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Numerical evidence against a conjecture on the cover time of planar graphs
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We investigate a conjecture on the cover times of planar graphs by means of large Monte Carlo simulations.
The conjecture states that the cover time τ (GN ) of a planar graph GN of N vertices and maximal degree d is lower
bounded by τ (GN ) � CdN (ln N )2 with Cd = (d/4π ) tan(π/d), with equality holding for some geometries. We
tested this conjecture on the regular honeycomb (d = 3), regular square (d = 4), regular elongated triangular
(d = 5), and regular triangular (d = 6) lattices, as well as on the nonregular Union Jack lattice (dmin = 4,
dmax = 8). Indeed, the Monte Carlo data suggest that the rigorous lower bound may hold as an equality for most
of these lattices, with an interesting issue in the case of the Union Jack lattice. The data for the honeycomb lattice,
however, violate the bound with the conjectured constant. The empirical probability distribution function of the
cover time for the square lattice is also briefly presented, since very little is known about cover time probability
distribution functions in general.
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I. INTRODUCTION

The cover time of a graph is a classic problem in theoretical
computer science and graph theory with many practical
implications, e.g., in the development of query processing
and routing algorithms in computer networks and distributed
systems, and has attracted the attention of computer scientists,
mathematicians, and physicists for more than 30 years [1–22].

For a finite, connected graph GN = (V,E) of order N , the
cover time τ (GN ) is the maximum expected time over the
possible starting vertices v ∈ V it takes for a random walker
jumping through the edges of GN with uniform probabilities
to visit every vertex of GN at least once. Exact expressions
for the cover time are rare except for the simpler graphs, e.g.,
for the complete graph, for which the problem reduces to
the well-known coupon collector’s problem, and for the path,
cycle, and star graphs, among a few others [10,15,20,21].

Most results on graph cover times come in the form of
bounds on their expectation values, although little is known
about the limit distributions of the related quantities. The
existence of a lower bound follows from τ (GN ) � N—
although it can be proved that P (τ (GN ) � cN ) � e−αN , with
α > 0 depending only on c and dmax(GN ), the maximal degree
of the graph [23]—while the existence of an upper bound
follows from the recurrence of the associated Markov chains.

For planar graphs, Jonasson and Schramm showed that [17]

lim inf
N→∞

τ (GN )

N (ln N )2
� Cd, (1)

where Cd > 0 are universal constants depending only on
d � dmax(GN ). The functional form τ (GN ) ∼ N (ln N )2 for
the cover time of the square lattice had been guessed earlier
on the basis of Monte Carlo simulations and scaling analysis,
where a multiplicative correction (1 + c/ ln N ) to this form
was detected, with c (the magnitude of the leading scaling
correction) a constant depending on the boundary condi-
tions of the finite graphs [5,6,9]. Following a sophisticated
probabilistic-geometric analysis of the cover time of the square
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lattice, Dembo et al. [19] conjectured that for the honeycomb,
square, and triangular lattices, corresponding respectively to
d = dmax = 3, 4, and 6, the constants Cd appearing in Eq. (1)
are exactly given by

Cd = d

4π
tan

(
π

d

)
, (2)

further conjecturing that, with this Cd , inequality (1) may
actually hold as an equality for these geometries.

In this article we investigate numerically the above men-
tioned conjecture on some planar graphs to check whether the
bound (1) with the conjectured constant Eq. (2) holds as a lower
bound or as an equality. As we shall see, the empirical data for
the cover time of the honeycomb lattice indicate a violation of
the lower bound with the constant given by Eq. (2), requiring
a smaller constant, while for some other planar graphs the
conjecture seems to hold valid.

II. MONTE CARLO DATA

We investigate the conjecture encoded in Eqs. (1)–(2) on the
regular honeycomb (d = 3), regular square (d = 4), regular
elongated triangular (d = 5), and regular triangular (d = 6)
lattices, and on the nonregular Union Jack lattice (dmin = 4,
dmax = 8). These lattices are depicted in Fig. 1.

We computed the cover times on graphs with N = L ×
L vertices under periodic boundary conditions, with 256 �
L � 1536, i.e., on graphs with up to 2.359 × 106 vertices.
For each graph geometry and size, τ (GN ) is obtained as an
average over 106 samples. Our Monte Carlo data together with
the conjectured values τ ∗(GN ) = CdN (ln N )2 obtained from
Eqs. (1)–(2) appear in Fig. 2.

Notice that the toroidal graphs obtained under periodic
boundary conditions are not planar, although they are locally
very close to planar. The really important fact in a planar graph
for the cover time problem, however, is that its edges do not
cross, not that it can be embedded in a plane. Moreover, finite
graphs with open boundary conditions cannot be regular, since
the vertices at the boundaries are of a smaller degree. The
asymptotics in the two cases (open and periodic boundary
conditions) are expected to be the same, and most results
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FIG. 1. Planar graphs investigated in this article. From left to right we have the honeycomb (d = 3), square (d = 4), elongated triangular
(d = 5), triangular (d = 6), and Union Jack (dmin = 4, dmax = 8) lattices.

on graph cover times, including those to which we want
to compare our own results, are obtained for graphs under
periodic boundary conditions.

According to the conjecture, we must observe
τ ∗(GN )/τ (GN ) � 1 for all planar graphs, a condition that
our numerical data does not support for the honeycomb
lattice. Other lattices observe the bound, with the square
lattice being “borderline.” A naı̈ve extrapolation of the ratios
τ ∗(GN )/τ (GN ) would give an extrapolated value greater than
1 in almost all cases depicted in Fig. 2. This indicates that
possible corrections to τ ∗(GN ) must go in the direction of
decreasing its value. Since previous results in the literature
suggest just the opposite, i.e., that, if anything, τ ∗(GN ) may
be missing a (1 + c/ ln N ) correction with c > 0 [5,6,9],
we are led to believe that the constant Cd with d = dmax

is overshooting. Supplementary evidence comes from the
behavior of the Union Jack lattice with respect to d. Although
the bound (1) requires d � dmax(GN ), our data suggest that
this requirement is probably not optimal. We plot the ratios
τ ∗(GN )/τ (GN ) for the Union Jack lattice both with d =
dmax = 8 and with d = d̄ = 1

2 (dmin + dmax) = 6, the average
degree of the lattice, and we found that the ratio with d = d̄

provides a better lower bound than the ratio with d = dmax;
see Fig. 2. This makes us wonder if the average vertex degree

d̄(G) = 1

|G|
∑

v∈V (G)

d(v), (3)

where d(v) is the degree of vertex v, is not a better constant to
be used on purportedly universal formulas for planar graphs
than the maximum degree dmax. This could be tested on
planar random graphs—e.g., on Delaunay triangulations of
random points on the plane [24]—for which d̄ can assume
different values, integer or not. Recently, planar random graphs
have attracted the attention of physicists and mathematicians
interested in their connectivity and percolation properties
[25–30], but their cover times remain unexamined.

III. THE EMPIRICAL PROBABILITY DISTRIBUTION
FUNCTION OF THE COVER TIMES OF THE

SQUARE LATTICE

Very little is known about the probability distribution
function (PDF) of τ (GN ). Actually, it is an open problem
to prove that τ (GN ) has a nondegenerate limit law [15,19,20].
It seems that the only result on this regard available to date is
a concentration result that states that, under mild conditions,
the cover time is well approximated by its expected value as
N → ∞ [7]. It is thus of some interest to explore our empirical

data to characterize the PDF of the cover time, although we
will not attempt to identify or infer this distribution here.

Figure 3 shows the histogram plot of 106 cover times
sampled for a square lattice of N = 1280 × 1280 vertices.
For these data, we compute the sample mean m = 〈τi(GN )〉
and first few central moments mk = 〈(τi(GN ) − m)k〉, from
which we compute the sample standard deviation s = √

m2,
skewness g1 = m3/m

3/2
2 , and excess kurtosis g2 = m4/m2

2 −
3 [31]. The values of these quantities are collected in Table I.

We also fitted the data to the beta PDF given by

P (x; α,β) = �(α + β)

�(α)�(β)
xα−1(1 − x)β−1 (4)

rescaled to the interval [a,b] with a = min{τi(GN )} =
73 391 036 and b = max{τi(GN )} = 213 039 197. We choose
the beta distribution because it has finite support and can
take several different shapes; moreover, beta-like PDFs for
the cover times of some special graphs were found in previous
investigations [5,6,21]. The empirical data together with the
adjusted beta PDF appear in Fig. 3 [32].

The positive skewness g1 indicates that the empirical PDF
is right-tailed, with the bulk of the observed values lying to the
left of the mean, although this feature is not very clear from
the histogram (3) because g1 is not very large. The moderately
high value of the excess kurtosis g2, in turn, indicates that
the empirical PDF is markedly non-normal, with a sizable
proportion of the data in its right tail contributing to the
variance observed. We notice that after 106 samplings, the
ratio s/m has stationed at ∼ 11.5%.

IV. CONCLUSIONS

Our numerical data for the cover time of the honeycomb
lattice provide evidence against the conjecture set forth in
Ref. [19] regarding the constant Cd appearing on the lower
bound (1) for planar graphs. Otherwise, for the other lattices
investigated in this article the functional form given by
Eqs. (1)–(2) seems to hold valid, possibly as an equality. In
summary, for d = 3 our data seem to falsify the conjecture,
for d = 4 it is “borderline,” and for d � 5 the conjecture
holds easily. That there must be something special about the
d = 4 case has been long recognized [15], and this might have
showed in our finite-size simulations. Notice that the lower
bound (1) remains valid for some Cd , just not with the Cd

given by Eq. (2) with d = dmax. Since the Cd given by Eq. (2)
is monotone decreasing in d, it can be used in Eq. (1) to validate
the bound, but then necessarily with some d > dmax.
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FIG. 2. (Color online) Cover times for the planar lattices depicted
in Fig. 1. Each graph displays the empirical cover times τ (GN ) (open
squares, left scale) together with the conjectured value τ ∗(GN ) =
CdN (ln N )2 (solid line, left scale) and the ratio τ ∗(GN )/τ (GN ) (full
squares, right scale). Each point of the τ (GN ) curves was obtained as
an average over 106 samples. For the Union Jack lattice we display
the ratio τ ∗(GN )/τ (GN ) both for Cd with d = dmax = 8 and d = d̄ =
1
2 (dmin + dmax) = 6; the plots of τ ∗(GN ) for these two values of d are
indistinguishable on the left scale of the graph and appear as a single
line passing through the open squares.
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FIG. 3. (Color online) Histogram plot of 106 cover times sampled
for a square lattice of N = 1280 × 1280 vertices. There are 23 bins
in the histogram, with the leftmost bin centered at 70 × 106 and
the righmost bin centered at 180 × 106. The vertical dashed lines
indicate the empirical mean m and ±s intervals. The continuous
line corresponds to the adjusted beta PDF (4) with shape parameters
α = 5.759 ± 0.008 and β = 18.04 ± 0.02. The empirical cumulative
distribution function is also shown (open squares, right scale).

It can be argued that our data were taken too short from
the limit N → ∞. However, if the conjecture is to be saved,
that would mean a nonmonotone convergence of the ratios
τ ∗(GN )/τ (GN ), something that our data do not indicate.

Any case for the average degree d̄ given by Eq. (3) would
be welcome. It may be that the situation here is similar to
that of the determination of the critical percolation threshold
pc, for which good approximations and scaling relations were
found based on the mean Euler characteristic of the critical
percolation patterns [29]. It should be remarked, however, that
for the critical percolation threshold problem one does not
expect to find a “universal” formula in terms of the maximal
vertex degree d alone, simply because of the empirical
observation that several different lattices with the same d have
disparate pc. Notice that the constant Cd in Eq. (2) is closely
related with the filling factor f introduced by Suding and Ziff
in order to relate pc to the number of sites per unit area of
Archimedean lattices [33],

f = π

[∑
i

ai cot

(
π

ni

)]−1

, (5)

where (na1
1 ,n

a2
2 , . . .) is the Grünbaum-Shephard representation

of the Archimedean lattice—e.g., the square lattice is denoted
by (44), while the elongated triangular lattice is denoted by
(33,42) [34]. The investigation of different planar graphs of
same degree (regular or average)—e.g., for d = 4, the square,
kagomé, and Archimedean (3,4,6,4) lattices—may help to
elucidate the above questions of geometric character.

Finally, our exploratory analysis of the PDF of the cover
times of the square lattice in Sec. III is admittedly jejune; that

TABLE I. First moments of the empirical probability distribution
function of the cover time of the square lattice depicted in Fig. 3.

Mean m 107 111 924
Variance s 12 308 707
Skewness g1 0.91374
Excess kurtosis g2 1.51095
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was not the focus of this work. We were nevertheless able
to establish that the empirically observed PDF is not normal,
with a leptokurtic shape (g2 > 0). A proper investigation of
the PDF of the cover times of planar graphs—e.g., by model
selection among candidate left and right limited, univariate
distributions—is still lacking and provides an interesting
direction for further statistical work on cover times.
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