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Constrained random-force model for weakly bending semiflexible polymers
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The random-force (Larkin) model of a directed elastic string subject to quenched random forces in the transverse
directions has been a paradigm in the statistical physics of disordered systems. In this Brief Report, we investigate
a modified version of the above model where the total transverse force along the polymer contour and the related
total torque, in each realization of disorder, vanish. We discuss the merits of adding these constraints and show
that they leave the qualitative behavior in the strong stretching regime unchanged, but they reduce the effects of
the random force by significant numerical prefactors. We also show that a transverse random force effectively
makes the filament softer to compression by inducing undulations. We calculate the related linear compression
coefficient in both the usual and the constrained random-force model.

DOI: 10.1103/PhysRevE.84.022801 PACS number(s): 36.20.Ey, 05.20.−y, 87.15.ad

The random-force model was introduced by Larkin as a
short-distance approximation to study the effect of a quenched
random potential on the Abrikosov lattice [1,2]. Because of
its simplicity (the relevant functional integrals are Gaussian),
it admits exact solutions and has become a paradigm in
the physics of disordered elastic manifolds [3]. In a recent
publication [4], we used it to analytically investigate the effect
of a quenched disordered environment on a strongly stretched
wormlike chain. Of course, the randomness that biopolymers
are subject to in the cellular environment is much more
complicated [5,6], but this model yields some very simple
analytical results for the weakly bending case.

The random-force model is mathematically well defined
and its analysis is valid. However, its relevance to experimental
measurements is obscured by the fact that the distribution of
quenched disorder includes realizations of the random force
which have nonzero total force along the polymer contour.
The total transverse force in any given experiment is either
zero or nonzero and, irrespective of the size of the polymer,
these two distinct possibilities persist and do not average.
One can show, using the central limit theorem, that the
variance of the total transverse force, in the limit of long
contour length L, scales as ∼L. This is a manifestation of
lack of self-averaging, and the disorder-averaged value of an
observable is not expected to coincide with the outcome of a
single measurement in a long filament. Moreover, we should
consider two distinct scenarios in a stretching experiment. In
the first, the end points of the polymer are fixed in space
and absorb (balance) both the total force and torque that the
polymer feels. A net transverse random force will have a
macroscopically manifest effect on the conformation of the
polymer, as shown in Fig. 1. It will also be experienced by
the end-point clamps. The same is true for a net torque. In the
second scenario, the polymer ends are free to equilibrate in
the random potential, and the net force and torque identically
vanish. Averaging over all possible random-force realizations
could be misleading in the case of vanishing net force or torque.
These observations motivate us to study a modified version
of the random-force model which includes the constraint of
vanishing total force along the polymer contour in every single
realization of the quenched disorder [7]. We also consider the
additional constraint prescribed by the condition of mechanical
equilibrium: that the total torque on the polymer in every single

realization of the quenched disorder vanishes. The only effect
of such a random force is the deformation of the polymer
through random undulations. A quenched transverse random
force could also result from the interaction of a stretched
semiflexible random polyampholyte with a transverse electric
field (assuming screened intrapolymer interactions). It is
known that the constraint of global neutrality may affect the
behavior of a random polyampholyte [8]. This provides further
motivation for studying the constrained random-force model.

We consider a weakly bending wormlike chain of total
contour length L in 1 + 1 dimensions parametrized by the
displacement y(s) perpendicular to the aligning direction (x),
where s is the arc length along the polymer contour. An axial
force pair f is applied at its end points in the x direction, and
a spatially varying random linear force density g(s) is applied
along the polymer contour in the transverse direction. The
elastic energy functional is given by
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where κ is the bending rigidity related to the persistence length
Lp via κ = 1

2LpkBT , f > 0 corresponds to stretching, and
f < 0 corresponds to compression along the filament axis.
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FIG. 1. An unconstrained random linear force density includes
realizations with a finite net transverse force balanced by the clamps.
Such a net force yields an overall bend in addition to the microscopic
undulations.

022801-11539-3755/2011/84(2)/022801(3) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.022801


BRIEF REPORTS PHYSICAL REVIEW E 84, 022801 (2011)

The first term in the right-hand side (rhs) of Eq. (1) penalizes
bending, the second term expresses the interaction with the
transverse random force, and the remaining two express
the interaction with the stretching force (−f [x(L) − x(0)]).
g(s) acts as quenched disorder. Its probability distribution is
given by

P[g(s)] ∼
∫ +∞
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dλ exp

[
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]
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]
. (2)

This is Gaussian at any arc-length position s with variance
�g , modified by the constraint of zero total force, which is
expressed by the integral over λ using the Fourier representa-
tion of the Dirac δ function, and the constraint of zero total
torque, which is expressed by the integral over μ. For the sake
of simplicity, we consider hinged-hinged boundary conditions:

y(0) = y(L) = 0,
(3)

∂2
s y(s)|s=0 = ∂2

s y(s)|s=L = 0.

The force-extension relationship is obtained from

〈x(L)〉 = L − 1
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, (4)

where 〈· · ·〉 and (· · ·) denote thermal and disorder averages,
respectively. The boundary conditions of Eq. (3) allow us to to
expand y(s) in a series of sines:
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)
. (5)

We calculate disorder-averaged correlators using the replica
method as in Ref. [4]:

〈A(l)A(m)〉 = lim
n→0
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1ab being an n × n matrix with all of its elements equal to 1,
and
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The first term in the rhs of Eq. (9) is related to the usual
random-force model, whereas the remaining terms express the
contribution of the constraints.

In the absence of the zero-torque constraint [that is, without
the second factor in the rhs of Eq. (2)], Eqs. (7) and (9) become
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respectively.
In the strong stretching regime, which is defined by f �

κ/L2
p for filaments with L � LP or f � κ/L2 for filaments

with Lp � L, we obtain

〈x(L)〉 = L − kBT L

4
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The last term in the rhs of the above equation is the decrease in
the end-to-end distance due to the undulations caused by the
transverse random force. In the usual (unconstrained) random-
force model, the numerical prefactor of that term is 1

12 [9].
The zero-total-force constraint merely reduces this prefactor to
1
24 , and adding the zero-total-torque constraint further reduces
it to 1

30 .
We also investigate the effect of the constraints on the

pulling-force response of the width of the transverse undula-
tions (mean square transverse displacement at the midpoint) of
the stretched wormlike chain. In the strong stretching regime,
we obtain

〈(
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s = L

2

))2 〉
= 1
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f
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�gL
3

f 2
. (13)

In a similar fashion as with the force-extension response, the
zero-total-force constraint reduces the effect of the random
force, which is expressed by the last term, by a factor of 1

2
(it changes the numerical prefactor from 1

48 to 1
96 ). The zero-

total-torque constraint does not affect the width of transverse
fluctuations. We point out, however, that these simple results
Eqs. (12) and (13) hold only in the strong stretching regime.
For arbitrary stretching force f , the difference between
the usual and the constrained-random-force model is more
complicated and depends on the system size (L) as can be
seen from Eq. (9).

A wormlike chain at zero temperature does not yield to a
small axial compressional force below the critical buckling
value [10,11]. At any finite temperature, however, thermally
induced undulations smooth out the buckling and give rise
to a linear response for small compressional forces [12]. A
quenched disordered environment induces similar undulations
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and therefore a similar contribution to the linear response
coefficient. We consider the constrained random-force model
as a simple model for the quenched disordered environment.
Assuming f < 0 (compression) and Lp � L, we obtain the
average projected length of the filament in the direction of the
compressing force to leading (linear) order in |f |:

〈x(L)〉 = L − 1
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The first line of Eq. (14) expresses the contribution of the
thermally induced undulations, whereas the second reflects
the effect of the transverse random force. Both contributions
modify the classical Euler behavior of an elastic rod before
buckling. This second line becomes
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in the usual (unconstrained) random-force model and
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if we add the zero-total-force constraint (without the zero-
total-torque constraint). In contrast to the nonlinear stretching
response Eq. (12), where the contribution of the random-force
undulations decreases relative to that of their thermal counter-
part as the pulling force increases, in the linear compressional
response the the two contributions enter on equal footing.
We point out that the thermal and the quenched-disorder
contributions differ qualitatively as far as their dependence
on the filament parameters (bending stiffness κ and total
contour length L) is concerned. This difference in principle
could be useful to probe the existence of nonthermal lateral
random forces on compressed microtubules in the cellular
environment. For f = 0 and T = 0, a filament of fixed

bending stiffness tends to crumple under the load of the
random forces as its size L increases. This is typical of
the Larkin model, and it remains unaffected by the zero-
total-force and zero-total-torque constraints. Of course, within
the context of our weakly bending approximation, we can
only identify a tendency toward crumpling and not an actual
transition.

In this Brief Report, we have investigated a modification
of the random-force model which excludes realizations of
disorder with a nonvanishing total force and a nonvanishing
total torque. These are non-self-averaging contributions. We
have calculated the force-extension response of a wormlike
chain and the width of its transverse undulations in the strong
stretching regime using this modified model. We have also
calculated the linear compressional response using both the
usual and the constrained random-force model. We have shown
that the constraints leave the calculated behavior qualitatively
unchanged but they reduce the effect of the random forces
by significant numerical prefactors. The dependence of the
disorder-induced contribution on the size of the system (L),
which grows in the thermodynamic limit, suggests that the
random-force model, even in its modified version, is inherently
non-self-averaging. It would be interesting to calculate how
the constraints discussed here would modify the free-energy-
distribution functions analyzed in Ref. [3]. Although in this
work we deal with a weakly bending wormlike chain, our
analysis of the vanishing total force and torque constraints
also holds in other applications of the random-force model
(e.g., flux lines in type II superconductors or liquid crystals in
random media [13]).
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