (IBVC).
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