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Modeling the dynamical interaction between epidemics on overlay networks
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Epidemics seldom occur as isolated phenomena. Typically, two or more viral agents spread within the same
host population and may interact dynamically with each other. We present a general model where two viral
agents interact via an immunity mechanism as they propagate simultaneously on two networks connecting
the same set of nodes. By exploiting a correspondence between the propagation dynamics and a dynamical
process performing progressive network generation, we develop an analytical approach that accurately captures
the dynamical interaction between epidemics on overlay networks. The formalism allows for overlay networks
with arbitrary joint degree distribution and overlap. To illustrate the versatility of our approach, we consider a
hypothetical delayed intervention scenario in which an immunizing agent is disseminated in a host population
to hinder the propagation of an undesirable agent (e.g., the spread of preventive information in the context of an
emerging infectious disease).
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I. INTRODUCTION

Epidemic dynamics has been largely studied with the
help of mathematical models in which a single viral agent
propagates in a given host population. Although the paradigm
of isolated epidemics may be well suited in some cases,
there are numerous other situations in which more than one
process occurs and interacts in the same population. Different
biological pathogens may interact through ecological [1,2]
and immunological [2,3] mechanisms, or multiple strains of
the same disease may compete for hosts according to some
cross-immunity profile [4–6]. The spread of fear or awareness
in the context of an emerging disease [7–10] can also be
considered as a case of interacting viral agents, i.e., infor-
mation and disease. In computer networks, the dissemination
of countermeasures using a contagious vaccination scheme has
been suggested to counter harmful computer viruses [11–13].

When propagating in some host population, two viral agents
may follow different, or share similar, routes of transmission.
Taking into account how individuals are in contact with each
other then becomes of great importance when modeling their
interaction. By explicitly considering those heterogeneous
contact patterns between individuals, network-based models
are an ideal framework for the study of interacting epidemics
in structured populations [14,15].

The interaction between two viral agents has been studied
from the perspective of complex networks in a limited number
of contributions [9–13,16–20]. An important step toward a
general theory of interacting processes on complex networks
was recently accomplished by Funk and Jansen [20]. By gen-
eralizing the previous work of Newman [16], they analyzed the
interaction between two viral agents propagating successively
on overlay networks, i.e., two networks connecting the same
set of nodes. Albeit very elegant, their analytical approach,
based on bond percolation, is static and does not apply to the
case of dynamically interacting viral agents.

The purpose of this contribution is to develop an analytical
approach that is able to capture the dynamical interaction
between viral agents spreading simultaneously on overlay
networks. To this end, we make use of a correspondence
between propagation on networks and a dynamical process

performing progressive network generation [21] (see also
Appendix C of [22]). The formalism obtained is quite general,
and allows for overlay networks with arbitrary joint degree
distribution and overlap. The language of epidemiology is used
throughout this work for its clarity, yet our approach may be
applied to processes of other natures that spread on networks.

This paper is organized as follows. In Sec. II, we introduce
a model in which two viral agents propagate and interact
dynamically on overlay networks. The analytical approach
is then developed in two steps in Sec. III. Some properties of
the model are investigated in Sec. IV, where we also validate
the accuracy of the analytical predictions by comparison with
Monte Carlo simulations of the dynamics. Our conclusions are
summarized in Sec. V. An online supplementary document
[23] containing the full set of equations of our analytical
approach completes this contribution.

II. INTERACTING EPIDEMICS
ON OVERLAY NETWORKS

In this section, we introduce a general epidemic model
where two dynamically interacting viral agents spread on
overlay networks.

A. Overlay networks

A system of two overlay networks is defined by two
networks �1 = (V,E1) and �2 = (V,E2), which connect the
same set of nodes V through their own set of links E1 and E2

[see Fig. 1(a)] [20]. Nodes represent individuals of a given host
population, while links correspond to potential transmission
routes between pairs of individuals. As usually done in the
network literature, we denote the size of the host population
by N ≡ |V |. Two nodes are said to be neighbors on �g , where
g ∈ {1,2}, if they share a link on this network, and the number
of neighbors of a node on �g defines its degree kg on this
network. A node can be neither linked to itself (no self-loops)
nor share more than one link with another node on the same
network (no repeated links).

The system is characterized by its joint degree distribution
P (k1,k2) ≡ P (k), which corresponds to the probability that a
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(a) (b)

FIG. 1. (a) Schematical illustration of a system of two overlay
networks �1 = (V,E1) and �2 = (V,E2). (b) This system can be
decomposed into three nonoverlapping networks: γ1 = (V,E1 \ E2),
γ2 = (V,E2 \ E1), and γb = (V,E1 ∩ E2).

node selected at random in the host population has a degree k1

on �1 and k2 on �2. The marginal degree distribution Pg(kg)
of each network can be obtained by summing over P (k), i.e.,

P1(k1) =
∑
k2

P (k1,k2), P2(k2) =
∑
k1

P (k1,k2) . (1)

Even if E1 �= E2 in the general case, a given number of links
may be common to both networks. Because P (k) contains no
information about the potential overlap in the system, we will
resort to a useful decomposition into three nonoverlapping
networks [20]. Let γ1 = (V,E1 \ E2) be the network char-
acterized by all the links unique to �1, γ2 = (V,E2 \ E1)
be the network characterized by all the links unique to �2,
and γb = (V,E1 ∩ E2) be the network containing all links
common to �1 and �2 [see Fig. 1(b)]. Because it contains
information about the distribution of overlapping links, the
joint degree distribution resulting from the three-networks
decomposition, denoted by ρ(κ1,κ2,κb) ≡ ρ(κ), offers a more
accurate description of the system. The distribution P (k) can
be obtained from ρ(κ) by summing over κb:

P (k) =
∑
κb

ρ(k1 − κb,k2 − κb,κb) . (2)

B. Interacting epidemics

In the single viral agent susceptible-infectious-recovered
(SIR) dynamics on a network, nodes are divided into three
states: susceptible (S), infectious (I ), or recovered (R).
Infectious contacts occur between infectious nodes and their
neighbors at the rate β. If a susceptible node is involved in
an infectious contact, transmission ensues and it becomes
infectious. Infectious nodes recover at the rate α and become
immune to further infection.

Here, we extend the SIR dynamics to two interacting viral
agents. We assume that “agent 1” propagates via the links
of �1, while “agent 2” spreads on �2. If both viral agents
are transmitted through the same type of interactions between
individuals, then �1 = �2; otherwise, �1 �= �2.

At any time, the state of a node is given by the combination
of its particular state regarding each viral agent. For agent g,
its g-state can be either g-susceptible (Sg), g-infectious (Ig),
or g-recovered (Rg). The rate of infectious contacts on �g

is βg , while g-infectious nodes recover at the rate αg and
become immune to further infection by agent g. In order
to study the dynamical interaction between epidemics, we
consider a case of leaky partial immunity [18]. When an

infectious contact occurs between a g-infectious node and a
g-susceptible node, the state regarding the other agent ĝ of
which is Yĝ ∈ {Sĝ,Iĝ,Rĝ}, transmission of agent g successfully
follows with probability σY

g and the g-susceptible node
becomes g-infectious. Otherwise, it remains g-susceptible
with complementary probability σY

g ≡ 1 − σY
g . We assume

that an infectious contact on �g may occur only once between
two given nodes.

The motivation for this interaction rule is that, while
remaining general, it renders the model analytically tractable
using a reasonable level of complexity. Other interaction
mechanisms could have been considered, such as perfect
partial immunity [18] or leaky partial immunity allowing for
more than one infectious contact between two nodes. More on
this topic is covered in Sec. III C.

C. Monte Carlo simulations

Monte Carlo simulations of epidemic propagation on
overlay networks are performed in two steps: network gen-
eration and viral agent propagation. Our overlay networks are
generated using two different algorithms, both adapted from
the well-known configuration model [24,25].

The first algorithm, based on the joint degree distribution
P (k), generates two overlay networks with random overlap.
(i) A random degree sequence {k1,k2, . . . ,kN } of length N

subjected to P (k) is generated. Since a link consists of two
stubs, we ensure that

∑
i ki,g is even for all g ∈ {1,2}, otherwise

an element of the degree sequence is selected at random and
generated again. (ii) For each ki , a node with ki,1 stubs on �1

and ki,2 stubs on �2 is created. (iii) Independently for each
network, pairs of unconnected stubs are randomly chosen and
connected together until all unconnected stubs are exhausted.
(iv) The presence of self-loops and repeated links is tested
on each network. All faulty links on a network are removed
by randomly choosing a pair of connected stubs on the same
network and rewiring them to the former stubs.

To generate networks with arbitrary overlap, we use a
second algorithm based on the joint degree distribution ρ(κ).
The procedure is essentially the same as described above,
except that three networks (γ1, γ2, and γb) are generated from
ρ(κ) with the additional constraint that one link can not exist
on more than one network. The networks �1 and �2 are then
constructed from γ1, γ2, and γb as illustrated in Fig. 1.

The viral agent propagation phase is carried out using
discrete time steps of length 	t . At each time step and for
viral agent g ∈ {1,2}, every link on �g between a g-infectious
and a g-susceptible node is tested for infectious contacts with
probability βg	t , on the condition that it did not happen
previously. If the test returns positive, the g-susceptible
node becomes g-infectious with transmission probability σY

g ,
where Yĝ corresponds to its state regarding the other agent
ĝ. Recovery events are tested with probability αg	t . All
simulations are initialized by infecting at random a fraction
ε1 of the nodes in the system with agent 1 at time t = 0. To
allow for a delay between epidemics, the dynamics of agent 2
are initialized at time t = τ � 0 with the random infection of
a fraction ε2 of the nodes in the system.

The simulations presented in this paper are carried out on
networks of size N = 25 000 (unless explicitly noted) with
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	t = 0.001. Both recovery rates are set to unity α1 = α2 = 1.
Moreover, we will use ε1 = ε2 = 0.001 as initial conditions.
All Monte Carlo results shown in the figures are computed
over a total of 1000 simulations unless explicitly noted.

III. MEAN-FIELD APPROACH

We now develop a network-based compartmental formal-
ism that describes the dynamics of the model introduced in
the previous section. Our approach is based on the concept of
on the fly network generation recently introduced in [21]. The
case of interacting epidemics on overlay networks with random
overlap is treated in the first place, and the approach is later
generalized to allow for arbitrary overlap. Finally, we provide
some insights on how to handle similar types of interaction
dynamics.

A. Networks with random overlap

In order to develop the analytical approach that follows,
some preliminary considerations are needed. In Sec. II C,
we explained the two-step procedure used in Monte Carlo
simulations of epidemics on configuration model networks.
However, as we recently pointed out in a recent contribution
[21], an alternative procedure, consisting of one single step
where the networks are generated on the fly (i.e., during
propagation, when required), can be considered.

Recall that in the procedure of Sec. II C, we test for
infectious contact every link on �g between a g-susceptible
and a g-infectious node, on the condition that an infectious
contact never happened between them. Suppose instead that
we used to test for infectious contact every stub on �g that
emanates from a g-infectious node and that has never been the
host of an infectious contact, without any further distinction.
Then, only when this test returned positive would we have
inquired about the state of the corresponding neighbor. If
g-susceptible, then we would have tested for transmission.
Unlike in Sec. II C, this new procedure does not require any
explicit prior knowledge of the structure of the networks in
the system: neighbors can be assigned on the fly by matching
stubs pairwise at the moment infectious contacts occur. A
schematization of on the fly network generation for a single
agent SIR epidemic is illustrated in Fig. 2.

In the case of overlay networks with random overlap, i.e.,
when stubs are matched independently at random on �1 and �2,
an almost exact correspondence may be established between
the algorithm exposed in Sec. II C and an equivalent stochastic
Markov process performing on the fly network generation [21].
The only difference arises from self-loops and repeated links,
which are allowed in the stochastic process. However, since
their probability decreases as N−1, we expect the results to
agree in the limit of large networks.

Instead of tracking the full stochastic process, we rather
focus on mean values in the asymptotic limit N → ∞ and
hence obtain a fully deterministic approach. Let [X1Y2]ij (t)
be the mean fraction of nodes in the system that are of
1-state X1, of 2-state Y2, have i unmatched stubs on �1,
and j unmatched stubs on �2 at time t [26]. The ordinary
differential equation (ODE) governing the time evolution of
the [X1Y2]ij compartment consists of two parts, accounting

(a) t t0 (initial state) (b) t t1

(c) t t2 (d) t t3 (final state)

FIG. 2. Schematical illustration of on the fly network generation
for a single viral agent susceptible-infectious-removed epidemic
(empty circles: susceptible nodes; gray circles: infectious nodes;
black circles: recovered nodes). (a) Initially, one node of degree
2 is infectious. (b) When an infectious contact occurs over one
stub belonging to the infectious node, it is matched with another
stub chosen at random between all the unmatched stubs (dashed
lines), thus forming a link (solid lines). If previously susceptible, the
assigned neighbor becomes infectious. (c) Stubs are progressively
matched pairwise as infectious contacts occur in the population. In
the matching process, self-loops and repeated links are allowed, but
their probability decreases as N−1. (d) The epidemic stops when there
are no more infectious nodes. Parts of the network not reached by the
viral agent are never built.

for the dynamics of each viral agent. As both parts are very
similar for corresponding states (e.g., agent 1 dynamics for
1-susceptible nodes and agent 2 dynamics for 2-susceptible
nodes), we exclusively focus on agent 1 dynamics. The same
considerations apply to agent 2 dynamics as well.

Let �1 be the probability that an unmatched stub on �1

belongs to a 1-infectious node,

�1 =
∑

Y

∑
i,j i[I1Y2]ij∑

X′,Y ′
∑

i ′,j ′ i ′[X′
1Y

′
2]i ′j ′

. (3)

Nodes in the [S1Y2]ij compartment will lose unmatched stubs
on �1 at the rate β1�1i as they are involved in infectious
contacts with 1-infectious individuals. When this happens,
they are either transferred to the [I1Y2](i−1)j compartment with
probability σY

1 (successful transmission), or to the [S1Y2](i−1)j

compartment with probability σY
1 (failed transmission). This

yields the following contribution to the ODE governing
[S1Y2]ij :

β1�1
[
(i+1)σY

1[S1Y2](i+1)j − i[S1Y2]ij
]
. (4)

Nodes are transferred from [I1Y2]ij to [R1Y2]ij at the rate α1

due to recovery events. Moreover, a node from [I1Y2]ij can be
transferred to [I1Y2](i−1)j due to a loss of an unmatched stub,
which may occur in two different ways: if it is the source of an
infectious contact (at rate β1i), or if it is victim of an infectious
contact originating from another 1-infectious node (at rate
β1�1i). By adding the incoming flow of newly infectious
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1-susceptible nodes, one obtains the following contribution
of agent 1 dynamics to the ODE governing [I1Y2]ij :

−α1[I1Y2]ij + β1�1(i + 1)σY
1 [S1Y2](i+1)j

+ β1(1 + �1)[(i + 1)[I1Y2](i+1)j − i[I1Y2]ij ].

(5)

Nodes are removed from [R1Y2]ij and transferred to
[R1Y2](i−1)j at the rate β1�1i as they are involved in infectious
contacts with 1-infectious individuals. Including the incoming
flow of newly recovered 1-infectious nodes, the contribution
of agent 1 dynamics to the ODE governing [R1Y2]ij reads as

α1[I1Y2]ij + β1�1[(i+1)[R1Y2](i+1)j − i[R1Y2]ij ] . (6)

Finally, in order for the dynamics to be completely
specified, an initial condition is required for each compartment.
As mentioned earlier, random infection of a fraction ε1 of the
population with agent 1 occurs at t = 0, which gives

[X1Y2]ij (0) =

⎧⎪⎨
⎪⎩

(1 − ε1)P (i,j ) if X = S and Y = S,

ε1P (i,j ) if X = I and Y = S,

0 otherwise

(7)

Agent 2 is then introduced at random in the population at
time t = τ and infects a fraction ε2 of the nodes. This is
implemented by making the following substitution at t = τ :

[X1Y2]ij (τ ) →

⎧⎪⎨
⎪⎩

(1 − ε2)[X1S2]ij (τ ) if Y = S,

ε2[X1S2]ij (τ ) if Y = I,

0 otherwise

(8)

The full system of ODEs describing the dynamics of the
model on overlay networks with random overlap can be found
in the supplementary document of this paper [23].

B. Networks with arbitrary overlap

Generalization to the case of arbitrary overlap requires
additional considerations. They originate from the fact that
the two networks are not built independently anymore by
matching stubs at random on each network. Since the structure
of one network is now influenced by the structure of the
other, an exact correspondence can not be established with the
dynamical process performing on the fly neighbor assignment
introduced in Sec. III A. We therefore have to rely on some
approximations.

Consider the networks γ1, γ2, and γb resulting from the
three-networks decomposition presented in Sec. II A. Let
[X1Y2]ijk(t) be the mean fraction of nodes in the system that
are of 1-state X1, of 2-state Y2, have i unmatched stubs on γ1,
j unmatched stubs on γ2, and k unmatched stubs on γb at time
t . Once again, let us concentrate on the part of each ODE that
corresponds to agent 1 dynamics.

In Sec. III A, the case of random overlap was considered
in the asymptotic limit N → ∞. Since one has �1 = γ1

and �2 = γ2 under this condition, substituting [X1Y2]ij by
[X1Y2]ijk in Eqs. (3)–(6) yields the correct description of agent
1 dynamics on γ1. Hence, we only need to derive the additional
contributions corresponding to the dynamics of agent 1 on γb.

The approximation that we will use to take into account the
overlap between �1 and �2 can be illustrated by the following

example. Consider two nodes, node n (of state [X1Y2]ijk) and
node n′ (of state [X′

1Y
′
2]i ′j ′k′), that are neighbors on �1 and �2,

and that are just being involved together in an infectious contact
with agent 1. From the point of view of a dynamical process
performing on the fly neighbor assignment, their respective
number k and k′ of unmatched stubs on γb should be decreased
by one. However, n and n′ could be later involved together
in an agent 2 infectious contact. Since we do not track the
information about the states of a node’s neighbors in the
formalism, one could account for this by increasing their
number j and j ′ of unmatched stubs on γ2 by one at the
same moment k and k′ are decreased. In other words, the prior
information that n and n′ were neighbors would be forgotten,
but the fact that they may later be involved together in an
agent 2 infectious contact is approximatively accounted for by
granting them a new unmatched stub on γ2. If an infectious
contact occurs later over one of those stubs, it will be matched
with another stub chosen at random between all the unmatched
stubs on γ2.

Yet, by doing so, we are throwing some useful information
away. When two nodes are involved in an infectious contact,
they share information about their respective states. If node n

was [I1S2]ijk and node n′ was [S1R2]i ′j ′k′ , the knowledge that
node n′ is 2-recovered tells us that a transmission of agent 2 will
never occur later between them. Giving them an unmatched
stub on γ2 would thus be ill advised; the ijk → ij (k−1) and
i ′j ′k′ → i ′j ′(k′−1) transitions would be more appropriate. In
summary, if node n is involved in an agent 1 infectious contact
via γb with node n′, they will be given an additional unmatched
stub on γ2 if and only if their states are such that an agent 2
transmission may occur between them later in time.

Let θY
b,1 be the probability that an unmatched stub on γb

belongs to a 1-infectious node of 2-state Y2:

θY
b,1 =

∑
i,j,k k[I1Y2]ijk∑

X′,Y ′
∑

i ′,j ′,k′ k′[X′
1Y

′
2]i ′j ′k′

. (9)

The total probability �b,1 that an unmatched stub on γb belongs
to a 1-infectious node is then given by �b,1 = ∑

Y θY
b,1. We

further define the probability �Y
b,1 that an unmatched stub on

γb belongs to a 1-infectious node, the 2-state of which is such
that a transmission of agent 2 may occur later with a node of
2-state Y2

�Y
b,1 =

⎧⎪⎨
⎪⎩

θS
b,1 + θI

b,1 if Y =S,

θS
b,1 if Y =I,

0 if Y =R .

(10)

The probability of the opposite event is �
Y

b,1 ≡ �b,1−�Y
b,1.

Similarly to Eq. (9), we define the probability φY
b,1 that any

unmatched stub on γb belongs to a node of particular 2-state
Y2:

φY
b,1 =

∑
X

∑
i,j,k k[X1Y2]ijk∑

X′,Y ′
∑

i ′,j ′,k′ k′[X′
1Y

′
2]i ′j ′k′

. (11)

Naturally,
∑

Y φY
b,1 = 1. The probability �Y

b,1 that an un-
matched stub on γb belongs to any node, the 2-state of which
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is such that a transmission of agent 2 may occur later with a
node of 2-state Y2 is given by

�Y
b,1 =

⎧⎪⎨
⎪⎩

φS
b,1 + φI

b,1 if Y =S,

φS
b,1 if Y =I,

0 if Y =R.

(12)

We denote the complementary probability �
Y

b,1 ≡1 − �Y
b,1.

First, a node in the [S1Y2]ijk compartment loses unmatched
stubs on γb at the rate β1�b,1k as it suffers infectious contacts
with 1-infectious individuals. This rate is composed of two
distinct parts: infectious contacts from 1-infectious nodes with
which a transmission of agent 2 may occur later (β1�

Y
b,1k)

and from 1-infectious nodes with which a transmission of
agent 2 may never occur (β1�

Y

b,1k). As mentioned earlier,
the first part yields a ijk → i(j+1)(k−1) index transition,
while the second gives the transition ijk → ij (k−1). After
an infectious contact, the [S1Y2]ijk node becomes 1-infectious
with probability σY

1 , or remains 1-susceptible with probability
σY

1 . Combining those four different issues, the contribution of
agent 1 dynamics on γb to the ODE governing [S1Y2]ijk is

β1(k+1)σY
1

(
�Y

b,1[S1Y2]i(j−1)(k+1) + �
Y

b,1[S1Y2]ij (k+1)
)

−β1�b,1k[S1Y2]ijk. (13)

Second, a node in the [I1Y2]ijk compartment loses un-
matched stubs on γb at the rate β1(1+�b,1)k as it is the
source or target of an infectious contact. Once again, this
rate is composed of two parts that yield different index
transitions: infectious contacts with a node with which a
transmission of agent 2 may [β1(�Y

b,1+ �Y
b,1)k] or may not

[β1(�
Y

b,1+ �
Y

b,1)k] occur later. Taking into account the flows
of incoming 1-susceptible nodes, the contribution of agent 1
dynamics on γb to ODE for [I1Y2]ijk reads as

β1(k + 1)σY
1

(
�Y

b,1[S1Y2]i(j−1)(k+1) + �
Y

b,1[S1Y2]ij (k+1)
)

+β1(k + 1)
(
�Y

b,1[I1Y2]i(j−1)(k+1) + �
Y

b,1[I1Y2]ij (k+1)
)

+β1(k + 1)
(
�Y

b,1[I1Y2]i(j−1)(k+1) + �
Y

b,1[I1Y2]ij (k+1)
)

−β1(1 + �b,1)k[I1Y2]ijk. (14)

Finally, a node in the [R1Y2]ijk compartment loses unmatched
stubs on γb at the rate β1�b,1k as it suffers infectious
contacts with 1-infectious individuals. Taking into account
both possible issues, i.e., if an unmatched stub is added
afterwards on γ2 or not, one obtains the contribution of agent
1 dynamics on γb to the ODE governing [R1Y2]ijk:

β1(k + 1)
(
�Y

b,1[R1Y2]i(j−1)(k+1) + �
Y

b,1[R1Y2]ij (k+1)
)

−β1�b,1k[R1Y2]ijk. (15)

The interested reader is once again referred to the supplemen-
tary document for the complete system of ODEs [23].

Initial conditions for agent 1 dynamics are given at t = 0
by

[X1Y2]ijk(0) =

⎧⎪⎨
⎪⎩

(1 − ε1)ρ(i,j,k) if X = S and Y = S,

ε1ρ(i,j,k) if X = I and Y = S,

0 otherwise

(16)

while agent 2 dynamics is initialized at t = τ with

[X1Y2]ijk(τ ) →

⎧⎪⎨
⎪⎩

(1 − ε2)[X1S2]ijk(τ ) if Y = S,

ε2[X1S2]ijk(τ ) if Y = I,

0 otherwise

(17)

The complexity of the ODE system derived in the case of
random overlap increases asO(kmax

1 × kmax
2 ), while it increases

as O(κmax
1 × κmax

2 × κmax
b ) in the case of arbitrary overlap.

Here, kmax and κmax represent the largest degrees beyond which
the systems of ODEs are truncated. Although high complexity
may seem to be a major drawback of our approach, a significant
speed up on Monte Carlo simulations can be obtained.

C. Other types of dynamics

As we have pointed out at the end of Sec. II B, other types
of interaction dynamics could have been considered. We give
two examples to show how such alternative interaction rules
could have been analytically handled using similar modeling
schemes.

First, suppose we allow for more than one infectious contact
between individuals. In this case, compartmentalizing nodes
by their number of unmatched stubs would be ill advised.
Indeed, when allowing for more than one infectious contact,
the propagation dynamics can not be made equivalent to a
dynamical process performing on the fly neighbor assignment.
Opting for a local description where nodes are sorted according
to the number and state of their neighbors, as in [27,28], would
yield a more accurate description of the dynamics. Here, the
basic state variables would read as [X1Y2]iS iI jSjI

(t), where
iS and iI represent the number of neighbors on �1 that are
respectively 1-susceptible and 1-infectious (same for jS and
jI regarding agent 2 on �2). Note that tracking the number of
1- and 2-recovered neighbors is optional.

Second, the leaky partial immunity rule could be replaced
by perfect partial immunity [18]. In the latter, each g-
susceptible node that is of ĝ-state Yĝ regarding the other viral
agent ĝ has a probability σY

g of being perfectly immune to agent
g. This scenario could be analytically modeled by introducing
a fourth state compartment for each viral agent, Vg , denoting
g-susceptible nodes that are perfectly immune to agent g.

Finally, our analytical approach could also be made com-
patible with susceptible-infectious-susceptible (SIS) dynamics
after slight changes in the compartmentalization scheme.
Because SIS dynamics can not be made equivalent to a
dynamical process performing on the fly neighbor assignment,
it would once again be necessary to opt for a local description
where nodes are sorted according to the number and state of
their neighbors [27,28].

IV. VALIDATION THROUGH CASE STUDIES

In order to analyze the behavior of the model and to validate
the accuracy of our mean-field approach, we consider two
host populations A and B, which are under the threat of an
agent 1 outbreak. Each host population is characterized by
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FIG. 3. (Color online) Total agent 1 incidence R1(∞) versus the
infectious contact rate β1 for a single viral agent SIR epidemic in two
host populations with different network topologies. Population A is
characterized by a Poisson distributed network, while population B

has a power-law distributed network. Both networks feature the same
mean degree 〈k1〉 � 3.5. Note that near β1 = 0.66 (vertical line), both
epidemics have a similar incidence. Points and error bars correspond
to the mean and standard deviation of Monte Carlo simulations; solid
curves are the predictions computed from our analytical approach.

a different network �1. For population A, the network �1 is
fairly homogeneous and features a Poisson degree distribution

P A
1 (k1) = CA

1
λ

k1
1 e−λ1

k1!
, 0 � k1 � 20 (18)

where λ1 = 3.5 and CA
1 is a normalization constant. We

assume that the population B displays more heterogeneous
contact patterns, and has a network �1 that follows a power-law
degree distribution

P B
1 (k1) = CB

1 k
−τ1
1 , 1 � k1 � 20 (19)

where τ1 = 1.5 and CB
1 is a normalization constant. The

parameters are chosen such that both networks have the same
mean degree 〈k1〉 � 3.5 while featuring different levels of
heterogeneity.

Figure 3 shows the phase diagram for the total incidence of
agent 1, defined by

R1(∞) =
∑
Y

∑
i,j,k

[R1Y2]ijk(∞), (20)

as a function of the infectious contact rate β1 in the case
where agent 1 propagates alone in the host populations A

and B. R1(∞) is computed by setting ε2 = 0, in which case
the dynamics reduces to the case of a single viral agent SIR
epidemic. Note that both epidemics reach approximately the
same level of incidence for β1 = 0.66. For this reason, we
will use this particular β1 value throughout this section when
comparing together both host populations. Moreover, Fig. 3
shows that our mean-field approach is able to capture with
great accuracy the behavior of the model in the single-agent
case.

A. Delayed intervention

In response to an epidemic menace, intervention strategies
involving the propagation of a second viral agent in the host
population may be employed to control the outbreak of the
undesirable agent. Examples of such strategies include the
spread of preventive information in the context of an emerging

disease, or the dissemination of countermeasures to minimize
the damages of a computer virus outbreak. In this section,
we use the framework of interacting epidemics on overlay
networks to analyze the efficiency of a hypothetical delayed
agent 2 intervention on the outbreak of agent 1 in the host
populations A and B.

We consider a case of unidirectional immunity. We assume
that agent 2 is not affected by agent 1, i.e., σX

2 = 1 for
all X ∈ {S,I,R}, while nodes that are either 2-infectious or
2-recovered benefit from a given level of immunity to agent 1,
i.e., σS

1 = 1 and σ I
1 = σR

1 ≡ σ . In both host populations, the
network �2, on which agent 2 propagates, is characterized by
a power-law degree distribution

P2(k2) = C2k
−τ2
2 , 1 � k2 � 40 (21)

where τ2 = 1 and C2 is a normalization constant. For now, we
assume that the overlap between the networks �1 and �2 is
random, and that there is no degree correlation between them,
such that P (k) = P1(k1)P2(k2).

1. Full immunity

The total agent 1 incidence R1(∞) in host populations
A and B as a function of the delay τ between epidemics is
illustrated on Fig. 4(a) for the case of full (σ = 0) and partial
(σ = 0.5) immunity. Let us consider the case of full immunity
in the first place. For σ = 0, we observe in Fig. 4(a) that
R1(∞) increases much faster with τ in population B than
in population A. This means that one disposes of a much
shorter time to react efficiently if the population in which
agent 1 spreads features a heterogeneous structure, such as a
power-law distributed network. Figures 4(b) and 4(c), which
also include the dependency of R1(∞) on the infectious contact
rate β2, further confirm this observation.

The results discussed in the last paragraph can be explained
by looking at the time evolution of the epidemics. In Fig. 5,
the prevalence at time t of agent 1 and 2,

I1(t) =
∑
Y

∑
i,j,k

[I1Y2]ijk(t), I2(t) =
∑
X

∑
i,j,k

[X1I2]ijk(t) ,

(22)

is illustrated for increasing values of the delay τ in the case of
full immunity. For small values of τ (τ = 0 and 1), agent 2 is
able to inhibit the initial phase of the agent 1 epidemic in both
host populations. At intermediate τ values (τ = 5), the agent
1 epidemic is still strongly restrained by agent 2 in population
A, while it has almost enough time to run its course completely
in population B. As τ is further increased (τ = 10), the effect
of the intervention becomes minimal in both host populations.
Figure 5 shows that the time scale of the agent 1 epidemic in a
given host population is crucial in determining the efficiency
of a delayed intervention. Since this time scale decreases with
increasing network heterogeneity [29], this explains why much
smaller values of τ are required in population B to achieve an
efficient intervention.

2. Partial immunity

Let us now consider the case of partial immunity (σ = 0.5).
For the host population A, Fig. 4(a) shows that the behavior of
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FIG. 4. (Color online) (a) Total agent 1 incidence R1(∞) in the
host populations A and B versus the delay τ before an agent 2
intervention (β2 = 1) providing full (σ = 0) or partial (σ = 0.5)
immunity to agent 1. (b), (c) Phase diagram showing R1(∞) in both
host populations as a function of the delay τ and the infectious contact
rate β2 of an agent 2 intervention providing full immunity to agent 1.
β1 = 0.66 in all figures. In both populations, agent 2 spreads on a
power-law distributed �2 network that has a random overlap with the
�1 network. Points and error bars correspond to the mean and standard
deviation of Monte Carlo simulations; curves and phase diagrams are
the predictions computed from our analytical approach.

R1(∞) versus τ is quite similar to the case of full immunity.
The total agent 1 incidence increases slightly faster with the
delay, which can be attributed to the fact that the fraction of the
population reached by agent 2 before agent 1 is now partially
vulnerable to the latter. However, the picture is drastically
different for the host population B. Even when τ = 0, agent 2
is unable to inhibit the agent 1 epidemic, which reaches half
as many nodes as it would reach without any intervention.

This phenomenon is also a consequence of network
heterogeneity. Consider a node of degree k1 on �1 that is
still 1-susceptible and has acquired partial immunity to agent
1. If it is eventually involved in infectious contacts with all its
neighbors on �1, the probability that it remains 1-susceptible
in the end is (1 − σ )k1 , which decreases exponentially with
k1. Therefore, leaky partial immunity has a weaker effect on
high-degree nodes. This observation, together with the fact
that the high-degree nodes are preferentially involved in the
early phase of an epidemic [29], explains why agent 1 is able
to invade a significant fraction of population B even when a
short-delay intervention is attempted.

Finally, Figs. 4(a) and 5 show an excellent agreement
between the analytical predictions computed from our mean-
field approach and the outcome of Monte Carlo simulations
of the dynamics. As we mentioned in Sec. III A, we expect
our mean-field approach to be exact for configuration model
overlay networks of infinite size and random overlap. The
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FIG. 5. (Color online) Time evolution of the agent 1 and 2
prevalence I1(t) and I2(t) in host populations A and B for various
values of the delay τ before an agent 2 intervention providing
full immunity (σ = 0) to agent 1. Infectious contact rates are
β1 = 0.66 and β2 = 1. Points corresponds to the mean of Monte
Carlo simulations; error bars are of order of magnitude of the symbol
size. Solid curves are the predictions computed from our analytical
approach.

small divergence between the predictions of our approach and
the mean values computed over Monte Carlo simulations can
be attributed to finite-size effects, such as stochastic extinction
at early times and the restriction on self-loops and repeated
links when generating the networks.

B. Overlap and degree correlation

In the preceding section, we assumed that the overlap
between the networks �1 and �2 was random, and that there
existed no degree correlation between them. We now relax
this assumption and look at the effect of overlap and degree
correlation.

We consider a scenario very similar to that of the previous
section, where agent 1 (disease) and agent 2 (intervention)
propagate simultaneously in the host populations A and B.
We assume that the intervention is instantaneous (τ = 0)
and grants full immunity to agent 1 (σ = 0). The degree
distributions of the network �1 for population A and B are,
respectively, given by Eqs. (18) and (19). Moreover, we now
suppose in both populations that the degree distribution of �2

is identical to that of �1, i.e. P2(k) = P1(k) ≡ p(k).

1. Overlap versus degree correlation

In order to be able to isolate the respective effects of overlap
and degree correlation, we distinguish between three different
configurations: (i) random overlap and no degree correlation,
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FIG. 6. (Color online) Total agent 1 incidence R1(∞) versus the
infectious contact rate β1 in host populations A and B for different
network configurations (red squares: random overlap, no degree
correlation; green circles: random overlap, full degree correlation;
blue diamonds: full overlap). In all cases, the agent 2 intervention
(β2 = 1) is undelayed (τ = 0) and provides full immunity (σ = 0) to
agent 1. Points and error bars correspond to the mean and standard
deviation of Monte Carlo simulations; curves are the predictions
computed from our analytical approach.

in which case the system is built from P (k) = p(k1)p(k2); (ii)
random overlap and full degree correlation, in which case we
build the system from P (k) = p(k1)δk2,k1 ; and (iii) full overlap,
in which case ρ(κ) = δκ1,0δκ2,0p(κb) is used to generate the
system.

The bifurcation diagrams obtained for each host population
using the three above configurations are illustrated in Fig. 6.
Let us compare in the first place the two configurations where
the overlap is random. In both host populations, we observe
that agent 1 manages to invade the system more easily in
the case where there is no degree correlation between the
networks. This is a consequence of the fact that the high-degree
nodes of a network are more likely to be infected in an
outbreak. If the high-degree nodes on �1 and �2 correspond
to the same individuals, both viral agents will preferentially
compete for their infection. In the scenario considered here,
it will therefore be harder for agent 1 to invade the system if
the high-degree nodes on �1 are preferentially immunized
by agent 2. The difference in heterogeneity between the
host populations A and B explains why the effect of degree
correlation is much stronger in B.

Because full overlap implies full degree correlation, the
fully overlapping configuration must be compared with the
case of random overlap but full degree correlation in order
to isolate the effect of overlap. In Fig. 6, we observe that
a configuration with full overlap facilitates the epidemic of
agent 1 in the system. Since �1 = �2 in the case of full overlap,

nodes reached by agent 1 that are not already part of the agent 2
outbreak are more likely to be connected to other nodes that
have not yet been reached by agent 2. For a given joint degree
distribution P (k), this explains why invasion of agent 1 is
easier in the fully overlapping case.

Note that the magnitude of the difference between R1(∞)
in all the different configurations of degree correlation and
overlap is larger when the time scales of the agent 1 and 2
epidemics are comparable. When β1 is too low, agent 1 can
barely invade the system in all configurations, while when
β1 � β2, agent 1 is almost unaffected by agent 2 because the
former spreads significantly faster.

Our results corroborate the previous findings of Funk and
Jansen. In [20], they considered the case where two processes,
the first granting full immunity to the second, propagate
subsequently on overlay networks. They showed that the
epidemic threshold of the second process increases with
positive degree correlation between networks with random
overlap, while it decreases with increasing overlap for a given
joint degree distribution P (k). In our paper, variations in the
epidemic threshold are hard to analyze because both processes
spread simultaneously in the host population. Our results
generalize the previous conclusions of [20] to the case of
dynamically interacting processes on overlay networks.

2. Partial overlap

In Sec. III B, some approximations were introduced in our
mean-field approach to allow for arbitrary overlap between
�1 and �2. To investigate their validity, we now consider the
general case where the system is built from the following joint
degree distribution:

ρ(κ) = p(κ1 + κb)δκ1,κ2

(
κ1 + κb

κb

)
Qκb (1 − Q)κ1 , (23)

where Q is the mean percentage of overlap in the system.
In Fig. 7, we compare the outcome of Monte Carlo

simulations with the analytical predictions of the approach
developed in Sec. III B (solid curve) for increasing values of
Q in the host population A. We see that our approach becomes
less accurate as Q increases. This mainly comes from the fact
that nodes can be granted additional unmatched stubs on γ1
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FIG. 7. Total agent 1 incidence R1(∞) in the host population
A versus the percentage of overlap Q between �1 and �2. The
parameters are σ = 0, τ = 0, and β1 = β2 = 1. Points and error
bars correspond to the mean and standard deviation of 2500 Monte
Carlo simulations performed with N = 100 000. The solid curve
corresponds to the predictions of the analytical approach developed in
Sec. III B. The dashed curve corresponds to the analytical predictions
obtained after making the substitutions given in Eq. (24).
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and γ2 after a neighbor assigment on γb, which causes the
dynamics on γ1 and γ2 to lose its exact character. Figure 7,
however, shows that our approach becomes accurate again as Q

gets very close to one. While this may appear counterintuitive
at first, this is because an almost exact correspondence with
the propagation dynamics is reobtained at Q = 1. Since there
are no links on the γ1 and γ2 networks at Q = 1, the i and
j indices are initially zero for each node. Thus, they are only
used to indicate the number of new stubs that are granted after
infectious contacts on γb, i.e., there is no mix between real and
supposed unmatched stubs on γ1 and γ2.

Finally, it is interesting to note that, for the special case of
full immunity, an approach that handles partial overlap more
accurately can be obtained. Indeed, since agent 2 provides full
immunity to agent 1, we may use the following substitutions:

�Y
b,2 → 0, �

Y

b,2 → �b,2, �Y
b,2 → 0, �

Y

b,2 → 1 (24)

for Y ∈ {S,I,R}. While this modified approach yields a
better description of the dynamics for the epidemic scenario
considered here (dashed curve in Fig. 7), we emphasize the
fact that it is not valid for the general case of an interaction
rule involving partial immunity.

V. CONCLUSION

In this paper, we have introduced a general model where
two viral agents propagate simultaneously on overlay networks
and interact dynamically via a mechanism of leaky partial im-
munity. By exploiting a correspondence between propagation
on networks and a dynamical process performing on the fly
network generation [21], we have developed a network-based
compartmental formalism in which nodes are sorted at any
time according to their state and number of unmatched stubs.

Unlike previous work based on bond percolation [16,18–20],
our analytical approach gives the complete time evolution
of the system. By direct comparison with full Monte Carlo
simulations of the model, we have demonstrated that it is
able to capture with great accuracy the dynamical interac-
tion between epidemics occurring simultaneously on overlay
networks featuring various levels of heterogeneity, degree
correlation, and overlap.

Our analytical approach is highly versatile and may be
applied to numerous scenarios of diverse nature. Here, we
have considered a hypothetical delayed intervention scenario
in which an immunizing process is disseminated in a host
population to hinder the propagation of an undesirable process.
We have discussed the influence of the delay and the level of
immunity on the intervention efficiency in host populations
featuring homogeneous and heterogeneous network structures.
Moreover, we have shown that positive degree correlation
increases the efficiency of the intervention, while overlap
facilitates the invasion of the undesirable process.

Finally, this paper highlights the power of the general
modeling scheme presented in [21], from which our formalism
stems. Part of ongoing research focuses on the application
of these guidelines to include more realistic features in our
model, such as community structured networks [30]. Other
directions for future research include the application of our
analytical approach to investigate specific case studies, such
as the influence of other sexually transmitted infections on the
spread of HIV [31].
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