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In this paper we investigate the dynamics of front propagation in the family of reactions (nA + mB
k→ C) with

initially segregated reactants in one dimension using hyperbolic reaction-diffusion equations with the mean-field
approximation for the reaction rate. This leads to different dynamics than those predicted by their parabolic
counterpart. Using perturbation techniques, we focus on the initial and intermediate temporal behavior of the
center and width of the front and derive the different time scaling exponents. While the solution of the parabolic
system yields a short time scaling as t1/2 for the front center, width, and global reaction rate, the hyperbolic
system exhibits linear scaling for those quantities. Moreover, those scaling laws are shown to be independent of
the stoichiometric coefficients n and m. The perturbation results are compared with the full numerical solutions
of the hyperbolic equations. The crossover time at which the hyperbolic regime crosses over to the parabolic
regime is also studied. Conditions for static and moving fronts are also derived and numerically validated.
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I. INTRODUCTION

During the past two decades, the reaction-diffusion system
with initially segregated reactants has been studied theoret-
ically [1–8], computationally [3,9–19], and experimentally
[14,20–25]. Analytical studies have focused almost exclu-
sively on one-dimensional systems that are characterized
by the presence of a propagating reaction front commonly
observed in various chemical [26,27] and biological [28]
systems.

In their seminal paper, Gálfi and Rácz [1] were the first to
study the dynamics of a diffusion-controlled system that un-
dergoes a chemical change of the form A + B → C and with
the reactants being initially separated in space such that each
occupies half the length of the total system. Their results were
based on the following scaling ansatz for the density functions
of the reactants: a(z,t) ∼ t−γ Ga(z), b(z,t) ∼ t−γ Gb(z), and
for the chemical rate function, R(z,t) ∼ t−βGR(z), where t

is time, z = (x − xf )/tα , and xf denotes the reaction center
located at the point of intersection of the reactant density
profiles. They considered the diffusion coefficients to be
equal (DA = DB) and argued that this does not change the
scaling of the solution functions but simply modifies some
unimportant features of the shaping functions of the reactants.
By neglecting microscopic fluctuations, they considered a
mean-field approximation for the rate R(x,t) = a(x,t)b(x,t),
which in turn leads to the following values for the exponents:
α = 1/2, β = 2/3, and γ = 1/3. They also showed that xf

scales as t1/2, the width of the front w as t1/6, and the reaction
at the center R(xf ) as t−2/3. Finally, they demonstrated that
for equal initial concentrations (a0 = b0) the front was static.

In a later publication, Jiang and Ebner [10] studied
numerically the same system but with unequal diffusion
coefficients using random walkers on a square lattice and
confirmed the analytical results derived by Gálfi and Rácz
in the long time regime. They also showed that the general
condition for a stationary front is a0

√
DA = b0

√
DB . Koo

and Kopelman [22] subsequently reported experimentally

similar results to those predicted by theory and simulation.
Chopard and Droz [11] investigated the validity of the mean-
field approximation using a cellular automata model. They
showed numerically that in two dimensions the mean-field
approximation is inaccurate, and found the width to scale
in time as w ∼ t0.186±0.005. They concluded that microscopic
fluctuations play a significant role when the reactants are
not mixed efficiently as in one-dimensional systems. Cornell
et al. [9,16] investigated the general reaction nA + mB → C

and proposed that the mean-field expression is valid for d > dc,
where dc is the critical dimension of the system. By imposing
two antiparallel currents at the infinite boundaries, they created
a steady state system with a static front and proceeded to
find, using dimensional analysis, the expression of the critical
dimension dc to be equal to 2(m + n − 1)−1. Furthermore, they
proposed a quasistatic approximation (QSA) which assumes
that at sufficiently long times the kinetics of the front is
controlled by two separate time scales: the diffusion time scale
tJ ∝ (d ln J/dt)−1, which is a characteristic of the diffusion
flux J in the neighborhood of xf , and the reaction time
scale tR ∝ w2/D, which is the time required for the front
to equilibrate. Since in the asymptotic domain the system is
effectively diffusion controlled, the approximation tR/tJ � 1
leads to the following QSA equations for a and b : ∇ ·
(DA∇a) = R and ∇ · (DB∇b) = R. From the QSA equations,
they were able to derive the following general form for
the mean-field scaling exponents for arbitrary stoichiometric
coefficients n,m � 1 : α = (n + m − 1)/2(n + m + 1), γ =
(n + m + 1)−1, and β = 2(n + m + 1)−1. They also showed
that the width scales in time as w ∼ t1/4, which was also
observed in systems with one static and another diffusing
reactant [29]. Subsequently, Krapivsky [30] used dimensional
analysis to confirm and extend the previous one-dimensional
results and found that for A + B → C in two dimensions the
width scales in time as w ∼ t1/6(ln t)1/3 and for the reaction
2A + B → C, w ∼ t1/4(ln t)1/4, indicating a failure of the
mean-field approximation. Similar failure of the mean-field
approach was also emphasized in the work of Mai et al. [31,32]
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on front propagation and velocity selection in autocatalytic
reactions of the form A + B → 2A. Using Monte Carlo
simulations, they were able to show that while for DA > 0,

only a uniquely stable propagating front was selected and when
DA = 0, they found that the front’s velocity and width both
scale as t1/2. Kessler and Levine [33] showed that fluctuations
in the particle number are essential to understand diffusive
instabilities.

Koza [6] thereafter showed that for unequal diffusion
coefficients the position of the front center is determined
by solving DAa(xf ,t) − DBb(xf ,t) = 0. Koza et al. [34]
generalized the scaling theory of Gálfi and Rácz by studying
the dynamics of the system for |x − xf | �

√
Dt , which

required two length scales, those of the width and diffusion.
Their multiscaling theory showed that the QSA is invalid at
length scales of the order of the diffusion length and found the
values of the anomalous exponents to be different from those
derived from a single length scaling theory.

While numerical and theoretical studies continued in the
long time limit for the system A + B → C, A + B(static)
→ C [7,35,36], and the family of reactions nA + mB → C

[37,38], Taitelbaum et al. [2] investigated the initial time
behavior of the system A + B → C using a perturbation
technique centered around the parameter ε, the ratio of
diffusion to reaction time scales. In this study, it was argued
that initially the system is dominated by diffusion, which meant
that ε ≈ 0. As time progressed, ε increased in magnitude and
the nonlinear term arising from the reaction rate becomes
significant. Moreover, they showed to zero order that the front
initially scales in time as xf ∼ t1/2, the width as w ∼ t1/2, and
the global reaction rate as 	 ∼ t1/2. A first order correction
was also derived, and it was shown that the correction
terms for the front and the global rate are proportional
to t3/2.

In another study [3], Taitelbaum and Koza examined ana-
lytically the dynamics of the front center. The two parameters
that initially played a role in the motion of the front were
found to be D and r, the square root of the ratios of diffusion
coefficients

√
DA/DB , and initial concentrations

√
b0/a0,

respectively. The front center was shown to exhibit a point
of extremum at which there was a change in the direction
of motion. The conditions for the physical existence of such
an extremum were r > 1 and D > 1, or equivalently r < 1
and D < 1, with D being close to 1. They related these
results to the fact that initially the system dynamics were
governed by diffusion, which drove the front. Only at a later
stage did the chemical reaction begin to play a significant
role, and asymptotically the parameter r−2D became the
only dominant term in controlling the front dynamics. On
the other hand, when r−2D = 1 the front center was static
in accordance with the results of Ebner and Jiang in the
asymptotic regime [10]. These results were also supported
by experiments [29].

In this study, we investigated the dynamics of front
propagation in the nA + mB → C system using hyperbolic
reaction-diffusion equations. All previous studies which are
based on the mean-field approximation of the reaction rate
used parabolic reaction-diffusion equations to describe the
transport and reaction of matter where the diffusion flux J

was assumed to be Fickian, that is, J ∼ ∂c/∂x leading to

the well-known unphysical problem of infinite propagation
in the limit t → 0. To remedy this problem, an extension to
Fick’s law was introduced, which in turn led to hyperbolic
evolution equations of the telegraphist type to limit the
velocity of propagation. We showed that beyond a certain
characteristic time tc of the system, the hyperbolic equations
take a perturbed form of their parabolic counterpart until
asymptotically both equations converged. The dynamics of
the front were controlled by the parameters D and r , in
addition to the square root of the ratio of particle masses,
M = √

mA/mB . We also showed that the conditions for a
static front were functions of the stoichiometric coefficients
and generalized those derived in [3]. Although in this work we
do not include in the description or in the model fluctuations,
the effects of which might be significant on the spatiotemporal
dynamics of the system [39] (also in this regard, see the
most in-depth review of Kotomin and Kuzovkov [40,41]), we
solely invoke the mean-field expression of the rate to extend
the results derived using the parabolic reaction-diffusion
equations.

II. THE MODEL

The chemical reaction under study is of the general form

nA + mB
k→ C, (1)

where k ∈ R represents the rate constant for the forward
reaction, and n and m ∈ N since the chemical reaction is
assumed to be elementary. The continuity equations for the
reactants can be written as

∂ta + ∇ · JA = −nR, (2)

∂tb + ∇ · JB = −mR, (3)

where R is the rate of the chemical reaction, a and b are the
density functions, and JA and JB are the diffusion fluxes for
the reactants of (A) and (B), respectively. The constitutive
equation for the flux can be derived from extended irreversible
thermodynamics [42] or from generalized hydrodynamics
[43–45]. We will assume that the following linear approx-
imation for the diffusion fluxes is adequate to describe the
system:

JA = −DA∇a − L−1
AA∂tJA, (4)

JB = −DB∇b − L−1
BB∂tJB. (5)

LAA and LBB are phenomenological coefficients, while DA

and DB are the diffusion coefficients for the reactants A and
B, respectively. We also assumed that cross diffusion is absent
in this system. When LAA and LBB become infinite, we recover
Fick’s first law of diffusion. By substituting the hyperbolic flux
expressions (4) and (5) into Eqs. (2) and (3), and assuming that
the diffusion coefficients are constants, we obtain the following
reaction-diffusion equations:

∂tφ = D�φ − L−1∂2
t tφ − kr − kL−1∂tr, (6)

where φ =(a,b)T , � = ∇ · ∇ is the Laplacian, D =
diag(DA,DB), and L = diag(LAA,LBB) are diagonal matri-
ces of the diffusion coefficients and the reciprocal of the
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hydrodynamic relaxation times of the reactants, respectively,
and r = diag(nan−1bm,manbm−1)φ. The phenomenological
coefficients LAA and LBB are related to the diffusion coef-
ficients by the relations

DA = kBT

LAAmA

, DB = kBT

LBBmB

, (7)

where kB is the Boltzmann constant, T is the equilibrium
Kelvin temperature, and mi is the particle mass of species i.
The rate of the reaction follows the mean-field approximation

R(x,t) = anbm. (8)

By introducing the dimensionless variables

ρa = a/a0, ρb = b/b0, (9)

ζ = x
√

a0b0, τ = ta0b0

√
DADB, (10)

Eq. (6) becomes

∂τρa = D�ζρa − MDκ∂2
ττ ρa − nrερn

a ρm
b

− nMDrκε∂τ

(
ρn

aρm
b

)
, (11)

∂τρb = D−1�ζρb − κ(MD)−1∂2
ττ ρb − mεr−1ρn

aρm
b

−mκε(MDr)−1∂τ

(
ρn

aρm
b

)
, (12)

where D , r, L, and M are ratios defined as

D =
√

DA

DB

, r =
√

b0

a0
, M =

√
mA

mB

, (13)

L =
√

LBB

LAA

=
√

DAmA

DBmB

= DM. (14)

κ and ε are relative time scales defined as

κ = a0b0

√
DADB/

√
LAALBB, (15)

ε = ka
n−3/2
0 b

m−3/2
0 /

√
DADB. (16)

It is evident from Eq. (15) that κ is the ratio of hydrodynamic
relaxation to diffusion time scales. Its magnitude represents
the deviation from the regime described by parabolic reaction-
diffusion equations, the so-called parabolic regime. Therefore,
when κ → 0, we regain the traditional parabolic reaction-
diffusion equations

∂τρa = D�ζρa − nrερn
a ρm

b , (17)

∂τρb = D−1�ζρb − mr−1ερn
a ρm

b . (18)

On the other hand, ε in Eq. (16) represents the diffusion to
reaction time scales. Following the approach of Taitelbaum
et al. [2], we perform a perturbation expansion in terms of ε

as follows:

ρa =
∑

i

εiρ(i)
a , ρb =

∑
i

εiρ
(i)
b . (19)

Using expansion (19) in Eqs. (11) and (12) and collecting
the terms of same power in ε, we obtain different orders
of approximations which will be studied in the coming
sections.

III. ZEROTH ORDER SOLUTION:
INITIAL TIME BEHAVIOR

The zeroth order solution is cast in the following form:

∂τρ
(0)
a = D�ζ ρ

(0)
a − MDκ∂2

ττ ρ
(0)
a , (20)

∂τρ
(0)
b = D−1�ζρ

(0)
b − κ(MD)−1∂2

ττ ρ
(0)
b , (21)

which obviously reflects the fact that the system is initially
dominated by diffusion as argued by Taitelbaum et al. [2]. The
general solution of Eqs. (20) and (21) for ρ0

a can be sought
using Riemann’s method [46] as such:

ρ(0)
a (ζ,τ ) = 1

2
exp

(
− τ

2MDκ

)[
H

(
− ζ − τ

√
1

Mκ

)

+H

(
− ζ + τ

√
1

Mκ

)]
+ 1

4D
√

Mκ

× exp

(
− τ

2MDκ

)∫ ζ+τ
√

1/Mκ

ζ−τ
√

1/Mκ

I1
(

1
2α

√
Z
)

√
Z

×H (−ξ )dξ + 1

4D
√

Mκ
exp

(
− τ

2MDκ

)

×
∫ ζ+τ

√
1/Mκ

ζ−τ
√

1/Mκ

I0

(
1

2
α
√

Z

)
H (−ξ )dξ, (22)

where I0 and I1 represent the modified Bessel functions of the
first kind of orders 0 and 1, respectively; Z = 1 − Mκ( ζ−ξ

τ
)2

and α = τ/MD κ. It is evident from Eq. (22) that the Dirich-
let boundary conditions are satisfied through the following
limits: limζ→−∞ ρ0

a (ζ,τ ) = 1 and limζ→∞ ρ0
a (ζ,τ ) = 0 with

τ/κ → ∞, and by taking the following asymptotic expansion
of I0 and I1,

I1

(
1

2
α
√

Z

)
� 1√

πα

1

Z1/4
exp

(
1

2
α
√

Z

)
, (23)

I0

(
1

2
α
√

Z

)
� 1√

πα

1

Z1/4
exp

(
1

2
α
√

Z

)
. (24)

In Appendix A 1 we show that asymptotically the hyperbolic
equation reduces to the parabolic form. Initially, however, there
is a deviation that must be taken into account.

A. The hyperbolic domain

First, we note that by taking the limit κ → 0, we obtain
from Eqs. (20) and (21), the parabolic diffusion equation with
the following well-known solutions:

ρ(0)
a (ζ,τ ) = 1

2

[
1 − erf

(
ζ

2
√

Dτ

)]
, (25)

ρ
(0)
b (ζ,τ ) = 1

2

[
1 + erf

(
ζ
√

D

2
√

τ

)]
. (26)
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Moreover, the zeroth order rate function is written as

R0(ζ,τ ) = [ρ0
a (ζ,τ )

]n [
ρ0

b (ζ,τ )
]m

. (27)

The front position ζf can be defined [2] as the point in
space ζ such that R(ζf ) = maxζ R(ζ,τ ). An alternative
definition [47] considers the front position to be equal to the
first moment of the reaction rate. Both definitions become
equivalent once the rate assumes a Gaussian profile. For
purely analytical reasons, we shall use the first definition
for the parabolic front. The reaction zone is defined as the
region of space such that |ζ − ζf | ∼ τ 1/2. The scaling of
ζf for the parabolic reaction-diffusion equations was found
in [2] to be ζ

p

f ∼ τ 1/2. It is evident that the velocity of the
parabolic front, vp ∼ τ−1/2, tends to infinity as τ approaches
0. This is a well-known problem associated with Fickian
diffusion. To correct it, we take the limit τ/κ → 0 and use the
following Taylor expansions of the Bessel integrals of I0 and I1

in Eq. (22):

I0
(

1
2α

√
Z
) = 1 + O(Z), (28)

I1
(

1
2α

√
Z
) = 1

4α
√

Z + O(Z3/2). (29)

The density profiles of the reactants in the reaction zone can
then be written as

ρ(0)
a (ζ,τ ) � 1

2
+ 1

4D
√

Mκ

(
1 + τ

4MDκ

)(
τ

√
1

Mκ
− ζ

)

× exp

(
− τ

2MDκ

)
, (30)

ρ
(0)
b (ζ,τ ) � 1

2
+ D

4

√
M

κ

(
1 + τMD

4κ

)(
τ

√
M

κ
+ ζ

)

× exp

(
−MDτ

2κ

)
. (31)

Since τ � κ, the density profiles inside the reaction zone
assume a linear behavior in space ζ and time τ as shown
below:

ρ(0)
a (ζ,τ ) � 1

2
+ τ

4DMκ
− 1

4D
√

Mκ
ζ, (32)

ρ
(0)
b (ζ,τ ) � 1

2
+ MD

4κ
τ + 1

4
D

√
M

κ
ζ. (33)

Contrary to the parabolic front, the hyperbolic front does
not admit a single maximum, but rather a global and one or
more local maxima. Thus, we find the second aforementioned
definition of the front center to be more convenient:

ζf =
∫∞
−∞ ζR(ζ,τ )dζ∫∞
−∞ R(ζ,τ )dζ

. (34)

By using Eqs. (32) and (33), we find that the front center scales
approximately as a linear function in time as computed from

FIG. 1. A plot of the natural logarithm of the hyperbolic reaction
center ζf as a function of the natural logarithm of time τ. The solid
straight line has a slope equal to 0.98, close to 1.0, the slope of the
dashed line. This confirms the linear hyperbolic scaling of the front.
The parameters used are κ = 5, ε = 0.1, r = 1, D = 2, M = 0.5,
and n = m = 1.

the full numerical solution of Eqs. (11) and (12) and shown in
Fig. 1. Based on this result, we can write the front center in
the form ζf = τf (τ )/g(τ ) where

f (τ ) =
∫ ζ ∗+ζf

ζ ∗−ζf

z

[
1

2
+
(

1

4DMκ
− 1

4D
√

Mκ
z

)
τ

]n

×
[

1

2
+
(

MD

4κ
+ 1

4
D

√
M

κ
z

)
τ

]m

dz, (35)

g(τ ) =
∫ ζ ∗+ζf

ζ ∗−ζf

[
1

2
+
(

1

4DMκ
− 1

4D
√

Mκ
z

)
τ

]n

×
[

1

2
+
(

MD

4κ
+ 1

4
D

√
M

κ
z

)
τ

]m

dz. (36)

z = ζ/τ and ζ ∗ is located in the neighborhood of ζf . The
functions f (τ ) and g(τ ) are dominated by terms of order 1 as
τ → 0. Hence, we can write

ζf � K1τ + O(τ 2). (37)

The velocity of the front is now bounded and can be written as

lim
τ→0

vf = K1(D,M), (38)

where K1 is a constant that vanishes for D = n/m and M =
m/n. On the other hand, the width of the front is defined as
the square root of the second moment of R0(ζ,τ ),

w2(τ ) =
∫∞
−∞(ζ − ζf )2R0(ζ,τ )dζ∫∞

−∞ R0(ζ,τ )dζ
. (39)
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FIG. 2. Plots of the natural logarithm of the width w as a function
of the natural logarithm of time τ for different values of n and m.
(a) n = m = 1; (b) n = 2,m = 1; and (c) n = 3,m = 2. The width
is initially approximately linear in time with the slope equal to 0.94
(a); 0.93 (b); and 0.92 (c). For log τ > 4 the slope becomes 0.56
(a); 0.55 (b); and 0.53 (c). The straight lines (d) are references with
slopes equal to 1 and 1/2. The values of the parameters are κ =
10, ε = 0.01, r = 1, D = 2, and M = 0.5.

The width is computed numerically and in this case leads to a
linear scaling in time as shown in Fig. 2.

B. Crossover to the parabolic domain

To keep track of the problem in the parabolic regime, we
assume that the hyperbolic equations for this system represent
a perturbation of the parabolic equations. At a particular time
characteristic of the system, which we denote the crossover
time tc ∼ √

DADBmAmB/kbT , the hyperbolic equation takes
a perturbed parabolic form. The numerical solution of Eq. (6)
from which we compute the front center ζf as a function of
time is shown in Fig. 3. This plot clearly exhibits that the front
center scales as τα with a crossover at τ = τc from α � 1
at early time to α � 1/2. Therefore, the hyperbolic regime
controls the dynamics of the system until the dimensionless
crossover time τc is reached, beyond which the system transits
to the parabolic regime. From Fig. 4, it is evident that the
greater the crossover time the longer the system stays in the
hyperbolic regime. In this case, the densities are calculated
by taking the limit τ/κ → ∞ and using the asymptotic
expansions (23) and (24) of Eq. (22):

ρ(0)
a (ζ,τ ) � 1

2

[
exp

(
− τ

2MDκ

)
+ erf

(
1

2

√
τ

MDκ

)

− erf

(
1

2

ζ√
τD

)]
, (40)

FIG. 3. A plot of the natural logarithm of ζf as a function of the
natural logarithm of time τ shows the crossover from the hyperbolic
(slope � 1) to the parabolic regime (slope � 1/2). Initially the slope
is 0.82, then for ln τ > 4 the slope is 0.57. Parameters are κ = 10,
ε = 0.01, D = 2, M = 0.5, n = m = 1, and r = 1.

ρ
(0)
b (ζ,τ ) � 1

2

[
exp

(
− MDτ

2κ

)
+ erf

(
1

2

√
MDτ

κ

)

+ erf

(
1

2
ζ

√
D

τ

)]
. (41)

By doing a Taylor series expansion we find an approximate
expression for the local rate

R0(ζ,τ ) � 1

2m+n

[
erf

(
1

2

√
τ

MDκ

)]n [
erf

(
1

2

√
MDτ

κ

)]m

× [A1(τ ) − ζA2(τ ) + ζ 2A3(τ )]

× [B1(τ ) + ζB2(τ ) + ζ 2B3(τ )], (42)

Eq. (42) is used in the next section to investigate the conditions
that should be satisfied to observe a static or moving front.
The coefficients Ai and Bi (i = 1,2,3) depend on time in
a complicated manner. Their particular forms are shown in
Appendix A 2.

C. The propagating front

The quadratic form of Eq. (42) is taken and then ζf is found
such that R0(ζf ) = maxζ R0(ζ,τ ).

ζf = 1

2

(
A1(τ )B2(τ ) − A2(τ )B1(τ )

A1(τ )B3(τ ) − A2(τ )B2(τ ) + A3(τ )B1(τ )

)
. (43)

For simplicity we take exp(−τ/2MDκ) � 0 with τ � κ and
introduce the ratio function θ such that θ (τ ) = erf( 1

2

√
τ

MDκ
)/
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FIG. 4. The crossover time τc is a linear function of κ with all
other parameters kept constant: ε = 0.01, D = 2, and M = 0.5.

erf( 1
2

√
MDτ

κ
). The expression for the front becomes

ζf = 1

2

√
τ

(
n√
πD

− √
D m√

π
θ

Dm(m−1)
2π

θ − nm
π

+ n(n−1)
2Dπ

1
θ

)
erf

(
1

2

√
MDτ

κ

)
.

(44)

For the particular case of equal reactant time scales, that is,
MD = 1, θ is unity which reduces Eq. (44) to the simpler form

ζf = ζ
p

f

[
1 − erfc

(
1

2

√
τ

κ

)]
, (45)

where ζ
p

f is the parabolic front center

ζ
p

f = −√
π

( √
Dm − n√

D

Dm(m − 1) − 2nm + n(n−1)
D

)
τ 1/2, (46)

Eq. (45) can be thought of as a perturbed form of Eq. (46).
We note that irrespective of the direction the front moves in,
the correction function ζ

p

f erfc( 1
2

√
τ
κ

) acts in the opposite sense
by reducing the magnitude of ζf . This is precisely what the
hyperbolic equation is expected to do, to slow down the speed
of the propagating front. Equation (46) can be reduced to the
result derived in [3] by setting n = m = 1.

D. The static front

The front is static when ζf vanishes. Therefore, from
Eq. (44) it is obvious that the following conditions must be
met:

D = n/m, (47)

M = m/n. (48)

Table I summarizes the conditions necessary to observe a static
or moving front. In Figs. 5 and 6 the conditions for a static front

FIG. 5. The parabolic system with a static front at τ = 50,

D = n/m, ε = 10−3, and r = 0.5 for different stoichiometries: (a)
A + B → C; (b) 2A + B → C; (c) 3A + B → C; and (d) 3A +
2B → C.

are investigated numerically and are confirmed for both the
parabolic Eqs. (17) and (18) and hyperbolic systems Eqs. (11)
and (12) with different chemical reactions.

E. Width scaling

We have shown numerically that the width scales as a
linear function of time when the hyperbolic regime dominates.
In the parabolic and short-time limit, the width of the front
scales in time as w ∼ τ 1/2 independent of the stoichiometric

FIG. 6. The hyperbolic system with a static front at τ = 50,

κ = 10, ε = 10−3, D = n/m,M = m/n,and r = 0.5 for different
stoichiometries: (a) A + B → C; (b) 2A + B → C; (c) 3A + B →
C; and (d) 3A + 2B → C.
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TABLE I. Conditions for static or moving fronts for different reaction stoichiometries.

Stoichiometry n = m n �= m

Condition D= 1,M = 1 D �= 1 or M �= 1 D= n/m and M = m/n D �= n/m or M �= m/n

Front Dynamics Static Moving Static Moving

coefficients, unlike its asymptotic behavior [9,34]. Let
q = ζ/

√
τ , then Eq. (27) can be recast in the form

R0(q,τ ) � 1

2n+m

[
erf

(
1

2

√
τ

MDκ

)]n [
erf

(
1

2

√
MDτ

κ

)]m

×�(q,τ ), (49)

where

�(q,τ ) =
[

1 −
erf
(

1
2

q√
D

)
erf
(

1
2

√
τ

MDκ

)
]n
⎡
⎣1 + erf

(
1
2q

√
D
)

erf
(

1
2

√
MDτ

κ

)
⎤
⎦

m

.

(50)

The expression for the width from Eq. (39) becomes

w2 (τ ) � τ × Iw (τ ) , (51)

where

Iw (τ ) =
∫∞
−∞ q2�(q,τ )dq∫∞

−∞ �(q,τ )dq
. (52)

Although in general we cannot evaluate the integral Iw, we
expect it to to converge to a constant value independent of
time. For n = m = 1, it can be solved exactly, and for the
general case we can evaluate the integral by taking a binomial
expansion of the integrand, which is based on the assumption
that the main contribution of the integral lies within the
neighborhood of ζf . (see Appendix A 3).

Iw � 2

(
2D4 + D2 + 2

3D(D2 + 1)

)
. (53)

Since the width approaches the scaling w ∼ τ 1/2 as κ/τ → 0,
initially the stoichiometry plays no role in the scaling of the
parabolic width. To confirm this result, we solve numerically
Eq. (6) for chemical reactions with various stoichiometries,
compute the width using Eq. (39), and compare it with the
approximate form in Eq. (51) for the width. This comparison
is shown in Fig. 7, where we confirm that the log-log plot of
w versus τ is linear with its slope close to 1/2.

F. Global rate scaling

Following Gálfi and Rácz [1], the global rate 	0(τ ) is
defined as

	0(τ ) =
∫ ∞

−∞
R0(ζ,τ ) dζ, (54)

which can be explicitly written as

	0(τ ) �
[
erf

(
1

2

√
τ

MDκ

)]n [
erf

(
1

2

√
MDτ

κ

)]m

τ 1/2IR,

(55)

where

IR (τ ) = 1

2n+m

∫ ∞

−∞
�(q,τ )dq. (56)

We expect the integral IR to approach a constant as τ/κ → ∞.
For n = m = 1, this integral can be evaluated exactly, where as
for the general case we use the previous approximation that the

FIG. 7. Plots for the natural logarithm of the width w as a function
of the natural logarithm of time τ with D = 1.5, ε = 10−3, and
r = 0.5 for different stoichiometries: (b) n = m = 1, slope = 0.493;
(c) n = 2, m = 1, slope = 0.495; and (d) n = 3, m = 2, slope =
0.498. The reference line (a) has a slope equal to 1/2.
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FIG. 8. Plots of the natural logarithm of the global rate R as a
function of the natural logarithm of time τ with ε = 10−3, r = 1, and
D = 2 for different stoichiometries: (b) n = m = 1, slope = 0.48;
(c) n = 2, m = 1, slope = 0.47; and (d) n = 3, m = 2, slope = 0.46.
The reference line (a) has a slope equal to 1/2.

main contribution to the integral lies within the neighborhood
of ζf .

IR(τ ) � nm

2n+m−2
√

π

[
erf

(
1

2

√
τ

MDκ

)

× erf

(
1

2

√
MDτ

κ

)]−1
√

D + 1

D
. (57)

The global rate approaches the parabolic limit scaling 	0(τ ) ∼
τ 1/2 as κ/τ → 0. The numerical solution for the global rate
is shown in Fig. 8 and confirms this result for different
stoichiometries.

IV. FIRST ORDER SOLUTION:
INTERMEDIATE TIME BEHAVIOR

In order to investigate the scaling laws near the region
where the chemical reaction begins to play a significant role,
we shall find the solution to the first order terms in ε in the
perturbation expansion of Eqs. (11) and (12). As we discussed
earlier, when we exit the hyperbolic regime after the crossover
time τc, the chemical reaction dominates over diffusion, and
we can neglect any hyperbolic corrections to the resulting
equations. This in turn gives rise to the following first order
equations:

∂τρ
(1)
a = D�ζρ

(1)
a − nrR0, (58)

∂τρ
(1)
b = D−1�ζ ρ

(1)
b − m

r
R0. (59)

The solution to the inhomogeneous diffusion equation can be
expressed using Green’s function as

ρ(1)
a (ζ,τ ) = − rn

2
√

πD

∫ τ

0

∫ ∞

−∞

1√
τ − k

[
1 − erf

(
ξ

2
√

Dk

)]n

×
[

1+ erf

(
ξ
√

D

2
√

k

)]m

exp

[
− (ξ − x)2

4D(τ − k)

]
dξ dk.

(60)

The solution for ρ
(1)
b is the same as for ρ(1)

a in Eq. (60) except
we replace D by D−1 and nr by m/r. The integrals in Eq. (60)
can be fitted to Gaussian-like functions to yield the following
first order solutions:

ρ(1)
a (ζ,τ ) = − rn

2
√

πD
τ exp

{
− 1

4

[
ζ√
Dτ

−
(

n√
D

− m
√

D

)]2

− 1

4D

}
, (61)

ρ
(1)
b (ζ,τ ) = −m

√
D

2r
√

π
τ exp

{
− 1

4

[
ζ√
τ

√
D

−
(

n√
D

− m
√

D

)]2

− D

4

}
. (62)

Equations (61) and (62) are checked numerically and found to
be well validated. For n = m = 1, the results published in [23]
are recovered. The local rate expression can be found by using
the following expansion:

R(ζ,τ ) = R0(ζ,τ ) + εR1(ζ,τ ) + O(ε2), (63)

where

R1 = nρ(1)
a

(
ρ(0)

a

)n−1(
ρ

(0)
b

)m + mρ
(1)
b

(
ρ(0)

a

)n(
ρ

(0)
b

)m−1
. (64)

We can determine the expression for the center of the front ζf

from the maximum of the quadratic form of the rate, and it is
found to be

ζf =
1√
πτ

(
m

√
D − n√

D

)+ εN1(D,r)
√

τ

1
πτ

(− n2

D
+ mD − m2D + n

D
+ 2mn

)+ εN2(D,r)
.

(65)

The front is now static when not only D = n/m but also, when

N1(D,r) = 0. It can be shown that at r =
√

exp( 1
4D

− D
4 ), N1

vanishes. Therefore, in total the three equations that must hold
true for the front to be static are

M = m/n, (66)

D = n/m, (67)

r =
√

exp

(
1

4D
− D

4

)
. (68)

We note that for the parabolic equation only the second and
third conditions must be satisfied. Furthermore, by taking the
case n = m, we immediately recover the conditions for a
static front derived in [3], namely, D = 1 and r = 1. The
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FIG. 9. A static parabolic front center at τ = 100 with D =
n/m, r =

√
exp( 1

4D
− D

4 ), and ε = 0.1 for different stoichiometries:
(a) A + B →; (b) 2A + B → C; (c) 3A + B → C; and (d) 3A +
2B → C.

numerical simulations shown in Fig. 9 confirm the validity of
the derived conditions in Eqs. (66)–(68). For D = n/m and

r �=
√

exp( 1
4D

− D
4 ), the front center equation becomes

ζf = εN1(r)τ 3/2

1
π

(n + m) + ετN2(r)
. (69)

For ε � 1 the front scales as ζf ∼ τ 3/2. The numerical
solution confirms this scaling result as shown in Fig. 10, where
the slopes of the log-log plot are close to 3/2 for various

FIG. 10. Plots of the natural logarithm of the front center ζf as
a function of the natural logarithm of time τ with D = n/m, r =
0.5,and ε = 10−2 for different stoichiometries: (a) n = m = 1;
(b) n = 2, m = 1; and (c) n = 3, m = 2. The slope is 1.44 (a);
1.54 (b); and 1.56 (c).

FIG. 11. A plot of w/τ 1/2 as a function of τ for n = m = 1,

D = 2, r = 0.1, and ε = 10−2. The slope of line (a) is equal to 0.98,
close to 1.0 (b). This suggests that the width crosses over from τ 1/2

to τ 3/2 at intermediate times. For reasons of numerical stability, the
width is initially computed symbolically and exhibits fluctuations
around an average value of 1.4.

stoichiometries. In order to see how the width scales in time,
we shall find its temporal evolution up to first order correction
with ε being quite small and ζf ∼ √

τ . The expression for the
width becomes:

w2(τ ) � τKw,1 + εKw,2τ
2, (70)

where Kw,1 and Kw,2 are constants. A Taylor series expansion
of the square root of Eq. (70) leads to the approximation for
the width shown in the following,

w(τ ) � w0(τ ){1 + Kwετ } + O(ε2), (71)

where we previously determined that w0(τ ) ∼ τ 1/2 and Kw =
Kw,2/2Kw,1. The second scaling term is thus proportional to
τ 3/2. In order to confirm this scaling, we plot w/τ 1/2 as a
function of τ and obtain a straight line with a negative slope
as shown in Fig. 11. In the asymptotic limit the width crosses
over with a scaling in time of the form τ (1/2)−σ with σ =
1/(n + m + 1) [9,34].

V. NUMERICAL METHOD

The method of lines is employed to solve Eq. (6) on a
one-dimensional grid. The cell-centered finite volume scheme
is used for the spatial discretization. The finite volume
method is widely employed for conservative partial differential
equations. We assume that the system admits a unique solution
in the region of space � bounded by ∂� at any time τ . At the
boundaries, the Dirichlet boundary conditions are imposed:

ρa(∞,τ ) = 0, ρb(∞,τ ) = 1, (72)

ρa(−∞,τ ) = 1, ρb(−∞,τ ) = 0. (73)
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The initial conditions are specified through the Heaviside unit
step function:

ρa(ζ,0) = H (−ζ ) , ∂tρa(ζ,0) = 0, (74)

ρb(ζ,0) = H (ζ ) , ∂tρb(ζ,0) = 0. (75)

We begin by integrating the equations over the whole domain∫
�

∂τρa dV = D

∫
�

∇ · ∇ζ ρa dV − cκ

∫
�

∂2
ττ ρa dV

− nrε

∫
�

ρn
a ρm

b dV − ncrεκ

∫
�

∂τ

(
ρn

a ρm
b

)
dV,

(76)∫
�

∂τρb dV = 1

D

∫
�

∇ · ∇ζ ρb dV − 1

c
κ

∫
�

∂2
ττ ρb dV

− m

r
ε

∫
�

ρn
aρm

b dV − m

cr
εκ

∫
�

∂τ

(
ρn

aρm
b

)
dV.

(77)

The parameter c is equal to MD. The domain � is partitioned
into a finite number of control volumes, each of which is a
rectangle of height one. Across each we apply a first order
Gauss quadrature (at the centroid of each control volume)
to numerically integrate the equations. Using the divergence
theorem we get

∂τρa = D

V

∮
∂�

∇ζ ρa · n dL − cκ∂2
ττ ρa − nrερn

a ρm
b

− ncrεκ∂τ

(
ρn

aρm
b

)
, (78)

∂τρb = 1

DV

∮
∂�

∇ζ ρb · n dL − 1

c
κ∂2

ττ ρb − m

r
ερn

aρm
b

− m

cr
εκ∂τ

(
ρn

aρm
b

)
. (79)

Since diffusion is isotropic, we use the forward difference
formula to compute the flux across each face. Define the
Laplace operator L ∈ RNc,Nc and a,b ∈ RNc , where Nc is the
number of control volumes. The system of ordinary differential
equations (ODEs) to integrate is written as

dτ a = DLa − cκd2
ττ a − nrεDn−1

a Dm
b a

− ncrεκdτ

(
Dn−1

a Dm
b a
)
, (80)

dτ b = 1

D
Lb − 1

c
κd2

ττ b − m

r
εDn

aDm−1
b b

− m

cr
εκdτ

(
Dn

aDm−1
b b

)
, (81)

where dτ is the ordinary time derivative d/dτ , Da = diag(a),
and Db = diag(b). To integrate these equations we use the
technique of reduction of order to transform the system of
second order ODE’s to first order, i.e., we solve for u = dτ a
and v = dτ b. We use variable order backward differentiation
formulas (BDFs) to integrate the equations with an adaptive
scheme where the time step taken is computed in such a
way that the absolute error is less than 10−3. Such a scheme
is highly suitable for stiff differential equations. In order
to make the computations faster and avoid solving for a
2Nc × 2Nc reduced Jacobian, we split the four equations into
two systems (for each we solve once for an Nc × Nc matrix)
and linearize them by invoking a fixed-point iteration scheme,

the convergence of which is usually linear and not quadratic
as in Newton’s method. However, since the system does not
have very stiff source terms, convergence is very rapid (two to
three iterations per time step). Thus, the order of convergence
is relatively less important than the size of the operator. For
the A component, the linearized system is

(
D11 D12

λ0I −I

)
j−1

(
ak

uk

)
j

=

⎛
⎜⎜⎜⎜⎝

cκ

N∑
i=1

λiuk−i

N∑
i=1

λiak−i

⎞
⎟⎟⎟⎟⎠ , (82)

where

D11 = nrε
(
Dk

a

)n−1(
Dk

b

)m
+ nmcrεκ

(
Dk

a

)n−1(
Dk

b

)m−1
Dk

v − DL, (83)

D12 = (1 + cκλ0)I + n2crεκ
(
Dk

a

)n−1(
Dk

b

)m
, (84)

where {λi, i � N} is the set of BDF coefficients with N being
the order of the BDF used, I is the identity matrix, Dv =
diag(v), j signifies the current iteration number, and k is the
current time step taken. Equation (82) can be rearranged to
yield the recursive system of equations

[(D11)j−1 + λ0(D12)j−1]ak
j

= cκ

N∑
i=1

λiuk−i + (D12)j−1

N∑
i=1

λiak−i , (85)

uk
j = λ0ak

j −
N∑

i=1

λiak−i . (86)

Equation (85) can be solved efficiently with the Thomas algo-
rithm for tridiagonal matrices. A similar set of equations can
be easily constructed for the B component. The two systems
are solved simultaneously until convergence with a tolerance
of 10−6.

VI. COMPARISON TO MOLECULAR DYNAMICS
AND EXPERIMENTAL OUTLOOK

The newly derived scaling laws were compared to those
derived from recent simulation studies on non-Fickian diffu-
sion which are usually centered in the area of mass transport
in polymers. Yaneva et al. [48] used dissipative particle
molecular dynamics to study a model of a binary mixture of
two species with different diffusion coefficients and obtained
a non-Fickian behavior in the case of strongly asymmetric
systems (DA � DB). This system significantly resembled the
physics we studied in this paper. The noticeable similarities
between the simulations and our results were that a linear
dependence of the position of the front (xf ∼ t) was observed
indicating anomalous diffusion which crossed over to the
Fickian regime (xf ∼ t1/2) after some time. Furthermore,
according to the simulation results, this deviation from Fickian
diffusion was independent from molecular details and requires
only two conditions to be reached: a sizable difference in
mobilities of the two species and a so-called plasticizing
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effect whereby the slow species acquire a higher mobility
when surrounded by the fast species, for example, due to a
chemical reaction or a dissolution process of the underlying
matrix. It was also argued that recent molecular dynamics
and grand canonical Monte Carlo simulations by Tsige and
Grest [49] failed to predict the anomalous diffusion, possibly
due to an underrepresentation of the plasticizing effect in their
simulations.

Those simulation results gave new insight to the experimen-
tal verification of the new scaling law during the short-time
regime. The ongoing experiments are based on the diffusion
of sulfide ions into a gelatin matrix containing cadmium
ions and a capping agent to slow down the growth of the
reaction product. The cadmium ions are confined to the
matrix due to the binding of gelatin to those ions, making
a considerable difference between the mobilities of the invad-
ing sulfide ions and the residing cadmium ions. Moreover,
the plasticizing effect is strongly present in this system
because of the liberation of the cadmium ions from gelatin
in the vicinity of the reaction zone. When the concentration
of those ions in small, the reaction between them yields a
propagating front of fluorescent cadmium sulfide quantum
dots. By using fluorescence techniques, we were able to
follow the front and analyze its concentration changes during
evolution [50]. We are now in the process of exploring the
parameter space and seek anomalous diffusion of the reaction
front.

VII. CONCLUSION

In this paper, we present a model for front propagation
of initially separated components using hyperbolic reaction-
diffusion equations. Contrary to their parabolic counterpart,
the hyperbolic equations yield a finite speed of propagation,
rendering them more suitable to study this kind of problem.
We show that asymptotically, for smooth initial data, the
hyperbolic equations yield the parabolic equations, hence
the asymptotic scaling laws are the same. However, using
perturbation techniques, we show that scaling laws for the
reaction center, the width, and reaction rate for the short-time
regime are quite different and appear to be independent of
the stoichiometric coefficients of the reactants. While the
short-time behavior scales as τ 1/2 for the reaction center,
width, and global reaction rate in the case of the parabolic
system, it scales linearly in time for the hyperbolic counterpart.
Criteria for the moving and static front are also derived and
compared with those derived for the parabolic case. The
posthyperbolic regime was also investigated using first order
perturbation solution. The perturbation results are compared
with full numerical integration of the hyperbolic equations.
There are also some interesting peculiarities found in the
numerical solutions of the hyperbolic equations at early times,
not found for the solutions of the parabolic equations, such
as wave splitting and recombination, that are worth further
investigation. In addition, other chemical kinetic models,
such as those involving autocatalysis such as A + B →
2A, are also currently under consideration. The aim is to
investigate front velocity selection in such systems using
the hyperbolic version of the reaction-diffusion equations
and compare them to the interesting Monte Carlo results

by Mai et al. [31] that delineated resolutely the role of
fluctuations in velocity selection. We are also making use of the
semianalytic results of this paper to understand revert spacing
in some Liesegang systems. We refer the reader to future
papers.
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APPENDIX

1. Asymptotic behavior of the hyperbolic diffusion equation

Consider the map f : Rn+1 → R, where the image f is
defined through the hyperbolic differential equation

∂τf = �f + κ∂ττ f, (A1)

where � is the Laplacian, f (u,τ ) ∈ C2, u ∈ Rn, κ ∈ R∗, and
n is the spatial dimension number. Define the transformation
(u,τ ) → (η,σ ) such that

η = τ−α

n∑
i=1

ui, (A2)

σ = ln τβ, (A3)

where α ∈ R∗ and β � 1. Direct application of the chain rule
leads to the following equations:

∂τ = βe−σ/β∂σ − αηe−σ/β∂η, (A4)

∂2
ττ = e−2σ/β

[
β2∂2

σσ − β∂σ − 2αβη∂2
ση

+α(α + 1)η∂η + α2η2∂2
ηη

]
, (A5)

� = ne−(2α/β)σ ∂2
ηη. (A6)

In the newly defined coordinate system Eq. (A1) becomes

β∂σ f − αη∂ηf = ne(1−2α)σ/β∂2
ηηf + κe−σ/β

[
β2∂2

σσ − β∂σ

−2αβη∂2
ση + α (α + 1) η∂η + α2η2∂2

ηηf
]
.

(A7)

Without loss of generality let α = 1
2 , then

β∂σ f − 1
2η∂ηf = n∂2

ηηf + κe−σ/β
[
β2∂2

σσ − β∂σ − βη∂2
ση

+ 3
4η∂η + 1

4η2∂2
ηηf
]
. (A8)

By performing a similarity transformation by taking η = G(σ )
and introducing the inverse relation σ = �(η), we can show
that

nd2
ηηf + 1

2ηdηf

= β�−1
η dηf − κe−�/β

[
β2�−1

η dη�
−1
η dη − β�−1

η dη

−βη�−1
η d2

ηη + 3
4ηdη + 1

4η2d2
ηη

]
f. (A9)
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We have used the notation �η = dη�. It is easy to prove
that �(η) = β

α
ln(
∑n

i=1ui/η), then as τ → ∞, �(η) → ∞
and �η(η) → −∞. Taking this into account for Eq. (A9),
it becomes apparent that

lim
τ→∞ nd2

ηηf + (2)−1ηdηf = 0. (A10)

For n = 1, we recover the following ordinary differential form
of the parabolic diffusion equation in one dimension

lim
τ→∞ d2

ηηf + 1
2ηdηf = 0. (A11)

The parabolic equation is readily obtained once a reverse
similarity transformation is done on Eqs. (A2) and (A3) to
give

dη = −2
τ

η
∂τ ,

(A12)
d2

ηη = τ∂2
u1u1

,

which in turn leads to the partial differential equation

τ
(
∂2
u1u1

− ∂τ

)
f = 0. (A13)

∀ τ �= 0, Eq. (A13) is Fick’s second law of diffusion.

2. The quadratic form of the rate function

It can be shown that the coefficients in Eq. (42) can be
written as

A1(τ ) =
(

1 + r1

r2

)n

, (A14)

A2(τ ) = 1√
τ

n√
πD

1

r2

(
1 + r1

r2

)n−1

, (A15)

A3(τ ) = n(n − 1)

2Dπ

1

τr2
2

(
1 + r1

r2

)n−1

, (A16)

B1(τ ) =
(

1 + r3

r4

)m

, (A17)

B2(τ ) =
√

D

τ

m√
πr4

(
r3

r4
+ 1

)m−1

, (A18)

B3(τ ) = m(m − 1)D

2π

1

τr2
4

(
r3

r4
+ 1

)m−1

, (A19)

where

r1 = exp

(
− τ

2MDκ

)
, r2 = erf

(
1

2

√
τ

MDκ

)
, (A20)

r3 = exp

(
− MDτ

2κ

)
, r4 = erf

(
1

2

√
MDτ

κ

)
. (A21)

3. Some integrals

For all α,β ∈ R+, define the map I : R → R such that
I [f (z)] = limL→∞

∫ +L

−L
dz f (z). Integration by parts for the

following improper integrals yields the closed forms

I {[1 − k1 erf(αz)][1 + k2 erf(βz)]}
= 2√

π
k1k2

(
β

α
+ α

β

)
1√

β2 + α2
, (A22)

I {z[1 − k1 erf(αz)][1 + k2 erf(βz)]} = 1

2

(
k1

α2
− k2

β2

)
,

(A23)

I {z2[1 − k1 erf(αz)][1 + k2 erf(βz)]}
= 1

3
√

π

k1k2

(α2 + β2)3/2

[
β

α3
(2β2 + 3α2)+ α

β3
(2α2 + 3β2)

]
,

(A24)

such that

lim
L→∞

k1 = 1, lim
L→−∞

k2 = 1,

where we have used

I
[
ze−z2β2

erf(zα)
] = α

β2

1√
β2 + α2

, (A25)

I
[
z3e−z2β2

erf(zα)
] = α

β4

2α2 + 3β2

2(α2 + β2)3/2
. (A26)
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