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The stationary points (SPs) of a potential-energy landscape play a crucial role in understanding many of the
physical or chemical properties of a given system. However, unless they are found analytically, no efficient method
is available to obtain all the SPs of a given potential. We present a method, called the numerical polynomial-
homotopy-continuation method, which numerically finds all the SPs, and is embarrassingly parallelizable. The
method requires the nonlinearity of the potential to be polynomial-like, which is the case for almost all of the
potentials arising in physical and chemical systems. We also certify the numerically obtained SPs so that they
are independent of the numerical tolerance used during the computation. It is then straightforward to separate
out the local and global minima. As a first application, we take the XY model with power-law interaction, which
is shown to have a polynomial-like nonlinearity, and we apply the method.
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Introduction. A potential-energy landscape (PEL) is the
hypersurface of some given potential V (�x), with �x =
(x1,x2, . . . ,xN ) being the variables (e.g., position coordinates,
fields, etc.). Studying the stationary points (SPs) of the PEL,

defined by the solutions of the system of N equations ∂V (−→x )
∂xi

=
0, i = 1, . . . ,N , is crucial for learning many physical or
chemical properties of the system described by V (�x). The SPs
are classified according to the number of negative eigenvalues
of the Hessian matrix, H, evaluated at each SP. The SPs with
no negative eigenvalue are called minima, and the SPs with at
least one negative eigenvalue are called saddles. In statistical
mechanics, for example, the stationary points of the PEL
have been shown to be directly related to the nonanalyticity
of thermodynamic quantities (i.e., phase transitions) in the
respective models [1]. The global minimum of a spin-glass
model is invaluable for studying its equilibrium properties.
In theoretical chemistry, the study of properties of the PEL
of supercooled liquids and glasses has been a very active
area of research [2,3], specifically in the study of Kramer’s
reaction-rate theory for the thermally activated escape from
metastable states and the computation of various physical
quantities, such as the diffusion constant using the minima
of the PEL [2]. In string theory, the SPs of the PEL of various
supersymmetric potentials correspond to the so-called string
vacua. Many current activities in string-phenomenology areas
focus on developing different methods to find these string
vacua [4–6].

If all SPs are found analytically for the given V (−→x ), then
the problem is settled, obviously. But if the analytical solutions
are intractable, then one has to rely on alternative methods.
Though finding SPs is of the utmost importance in so many
areas, the number of rigorous methods of finding SPs are few,
compared to the number of methods for minimizing a potential.

One such method is the gradient-square-minimization
method in which one minimizes W = | �∇V (−→x )|2 using a
traditional numerical-minimization method such as conjugate
gradient, simulated annealing, etc. [7,8]. The minima of W ,
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with further restriction that W = 0, are the SPs of V (−→x ).
However, minima of W also exist, where W > 0, and it
has been shown that the number of these non-SPs grows as
the system size increases [9,10], thus making the method
inefficient.

The Newton-Raphson method (and its sophisticated vari-
ants) may also be used to solve the system of N nonlinear

equations ∂V (−→x )
∂xi

= 0, i = 1, . . . ,N . Here, an initial random
guess is fed, and then refined to a given numerical precision,
to obtain a solution of the system [9,11]. However, this
method still suffers the major drawbacks of the gradient-
square-minimization method: namely, the possible existence
of large basins of attraction may lead us to repeatedly obtain
the same SPs and, more importantly, no matter how many
times we iterate the respective algorithms with different initial
guesses, we are never sure if we have found all SPs.

If the system of stationary equations has polynomial-like
nonlinearity, then the situation is enhanced. In the string-theory
community, for such a system of equations, symbolic methods
based on the Gröbner basis technique are used to solve the
system [4–6], which ensure that all the SPs are obtained
when the computation finishes. Roughly speaking, for a given
system of multivariate polynomial equations (which is known
to have only isolated solutions), the so-called Buchberger
algorithm (BA) or its refined variants can compute a new
system of equations, called a Gröbner basis, in which the
first equation consists of only one of the variables, and
the subsequent equations consist of increasing numbers of
variables. The solutions of this alternative system remain
the same as the original system, but the former is easier
to solve. This method seems to resolve all of the above-
mentioned problems. However, a few other problems occur.
The BA is known to have suffered from the exponential
space complexity, i.e., the memory (random access memory)
required by the machine blows up exponentially with the
number of variables, equations, and terms in each polynomial,
etc. So, even for small-sized systems, one may not be able to
compute a Gröbner basis. The BA is also inefficient for systems
with irrational coefficients. Furthermore, the BA is highly
sequential.
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In this Rapid Communication, we present the numerical
polynomial-homotopy-continuation (NPHC) method which
solves all the above problems for systems of equations
with polynomial-like nonlinearity. Numerical continuation
methods have been around for some time [12] and the
polynomial-homotopy-continuation method has also been an
active area of research [13,14]. (See [15,16] for earlier
accounts on the NPHC method for various areas in theoretical
physics.) As with the Gröbner basis technique, the NPHC
method extensively uses concepts from complex algebraic
geometry, and hence we allow the variables to take values from
the complex space, even if the physically important solutions
are only the real ones. When a system of polynomial equations
is known to have only isolated solutions, the NPHC guarantees
that we obtain all complex solutions of the system, from which
all the real solutions can subsequently be filtered out.

Numerical polynomial-homotopy-continuation method.
Here we introduce the NPHC method to solve a system of
multivariate polynomial equations. Specifically, we consider
a system P (�x) = 0, which is known to have isolated solu-
tions and where P (�x) = ( ∂V (�x)

∂x1
, . . . , ∂V (�x)

∂xN
). Now, the classical

Bézout theorem asserts that for a system of N polynomial
equations in N variables that is known to have only isolated
solutions, the maximum number of solutions inCN is

∏N
i = 1 di ,

where di is the degree of the ith polynomial. This bound is
called the classical Bézout bound (CBB).

Based on the CBB, a homotopy can be constructed as
H (�x,t) = γ (1 − t)Q(�x) + t P (�x) = 0, where γ is a random
complex number. The new system Q(�x) = (q1(�x), . . . ,qN (�x)),
called the start system, is a system of polynomial equations
with the following properties: (1) The solutions of Q(�x) =
H (�x,0) = 0 are known or can be easily obtained. The solutions
of Q(�x) = 0 are called start solutions. (2) The number of
solutions of Q(�x) = H (�x,0) = 0 is equal to the CBB of
P (�x) = 0. (3) The solution set of H (�x,t) = 0 for 0 � t � 1
consists of a finite number of smooth paths, each parametrized
by t ∈ [0,1). (4) Every isolated solution of H (�x,1) = P (�x) =
0 can be reached by some path originating at a solution
of H (�x,0) = Q(�x) = 0. We can then track all the paths
corresponding to each start solution from t = 0 to t = 1
and reach (or diverge from) P (�x) = 0 = H (�x,1). It is shown
rigorously that for a generic value of complex γ , all paths are
regular for t ∈ [0,1), i.e., there is no singularity along the path
[13]. By implementing an efficient-path-tracker algorithm,
such as Euler’s predictor and Newton’s corrector method, all
isolated solutions of P (�x) = 0 can be obtained. We do not
delve into the discussion of the actual-path-tracker algorithms
used in practice in this Rapid Communication, except to
mention that in the path-tracker algorithms used in practice,
almost all apparent difficulties have been resolved, such as
tracking singular solutions, multiple roots, and solutions at
infinity [13].

As a trivial illustration, let us take the univariate polynomial
P (x) = x2 − 5 = 0 from [13]. To find its solutions, we may,
for example, choose Q(x) = (x2 − 1) as our start system as
it satisfies the twin criteria of having the same number of
solutions as the CBB of P (x) and of being easily solved to
obtain the start solutions x = ±1. The problem of getting
all solutions of P (x) = 0 now reduces to simply tracking

the solutions of H (x,t) = 0 from t = 0 to t = 1 so that the
paths beginning at x = ±1 lead us to the actual solutions x =
±√

5. Note that, in general, if there are more start solutions
than actual solutions, then the remaining paths diverge as t

approaches 1.
Several sophisticated computational packages exist, such as

PHCPACK [17], BERTINI [18], and HOM4PS2 [19], which can be
used to solve systems of univariate and, more importantly,
multivariate polynomial equations, and the packages are
available as freeware. For the sake of completeness, the
solutions of the above-mentioned univariate equation are
x = ±(2.236067977 + i 10−10), i.e., ±√

5 up to the numerical
precision.

Since each path can be tracked independently of all others,
the NPHC is known as being embarrassingly parallelizable, a
feature that makes it very efficient.

The multivariate case, Q(�x) = (xd1
1 − 1, . . . ,x

dN

N − 1), is
the simplest choice as a start system. For big systems, solving
the start system itself may take significantly more time in
general, although due to the simple form of the start system
for the total-degree homotopy, obtaining the start solutions is
straightforward. Once all the paths are tracked, we get all the
complex solutions. To filter out the real solutions, we have to
take more care. Here, by a ‘solution’ (complex or real) means
a set of numerical values of the variables which satisfies each
of the N equations with a given tolerance, �sol (∼ 10−10 in our
setup). Since the variables are allowed to take complex values,
all the solutions come with real and imaginary parts. We call
a solution a real solution if the imaginary part of each of the
variables is less than or equal to a given tolerance. [Note that
�R (∼ 10−7) is a robust tolerance for the equations we will
be dealing with in the next section, below which the number
of real solutions does not change.] All these solutions can be
further refined with an arbitrary precision up to the machine
precision.

The obvious question at this stage is whether the number
of real solutions depends on �R. To resolve this issue, we use
a very recently developed algorithm, called alphaCertified,
which is based on the so-called α-theory to certify the
real nonsingular solutions of polynomial systems using both
exact rational arithmetic and arbitrary precision-floating-point
arithmetic [20]. This is a remarkable step because, using
alphaCertified, we can prove that a solution classified as a
real solution is actually a real solution independent of �R, and
hence these solutions are as good as the exact solutions.

A first application. As a first application, we choose the XY
model a with long-range power-law (algebraically decaying)

interaction, defined as V (�θ) = K
∑N

i=1

∑ (N−1)
2

j=1
1−cos(θi−θi+j )

jα ,

where N is odd for our purposes, the normalization constant

K = (2
∑ (N−1)

2
j=1

1
jα )−1, and α ∈ [0,∞) [21]. α = 0 reproduces

the mean-field XY model and α → ∞ reproduces the nearest-
neighbor-coupling XY model for which all the SPs are
analytically obtained [15,22,23]. We choose α = 0.75, for
which the coefficients take values fromR, unlike, for example,
α = 1, for which the coefficients are rational numbers. Hence,
we are already in the domain of problems where the Gröbner
basis technique is inefficient. We impose a periodic boundary
condition, i.e., θk+N = θk . Spin-glass models with power-law
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interaction have recently gained interest [24]. The chosen
model is one of the simplest models of this kind with a

continuous symmetry. The stationary equations are ∂V (�θ)
∂θk

=
K

∑ (N−1)
2

j=1 [ sin(θk − θk+j ) + sin(θk − θk−j )
jα ] = 0, for k = 1, . . . ,N . To

eliminate the global-rotation symmetry θk → θk + φ, where
φ ∈ R, we fix one of the angles, say θN = 0, and remove the
N th equation out of the system, as done in [15,23]. Kastner [21]
used a specific class of known solutions, called the stationary
wave solutions, i.e., θ (n)

m = 2πmn
N

, where m,n ∈ {1, . . . ,N}.
Many more solutions for this model are possible, as discussed
below.

The above system of equations is not a system of
polynomial equations. But we can transform it into
one [15,16] by first using the trigonometric identities
sin(θk − θk+j ) = sin θk cos θk+j − sin θk+j cos θk , etc.; abbre-
viating each sin θk = sk and cos θk = ck , in all the N − 1
equations; and, finally, adding N − 1 additional constraint
equations as s2

k + c2
k − 1 = 0, for k = 1, . . . ,N − 1. We get

a system of 2(N − 1) polynomial equations consisting of
2(N − 1) algebraic variables cks and sks:

K

(N−1)
2∑

j=1

(skck+j − sk+j ck + skck−j − sk−j ck)

jα
= 0,

(1)
s2
k + c2

k − 1 = 0,

for k = 1, . . . ,N − 1. The removal of the global-rotation
symmetry ensures that the system will have only isolated
solutions. We can now use the NPHC to (i) solve Eq. (1) for all
the sks and cks, (ii) filter the real solutions out using the above-
mentioned tolerances, and (iii) get the original θ variables
back by θk = tan−1( sk

ck
) ∈ (−π,π ], for all k = 1, . . . ,N − 1.

The results are as follows.
First, the number of SPs for N = 3,5,7,9,11,13 are

6,20,168,972,4774,24 830, respectively. Figure 1(a) shows
the number of SPs as a function of N . The SPs for different
models with similar sizes have been studied using the gradient-
square-minimization and Newton-Raphson’s methods, though
the final number of SPs is always open to debate [9,10],
whereas, using the NPHC method, we can find all the SPs
with confidence. In the gradient-square-minimization method,
it is difficult to obtain the SPs with higher indices [9]. In the
NPHC, however, all the SPs are treated equally, irrespective
of their indices. Figure 1(b) shows the index I/(N − 1) versus
number of SPs for a given N . Apparently, the number of
minima grows linearly in this model, which is contrary to
current understanding [9,10]. However, the number of SPs
indeed grows exponentially with increasing system size, as
expected [9,10]. We also observe that the global minimum
is always the configuration with all θi = 0,i = 1, . . . ,N − 1,
and that at the global minimum, the energy density V/N is
zero. In Fig. 2, we plot V/N versus I for N = 7,9,11,13. The
apparent nonlinear relation between these two quantities in
the plots shows a different behavior to the linear relationship
observed for the Lennard-Jones models [9,10]. Note that to
solve the systems presented here, we have mainly used a
regular desktop computer, except in the largest systems (i.e.,
N = 13), for which we have used a cluster with a parallel
version of the NPHC method. In the systems for N � 9, the

FIG. 1. (Color online) (a) Plot for N vs number of SPs. Circles,
squares, and diamonds represent data points for the algebraic-
decaying XY model, the one-dimensional nearest-neighbor XY
model for periodic conditions [15,23], and antiperiodic conditions
[22], respectively. The lines are drawn as a guide. (b) The plot
for index I vs number of SPs with index I . From top to bottom,
N = 13,11,9,7,5,3. The normalization on I is N − 1 since we have
taken θN = 0.

desktop machine was able to track all the paths in less than
an hour, for N = 11 all the paths were tracked in around 5
hours, and for N = 13 all the paths were tracked in around 30
processor hours.

Although it is quite difficult to claim any result in the
thermodynamic limit using such small-sized systems, we note
that the minimum value of |DetH|1/N is always either at
the SPs, where all θi ∈ {0,π} for all i = 1, . . . ,N − 1, or at
the SPs, where θi+1 − θi = 2πk

N
mod 2π for all i = 1, . . . ,N ,

with k being an integer. Using a recently spelled out condition
for a class of spinglass models to have phase transition, that
|Det H|1/N evaluated at a class of stationary points tend to
go to zero at the critical energy in the N → ∞ limit, the
phase transition in our model would occur at this specific class
of solutions [25,26]. For N = 7,9,11,13, the corresponding
plots are drawn in Fig. 3, where the plot has started to
fill by densely populated points around the critical-energy
density V/N ∼ 0.5. Hence, we have reproduced the results
that Kastner worked out from another approach [21], just by
studying these small-sized systems. These particular SPs are
usually neither minima nor maxima. It should be stressed that
this is a remarkable result since we extracted the information
about the energy density at the phase transition without having
to evaluate any complicated multidimensional path integration.
All we needed for our approach was to find the SPs and to

FIG. 2. (Color online) Plot for V/N vs index density. Starting
from the upper left corner, N = 7,9,11,13, respectively.
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FIG. 3. (Color online) Plot for V/N vs |Det H|1/N . Starting from
the upper left corner, N = 7,9,11,13, respectively. Though these
small-sized systems can in no way be considered as representatives
of the model in the thermodynamic limit, we still see the expected
singularity of |Det H|1/N at V/N → 0.5.

filter out those SPs which satisfied the criteria of the above
condition. Moreover, this specific class of SPs would not have
been found using any other numerical minimization methods
(because they would have found only the minima) or any other
numerical methods (since they may not have hit these SPs at
all).

It would be interesting to get all the SPs for α ∈ (1,2], find
out the relevant SPs for the phase transition, and extrapolate

the analysis in the thermodynamic limit, as suggested in [21].
A recent conjecture that the critical-energy density of a class
of spin-glass models can be computed using only the Ising-like
SPs (see [27] for the definition of these SPs and the conjecture)
will need to be verified, and this will also be another important
application of the NPHC method.

Conclusion. In this Rapid Communication, we have
described and applied a method, called the numerical
polynomial-homotopy-continuation method, that finds all SPs
of a given potential, provided that the potential has polynomial-
like nonlinearity. As shown in this Rapid Communication, even
if the given potential is not apparently in polynomial form, its
stationary equations could be transformed into a polynomial
form by adding suitable constraint equations. So, the method
is very widely applicable. Because the method can find all
SPs, and because it is completely parallelizable, the method
is quite promising for further application in many areas of
theoretical physics and chemistry, for example, finding all the
SPs and hence all the minima of the Lennard-Jones potential
and its numerous variants, obtaining the string vacua of the
models for which the symbolic algebraic geometry methods
fail due to their algorithmic complexities, and studying phase
transitions in various spin-glass models with the above-
mentioned criterion on the Hessian determinant. We anticipate
that this work will encourage research in related areas.
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