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Potential of an emissive cylindrical probe in plasma
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The floating potential of an emissive cylindrical probe in a plasma is calculated for an arbitrary ratio of Debye
length to probe radius and for an arbitrary ion composition. In their motion to the probe the ions are assumed to
be collisionless. For a small Debye length, a two-scale analysis for the quasineutral plasma and for the sheath
provides analytical expressions for the emitted and collected currents and for the potential as functions of a
generalized mass ratio. For a Debye length that is not small, it is demonstrated that, as the Debye length becomes
larger, the probe potential approaches the plasma potential and that the ion density near the probe is not smaller
but rather is larger than it is in the plasma bulk.
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The reduction of the potential drop between a material
surface and a plasma when the material emits electrons has
a dramatic effect on the wall-plasma interaction in fusion
reactors [1], plasma processing [2], and electric propulsion
[3]. In calculating the reduction of the potential drop for a
certain configuration, the specific geometry and the presence
of drifting plasmas have to be taken into account. We calculate
here the reduction of the potential drop in a cylindrical emissive
probe, an electron-emitting electrode that is a major tool for
measuring plasma potential [4]. In a classic paper [5] Hobbs
and Wesson calculated the potential drop across the (assumed
narrow) sheath near an electron-emitting electrode and ex-
pressed the currents in terms of the plasma parameters at the
sheath edge. However, the plasma potential can be evaluated
only if the full potential drop between the emissive probe and
the unperturbed plasma bulk is determined. Moreover, often
the sheath near the probe is not narrow and the plasma is
composed of more than one ion species [6]. In this Rapid
Communication we calculate the potential drop between a
cylindrical emissive probe and the unperturbed plasma bulk
for an arbitrary ratio of Debye length to probe radius (the
Debye number) and an arbitrary plasma ion composition. For
a small Debye number we employ a two-scale analysis and
derive analytical expressions for the potential drop and various
currents. We then show numerically that when the Debye
number is large, the probe potential approaches the plasma
potential and the ion density near the probe is not smaller but
rather is larger than it is in the plasma bulk.

Let us consider a cylindrical probe of radius a that is
immersed in a plasma. We assume an azimuthal symmetry
so that all variables depend on r only, the distance from the
probe axis (r � a). Three particle groups contribute to the
plasma charge and to the current to the probe. The first group
is an arbitrary composition of ions of various (positive) charges
and masses. The particle flux per probe unit length of the j th
ion species is �j and its density is nj . The second group is the
plasma electrons whose flux per probe unit length is �e and
whose density is ne. The third group is the electrons emitted
from the probe (with an assumed zero velocity) and accelerated
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radially outward toward the higher-potential plasma. Their flux
per probe unit length is �c and their density is nc. The densities
are

nj = �j

2πr(−2Zjeφ/Mj )1/2
,

ne = �e

2πa(vt/4)
exp

(
e(φ − φc)

T

)
, (1)

nc = �c

2πr[2e(φ − φc)/m]1/2
,

where φ is the electric potential (φ = 0 at the plasma bulk,
where r is infinite), e is the elementary charge, Zje is the
charge, and Mj is the mass of the j th ion species. We assume
that the ions move only radially inward in the direction of the
probe axis without collisions, starting from rest at the plasma
bulk. This is a good approximation in the common case that
the ion-neutral collision mean free path is much larger than
the width of the region around the probe, across which the
potential drops, even if this mean free path is much smaller
than the system size. The assumption of a pure radial motion
corresponds to the so-called Allen-Boyd-Reynolds (ABR)
theory [7] and was also used in Ref. [8] for a nonemissive
cylindrical probe. The analysis can be extended to the orbital-
motion-dominated regime [9]. Also vt = (8T/πm)1/2, with T

being the electron temperature and m its mass, and φc denotes
the (negative) potential at the probe.

Poisson’s equation, divided by en0 [with n0 the plasma bulk
density (r → ∞)], becomes

δ2

ξ

∂

∂ξ

(
ξ
∂ψ

∂ξ

)
= nt (ψ,ξ ) ≡ exp(ψ)

+ Ic√
4πξ (ψ − ψc)1/2

− IM√
4πξ (−ψ)1/2

,

(2)

while the equation for the current balance from the probe,
divided by e�0 [with �0 ≡ n0(vt/4)2πa], becomes

IT = exp(ψc) − Ic − IM√
μ

. (3)

The normalized potential and coordinate are ψ ≡ eφ/T (so
that ψc ≡ eφc/T ) and ξ ≡ r/a, respectively. The terms on
the right-hand side (rhs) of Eq. (2) are the dimensionless
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charge densities ne ≡ ne/n0, nc ≡ nc/n0, and ni ≡ 	nj/n0,
respectively, and the terms on the rhs of Eq. (3) are the di-
mensionless currents Ie ≡ �e/�0 = exp(ψc) and Ic ≡ �c/�0

and the normalized ion current Ii ≡ 	Zj�j/�0 (IM ≡ Ii
√

μ),
while IT is the normalized total current. The two governing
parameters in Eqs. (2) and (3) are δ, the Debye number, and
μ, the generalized mass ratio, where

δ ≡ λD

a
,

1√
μ

≡ 	
Zjfj√

μj

. (4)

Here λD ≡
√

T ε0/e2n0 is the Debye length (ε0 is the permittiv-
ity of free space), μj ≡ Mj/m, and fj ≡ nj0/n0 (nj0 is nj at
the plasma bulk). The effect of the ion mass, even of a multi-ion
plasma, enters through a single parameter μ. The boundary
conditions are ψ(ξ = 1) = ψc and ψ and ∂ψ/∂ξ −→ 0 as
ξ −→ ∞. Once δ, μ, IT , and Ic are specified, Eqs. (2) and
(3) are solved for ψ(ξ ) and for ψc as an eigenvalue. We focus
here on a floating probe IT = 0. Solutions exist for Ic up to the
space-charge limit (SCL), which is reached when dψ/dξ = 0
at the probe. Once IM is specified, each ion-species flux is
expressed as �j = IM�0fj/

√
μj .

We start by performing a two-scale analysis for the two
plasma regions: the quasineutral plasma (presheath) and the
non-neutral sheath adjacent to the probe, a generalization of the
two-scale analysis made for the case of no electron emission
[10]. The quasineutral plasma is described by the plasma
equation nt = 0 that is, [Eq. (2) in which we neglect the left-
hand side]. In this equation ψ and ξ are related algebraically,
ξ = ξ (ψ). The plasma equation exhibits a singularity if the
electric field becomes infinite (dξ/dψ = 0), resulting in

0 = Ic

(ψs − ψc)1/2

(
1 + 1

2(ψs − ψc)

)

− IM

(−ψs)1/2

(
1 + 1

2ψs

)
, (5)

where ψs is the potential at this plasma-sheath boundary.
We also write explicitly the plasma equation at that boundary
ξ = ξs as

0 = exp(ψs) + Ic√
4πξs(ψs − ψc)1/2

− IM√
4πξs(−ψs)1/2

.

(6)

When the Debye number is small δ � 1, the non-neutral
sheath is narrow and we approximate ξs = 1 in Eq. (6).
We define a new coordinate ζ ≡ (ξ − 1)/δ = (r − a)/λD and
obtain the sheath equation [Eq. (2) in which we approx-
imate ξ = 1 + δζ ∼= 1]. We integrate the sheath equation
from ψ = ψs , where we approximate ∂ψ/∂ς = 0, so that
(1/2)(∂ψ/∂ς )2 = g(ψ) ≡ ∫ ψ

ψs
nt (ψ ′,ξ = 1)dψ ′, and obtain at

the probe

1

2

(
∂ψ

∂ς

)2

ψ=ψc

= exp(ψc) − exp(ψs) − 2Ic√
4π

(ψs − ψc)1/2

+ 2IM√
4π

[(−ψc)1/2 − (−ψs)
1/2]. (7)
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FIG. 1. Two-scale analysis for δ � 1 (IT = 0). (a) Dimensionless
currents and electric field at the probe as functions of the probe
potential (

√
μ = 271 argonlike). When Ic = 0, Ii (= IM/

√
μ) = Ie,

while at the SCL, (dψ/dζ )c = 0, Ie
∼= Ic 	 Ii . (b) Dimensionless

currents and probe potential at the SCL as functions of the effective
atomic number A � 1 [ψc0 = ψ(A = ∞) = −1.6034].

Equations (3), (5), (6) (with ξs = 1), and (7) are the governing
equations of the two-scale analysis for δ � 1. Figure 1(a)
shows solutions of these equations for Ic � 0 for an argonlike
plasma. The results hold for all ion compositions of the
same μ, for example, a plasma of 82.8% Xe+ and 11.2%
He+. When Ic = 0, we recover analytically the well-known
relations for a nonemissive probe, extended to an arbitrary
ion composition: ψc = −0.5[1 + ln(μ/2π )], ψs = −0.5, and
Ie = Ii = 1.5203/

√
μ (so that �j/�0 = 1.5203fj/

√
μj ). As

Ic increases, Ie also increases and they both reach their
maximal and close values when (dψ/dς )ψ=ψc

= 0, at the SCL,
while Ii (= IM/

√
μ) remains very small. At the plasma-sheath

boundary, ψs (not shown) changes monotonically from ψs =
−0.5 at Ic = 0 to ψs = −0.5775 at the SCL. The modification
of ψs by the electron emission results in a modified Bohm
velocity, which for the j th ion is vBj = (−2ZjT ψs/Mj )1/2,
which is larger than (ZjT /Mj )1/2, the Bohm velocity with no
emission. The momentum carried by the ions with the modified
velocity is larger than that of the plasma electrons, which
accounts also for the momentum of the emitted electrons.

Employing the two-scale analysis for δ � 1, we now derive
analytical approximate expressions for the potentials and the
currents at the SCL (with IT = 0). We expand the equations
with respect to the small parameter 1/

√
μ. We first solve

numerically the algebraic nonlinear zeroth-order equations,
in which 1/

√
μ = 0. In that zeroth order, the ion current (not

density) is zero and the electron currents balance each other.
We then solve the linearized equations with respect to 1/

√
μ.
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We therefore obtain general relations for an emissive probe at
the SCL, expressed with the plasma-bulk parameters:

ψc = −1.6034 + 3.6193√
μ

, ψs = −0.5781 + 0.1556√
μ

,

Ic = 0.2012 − 0.9348√
μ

, Ie = 0.2012 + 0.7282√
μ

, (8)

Ii = 1.6630√
μ

.

In addition, �j/�0 = 1.6630fj/
√

μj . Figure 1(b) shows the
dependence on the effective atomic number A ≡ μm/Mp (Mp

is the proton mass) according to Eq. (8). The variations are very
small, except for Ii , which increases linearly with 1/

√
A from

its zero value for infinite A. The variation of ψs is too small to
be shown.

The sheath part of our solution coincides with that from
Hobbs and Wesson [5]. For example, to first order in 1/

√
μ,

Eq. (8) yields Ic/Ie = 1 − 8.3/
√

μ, as in Ref. [5]. The
presheath size, however, is on the order of the probe radius
even when the Debye number is very small. It is the converging
cylindrical geometry, rather than collisions or ionization [11],
that provides the drag necessary for the subsonic acceleration
in the presheath, as it does in the converging part of Laval
nozzle [12]. The governing equations in Ref. [5] include the
Bohm condition [13], which is expected to be associated with
the singularity in the plasma equation [11]. Indeed, the Bohm
condition [13] is that in the series expansion of g (ψ) at the
plasma-sheath boundary, the coefficient in front of the second
term, ∂2g/∂ψ2 = ∂nt/∂ψ at ψ = ψs , be larger than or equal
to zero. The plasma equation nt [ψ(ξ ),ξ ] = 0 results in

dξ

dψ
= −∂nt/∂ψ

∂nt/∂ξ
. (9)

This relation demonstrates that satisfying the Bohm condition
with the equality sign (used in Ref. [5]) is equivalent to having
a singularity in the plasma equation (which we used).

The variations of ψc and of the currents with δ and the radial
profiles are explored in Figs. 2–4 through a full numerical
solution of Eqs. (2) and (3). Specifying δ and looking for the
SCL solutions, we solve the equations for two eigenvalues
ψc and IM . Figure 2(a) shows the potential profiles for three
small values of δ. In the calculation of the profiles ξ (ψ) by
the plasma equation, we used IM , Ic, and ψc found in the full
numerical solution. As δ increases the sheath width [and ξs

in Eq. (6)] increases and the values of ψc (hard to see in the
figure) and of the currents (not shown) depart from the values
provided by the two-scale analysis Eq. (8).

Figure 2(b) reveals additional features of the sheath not
provided by the two-scale analysis. At the SCL the sheath is a
(highly nonsymmetric) double layer. The negatively charged
layer, bounded by the probe and the plane of charge neutrality
nt = 0 (where the electric field is maximal), is narrow with a
width ∼=δ. The positively charged layer, which extends from
that plane up to the quasineutral plasma, is much wider.

The case that the Debye number is not small is explored
numerically in Figs. 3 and 4. Figure 3 shows the profiles for
δ = 1. The singularity in the plasma equation disappears
and the plasma solution is regular up to the probe without
the electric field becoming infinite. Note also that the ion
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FIG. 2. Profiles at the SCL (IT = 0,
√

μ = 271) of (a) the
potential for (1) δ = 0.001 (ψc = −1.551), (2) δ = 0.003 16 (ψc =
−1.509), and (3) δ = 0.01 (ψc = −1.42) (dashed lines denote the
corresponding solutions of the plasma equation) and (b) the particle
densities and electric field for δ = 0.001.
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FIG. 3. Profiles at the SCL (IT = 0,
√

μ = 271) for δ = 1 (ψc =
−0.348) of (a) the potential and the electric field and (b) particle
densities. The dashed line denotes the solution of the plasma equation,
which is nonsingular for this case.
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FIG. 4. Dimensionless currents and probe potential as functions
of δ at the SCL (IT = 0,

√
μ = 271). The two electron currents are

hardly distinguishable.

density does not decrease but rather increases as the probe
is approached, being larger near the probe than it is in the
plasma bulk. This ion density increase due to the geometric
contraction for a large δ occurs also when the probe is not
emitting (not shown here). The probe potential in the figure is
much closer to the plasma potential than it is for a small δ.

Figure 4 shows how the probe potential decreases and the
various currents increase with an increase of δ. The numerical
calculation is quite general because it largely depends on one
parameter only, on δ (the dependence on μ is weak). When
δ is larger, the collected ion current and the emitted electron

current become larger. This forces the probe potential to get
closer to the plasma potential so as to allow a larger electron
current from the plasma to maintain a zero net current.

The fast decrease of ψc with δ reflects the dependence
of ψc on the sheath size. For the sheath near a nonemitting
surface, all matched asymptotic analyses [10,11,14], in spite
of a certain controversy, suggest the presence of a transition
layer that is described by a solution of the Painlavé equation
of the first kind and that its size is proportional to δp (p < 1).
The structure of the positive layer in the sheath in the SCL
case is expected to be similar. Indeed, the sheath size ξs − 1
in Fig. 2(a) is much larger than δ. It follows from Eqs. (5)
and (6) that ψc − ψc(δ = 0) is linearly proportional to ξs − 1.
Therefore, ψc − ψc(δ = 0) is also expected to be proportional
to δp (p < 1). Such a dependence results in an infinite
derivative of ψc with respect to δ at δ = 0, as indicated by
the numerical solution in Fig. 4.

In summary, we calculated the potential of a cylindrical
emissive probe for arbitrary Debye number and ion composi-
tion. For a small Debye number we derived analytical results.
The collapse of the potential drop for a large Debye number
suggests that it is beneficial to use a thinner emissive probe
for a more accurate measurement of the plasma potential. The
analysis could be extended to address the effects of a virtual
cathode [15], finite probe length, and plasma drift, as well as
the stability issue [6,16].
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