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Superstatistics as the statistics of quasiequilibrium states: Application to fully developed turbulence
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In nonequilibrium states, currents are produced by irreversible processes that take a system toward the
equilibrium state, where the current vanishes. We demonstrate, in a general setting, that superstatistics arises
when the system relaxes to a (stationary) quasiequilibrium state instead, where only the mean current vanishes
because of fluctuations. In particular, we show that a current with Gaussian white noise takes the system to a
unique class of quasiequilibrium states, where the superstatistics coincides with Tsallis escort q distributions.
Considering the fully developed turbulence as an example of such quasiequilibrium states, we analytically deduce
the power-law spectrum of the velocity structure functions, yielding a correction to the log-normal model, which
removes its shortcomings with regard to the decreasing higher order moments and the Novikov inequality, and
obtain exponents that agree well with the experimental data.
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I. INTRODUCTION

Recent experimental and numerical studies have shown
that many complex systems, and of particular relevance
to this work, the fully developed turbulent system [1–7],
exhibit non-Gibbsian distributions that are well fit by Tsallis
q distributions [8]. When these distributions are involved,
physical mean values correspond to the q average values,
which are averages over the postulated escort q distributions.
The physical interpretation of the escort distributions is not
clear, however. It is crucial to address from a physical
foundation the question of why such generalized distributions
arise in order to understand the behavior of these complex
systems. Despite several attempts [4,9–11], a comprehensive
answer to this question is still lacking. In this report,
we approach the problem from a general perspective and
consider, as an application, the example of fully developed
turbulence.

We consider a macroscopic system with a relevant extensive
variable X and a conjugated (entropic) intensive variable
P = ∂XS, where S(X, . . .) is the system’s entropy. Let X0, P0,
S0 represent the same quantities for the system’s environment,
which acts as a reservoir. The closed composite system has
entropy Stot = S + S0, and the closure condition requires that
X + X0 = Xtot (const.). If X and X0 are otherwise uncon-
strained, their equilibrium values X̃ and Xtot − X̃ are obtained
by the vanishing of the affinity [12] (the thermodynamic
force) F = ∂XStot = P − P0. Thus, if F is zero the system
is in equilibrium, but if F is nonzero an irreversible process
occurs, producing a current Ẋ that takes the system toward
the equilibrium state (the dot denotes time derivative). Since
the current vanishes if the affinity vanishes, we can expand the
current in terms of the affinity with no constant term. Assuming
sufficiently small affinities throughout, we have Ẋ = �F ,
where � > 0 is called the Onsager kinetic coefficient. This
relationship between the current and the affinity characterizes
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the relaxation flow of the system. Thus, since

Ḟ = (∂XP ) �F ≈ ∂XP |X̃ �F (1)

the equilibrium state, F = 0, is an attractor provided ∂XP |X̃ =
∂2
XS|X̃ < 0. This is, of course, the stability criterion, which

implies that the response function (like the heat capacity, the
compressibility, and so on) is positive.

In the equilibrium state, the probability distribution func-
tion (pdf) of the intensive variable, therefore, is ρ0(P ) =
δ(P − P0). However, the extensive variable is distributed
about the mean equilibrium value X̃ with a pdf p0(X) ∝
w(X)e−P0X (kB = 1), where w(X) is the density of states.
This standard result, which forms the basis of equilibrium
statistical mechanics, is obtained by applying the principle
of equal probability of microstates to the closed composite
system and imposing the equilibrium condition P = P0. The
latter condition marginalizes the P values, implying that the
equilibrium distribution, p0(X), is in fact a marginal pdf.
If, instead of the equilibrium state, the current takes the
system to a different attractor where the intensive variable
is distributed about P0, we will have a stationary (a quasi-
or metaequilibrium) state whose P pdf, ρ(P ), must be used
to marginalize the P values. In such quasiequilibrium states,
the intensive variable fluctuates about the mean equilibrium
value so that in these states only the mean current is zero.
This suggests that a fluctuating current (due to the underlying
noise-generating mechanisms) drives the system to such
quasiequilibrium states, where it attains zero mean value. For
simplicity we consider systems with a constant density of
states so that p0(X) = P0e

−P0X and 〈X〉0 = X̃ = 1/P0. [The
formulation can be easily extended to the more general case
of w(X) ∝ Xα−1 (α > 0), where our central result in the last
section, Eq. (10), is similarly shown to follow just the same.]
The (marginal) quasiequilibrium X pdf would then be given
by the Bayes rule according to

p(X)=
∫ ∞

0
Pe−PXρ(P )dP =

∫ ∞

0
e−PXρ

(
ln

P

P0

)
dP, (2)

which reduces to the equilibrium X pdf p0(X) if ρ(P ) =
ρ0(P ) = δ(P − P0), as it should.
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Generalized distributions of the form (2), which have been
called superstatistics [10,13], have found many applications in
diverse physical problems [6,11,14–16]. From our perspective,
therefore, superstatistics is the most natural extension of
the equilibrium Gibbs-Boltzmann statistics to (stationary)
quasiequilibrium sates, where only the mean current vanishes
because of fluctuations. In complex systems, we can assume
that these fluctuations arise from the interaction of a very large
number of independent microscopic degrees of freedom with
identical stochastic properties. The central limit theorem then
implies that the fluctuations are Gaussian distributed. Naturally
assuming that they are temporally uncorrelated too, we have a
Gaussian white noise that contains all frequencies.

We show that adding a Gaussian white noise to the current
changes the attractor and yields a new attractor state with
ρ(P ) as the � distribution, resulting in the Tsallis escort
q distributions as the superstatistics. In these states, the
affinity and the current are Gaussian distributed with zero
mean. In other words, we show that a current with Gaussian
white-noise fluctuations takes the system to a unique class
of quasiequilibrium states, where it attains the ubiquitous
Gaussian distribution with zero mean and the superstatistics
coincides with the Tsallis escort q distributions. This explains
the ubiquity and the physical significance of escort distribu-
tions and, hence, of the q averages as quasiequilibrium mean
values.

The noise may be generated, in externally driven complex
systems, for example, by the variation of a control parameter.
The resulting change in the attractor and the appearance of a
new quasiequilibrium behavior associated with the superstatis-
tics is then an instance of bifurcation. Regarding turbulent
flow as such, the control parameter is the Reynolds number
and/or the boundary roughness [17,18], the relevant extensive
variable is the kinetic energy (per unit mass) associated with a
given spatial scale, and the current is its rate of change per unit
time due to dissipation. The current, being scale dependent,
fluctuates in a scale-dependent manner (intermittency) as
the value of the control parameter is increased, driving the
system to a quasiequilibrium state where the mean dissipation
vanishes at intermediate scales. The new behavior associated
with this quasiequilibrium state, which is identified with the
fully developed turbulence state, is the power-law behavior of
the velocity structure functions. We analytically deduce the
power-law spectrum, yielding a correction to the log-normal
model which removes its shortcomings with regard to the
decreasing higher order moments and the Novikov inequality
[19] and obtain exponents that agree well with the available
data.

II. FLUCTUATING CURRENT: RELAXATION TO
QUASIEQUILIBRIUM STATE

Introducing the response function C0 = −∂P X|P0 > 0, we
write Eq. (1) as

Ḟ = − 1

τ
F, (3)

where τ = C0/� is the relaxation time of the system. The
unique stationary solution of this equation is F = 0, which
corresponds to the equilibrium state at t � τ . Equation (3) can

be cast as an equation for P instead. By writing P
P0

= 1 + F
P0

,
we have

d

dt
ln

P

P0
= − 1

τ

F

P0

[
1 − F

P0
+

(
F

P0

)2

− · · ·
]

= − 1

τ

(
P

P0
− 1

)
(4)

to first order in the (small) affinity. Adding the Gaussian white
noise, ξ (t), with the properties

〈ξ (t)〉 = 0, 〈ξ (t) ξ (t ′)〉 = 2Dδ(t − t ′) (5)

(D > 0) to the current Ẋ = �F is equivalent to adding it to
F [with D in (5) redefined], which, in turn, is equivalent to
adding it to the right-hand side of Eq. (4) (with D redefined
again). We, thus, arrive at the following stochastic differential
equation for P :

d

dt
ln

P

P0
= − 1

τ

(
P

P0
− 1

)
+ ξ (t). (6)

This equation yield a new attractor (stationary) state, as we
now show. To this end, it is more convenient to cast (6) in
the form of a standard Langevin equation by introducing v =
ln P

P0
. We have v̇ = f (v) + ξ (t), where f (v) = − 1

τ
(ev − 1).

The corresponding Fokker-Plank equation is [20] ∂tρ(v,t) +
∂vj (v,t) = 0 where j (v,t) = f (v)ρ(v,t) − D∂vρ(v,t). The
stationary solution, ρ(v), at t � τ satisfies j = 0, yielding

ρ

(
ln

P

P0

)
=

[
�

(
1

q − 1

)]−1 (
1

q − 1

P

P0

) 1
q−1

× exp

(
− 1

q − 1

P

P0

)
, (7)

where q − 1 = Dτ > 0. The P pdf ρ(P ) = 1
P

ρ(ln P
P0

) is,
therefore, the well-known � distribution. Its mean is P0 and
its variance, (q − 1)P 2

0 , vanishes as D → 0 (q → 1), that is,
as the fluctuations disappear, recovering the pdf δ(P − P0)
of the equilibrium state. This identifies the noise as the sole
agent of driving the system toward the quasiequilibrium state.
Note also, by similarly writing the standard Langevin equation
(3) (with the noise added, of course) as a Fokker-Plank
equation, that the quasiequilibrium affinity, and hence the
current, are Gaussian distributed about zero, approaching the
δ function as the fluctuations disappear. By substituting (7) in
(2), after a simple integration we obtain the quasiequilibrium
superstatistics as p(X) = P0 [1 + (q − 1)P0X]−

q

q−1 , which
coincides with the Tsallis escort q distribution, p(q)(X). Of
course, q = 1 + Dτ � 1, where for q = 1 the distribution
reduces to the equilibrium exponential distribution. Note that
the escort distribution itself has emerged as the physically
relevant pdf and is not postulated via the direct Tsallis q
distribution. Consequently, the quasiequilibrium mean value
〈X〉 = ∫ ∞

0 Xp(X)dX = 1
(2−q)P0

, which exists provided q < 2
(thus, 1 � q < 2), is inherently a q average. Finally, introduc-
ing the normalized variable x = X/〈X〉, we write

p(x) = 1

2 − q

[
1 +

(
q − 1

2 − q

)
x

]− q

q−1

(8)
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and note that X may be taken to denote an extensive quantity
per unit mass, when appropriate. [We note, in passing, that
the physical significance of the extensivity parameter, q,
coincides with interpretation given in Ref. [9]. There, the
authors obtain the direct q distributions by considering fluctu-
ations of the parameters of the usual exponential distribution.
Their postulated Langevin equation (11), which yields the �

distribution, coincides with our equation (6), provided we
make the identification χ = 1/P and φ = 1/τP0. However,
the integrand of their integral expression (4) slightly differs
from ours in equation (2).]

III. FULLY DEVELOPED TURBULENCE AS A
QUASIEQUILIBRIUM STATE

In a turbulent flow, the current responsible for relaxation is
the rate of change of the kinetic energy per unit mass associated
with a given spatial scale. This is because of dissipation, which
causes a difference between the influx from the larger scales
and the outflux to the smaller ones. For sufficiently high values
of the control parameter (Reynolds number and/or boundary
roughness), the system relaxes to a stationary state where the
mean in- and outfluxes are equal at finite intermediate scales
and dissipation occurs at a mean rate ε only at the smallest
(Kolmogorov) scale. This state, which is the state of vanishing
mean current, corresponds to the quasiequilibrium state of
fully developed turbulence.

Let u(r) denote the longitudinal velocity difference in a
turbulent flow as measured on an intermediate length scale r .
In the simplest model, we can take 1

2u2 as a measure of the
kinetic energy (per unit mass) of the flow associated with
scale r . We, therefore, take X(r) = 1

2u2(r) as the relevant
(scale-dependent) extensive quantity (per unit mass) with its
rate of change, Ẋ(r), as the (scale-dependent) current. Were
intermittent fluctuations not present in the current, the turbulent
system would relax to the equilibrium state with mean energy
X̃(r) = 1

2 〈u2(r)〉0, and the fully developed turbulent state
would be an equilibrium state. The normalized variable is,
thus, x(r) = u2/〈u2〉0 and the equilibrium pdf p0(x) = e−x

determines the distribution of |u| (−∞ < u < ∞) according
to p0(|u|) = 2|u|

〈u2〉0
e−|u|2/〈u2〉0 . This is the pdf for u irrespective

of its sign, that is, p0(|u|) = p0(u) + p0(−u), and so the
even part of the u pdf, p0(u), is only obtained; the odd
part (which must satisfy the exact constraint imposed by
the Kolmogorov’s four-fifths law [21] for the third moment)
remains undetermined. This implies that we can obtain only
the even moments of the velocity differences. However, the
moments are sometimes defined in terms of |u| instead of u,
in which case the even moments coincide. Although there has
been no theoretical justification for the spectrum of the odd
moments thus obtained, experimental and numerical evidence
suggests that the spectrum does not change significantly
[22–25]. In particular, the third moment of |u| has a scaling
exponent that is close to unity, which is curious since the
four-fifths law pertains to u and not |u|. This has motivated the
very useful notion of extended self-similarity (ESS) [22,24],
according to which moments are conveniently plotted against
the third moment as a log-log plot. As we see, using the
absolute velocity differences, our theory drives an exponent

very close to unity for the third moment, thus providing an
explanation for the ESS. Hence (m = 1,2, . . .)

〈|u|m〉0 =
∫ ∞

0
|u|mp0(|u|)d|u| = �

(m

2
+ 1

)
〈u2〉m/2

0 . (9)

Since current fluctuations are ignored, the free parameter of
the pdf can be determined à la Kolmogorov [26] as 〈u2〉0 ∼
(εr)2/3, to leading order. Then 〈|u|m〉0 ∼ (εr)m/3, which is
the expected Kolmogorov power-law spectrum. Therefore,
the Kolmogorov spectrum would apply if the fully developed
turbulent flow were an equilibrium phenomenon.

Let us now consider adding a Gaussian white noise, which is
anticipated at sufficiently high values of the control parameter,
to the current Ẋ(r). Since the current is scale dependent, we
consider scale-dependent fluctuations by taking D = D(r)
so that q(r) = 1 + D(r)τ now depends on the scale. In the
presence of such intermittent fluctuations, the system relaxes
in the quasiequilibrium state of fully developed turbulence
where the mean dissipation vanishes (at intermediate scales),
yielding zero mean current. The quasiequilibrium pdf is
the (scale-dependent) escort distribution (8), which similarly
implies

p(|u|) = 2|u|
(2 − q)〈u2〉

[
1 +

(
q − 1

2 − q

)
u2

〈u2〉
]− q

q−1

.

It has two free parameters, namely, q and 〈u2〉. The moments
are given by

〈|u|m〉 =
∫ ∞

0
|u|mp(|u|)d|u|

= (2 − q)m/2〈u2〉m/2

(q − 1)
m
2 +1

∫ 1

0
dt t

1
q−1 − m

2 −1(1 − t)m/2.

The integral exists provided m < 2(q − 1)−1, which includes
sufficiently large m’s when q is close to unity. We assume this
is the case. Then

1

�
(

m
2 + 1

) 〈|u|m〉
〈u2〉m/2

=
�

(
1

q−1 − m
2

)
�

(
1

q−1

) (
2 − q

q − 1

)m/2

, (10)

which reduces to (9) for q = 1, of course. This will give the
velocity statistics in the fully developed turbulence state. Our
aim is to drive the structure functions in the form

〈|u|m〉 ∼ (εr)m/3
( r

L

)ηm

(11)

to leading order, where L(� r) is the integral length scale and
the proportionality constants are nonuniversal, depending on
the detailed geometry of the turbulent production.

The free parameter, 〈u2〉, is to be determined by (11) with
m = 2, so that

〈u2〉 ∼ (εr)2/3
( r

L

)η2

. (12)

From (10) we have

〈|u|m〉
〈|u|m′ 〉 = �

(
m
2 + 1

)
�

(
m′
2 + 1

) 〈u2〉 m−m′
2

(
2 − q

q − 1

) m−m′
2 �

(
1

q−1 − m
2

)
�

(
1

q−1 − m′
2

)
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which, for m and m′ (m > m′) both odd/even, becomes

〈|u|m〉
〈|u|m′ 〉 = �

(
m
2 + 1

)
�

(
m′
2 + 1

) 〈u2〉 m−m′
2 (2 − q)

m−m′
2

m−m′
2∏

l=1

× [1 −
(

l + m′

2

)
(q − 1)]−1. (13)

Since (2 − q)−1 = q + O[(q − 1)2] = q to leading order, and
the product is

exp

⎧⎪⎨
⎪⎩−

m−m′
2∑

l=1

ln

[
1 −

(
l + m′

2

)
(q − 1)

]⎫⎪⎬
⎪⎭

= exp

{[(
m2

2
+ m

)
−

(
m′2

2
+ m′

)]
q − 1

4
+ O[(q−1)2]

}

= q[( m2

2 +m)−( m′2
2 +m′)]/4,

having used ln q = (q − 1) + O[(q − 1)2], (13) yields

〈|u|m〉 = �
(m

2
+ 1

)
〈u2〉 m

2 qm(m−2)/8, (14)

which checks for m = 2 and reduces to (9) for q = 1, as
it should. For m = 4, we have 〈u4〉/〈u2〉2 = 2q, so that the
(scale-dependent) value of the kurtosis (flatness) determines
the other free parameter, q(r). Using (11), we find

q(r) ∼
( r

L

)−(2η2−η4)
. (15)

Since 2η2 − η4 � 1, q(r) is a slowly varying function of
r in the intermediate scales and, hence, so is the upper
bound mmax(r) = 2(q − 1)−1 on m. Although the reliability
of experimental data rapidly decreases for moments of order
higher than m = 10, a scale-dependent upper bound on the
order is at variance with the general supposition that moments
of all orders exist. However, as we see below, it will serve
to remove the shortcomings of the log-normal model with
regard to its decreasing higher order moments and the Novikov
inequality [19]. Substituting in (14) our expressions for 〈u2〉
and q from (12) and (15), we finally obtain the spectrum (11)
with the intermittency exponents

ηm = − 1
2m(m − 3)η2 + 1

8m(m − 2)(2η2 + η4). (16)

The first term coincides with the prediction of the log-
normal (LN) model [27] (with η2 ≡ μ/9 as the free parameter),
which is known to yield good agreement with experimental
data for moments up to order m = 10. Indeed, if we substitute
the LN value η4 = −2η2 in (16), then the second term vanishes.
Thus, the second term represents deviation from log-normality
and yields corrections to the LN predictions. By denoting the
relative deviation of η4 from its LN value by δ (|δ| < 1), (16)
can be written as

ηm = ηLN
m − 1

4m(m − 2)η2δ. (17)

TABLE I. Comparison of ζm as given by our theory, the LN model,
and experiment.

m Theory LN model Ref. [24] Ref.a [30]

1 0.36 0.36 0.37 –
2 0.69 0.69 0.70 0.71
3 1.00 1 1.00 1
4 1.29 1.29 1.28 1.33
5 1.56 1.56 1.54 1.54
6 1.81 1.8 1.78 1.8
7 2.04 2.02 2.00 2.06
8 2.24 2.22 2.23 2.28
9 2.43 2.4 – 2.41
10 2.59 2.56 – 2.60

aMoments pertain to u and so ζ3 = 1 by assumption.

By writing (11) as 〈|u|m〉 ∼ rζm , the scaling expo-
nents ζm = m/3 + ηm of our “corrected” LN model are,
therefore,

ζm = ζ LN
m − 1

4m(m − 2)η2δ. (18)

Since the LN exponents for higher moments generally fall
below experimentally measured values, we anticipate a nega-
tive δ (for example, δ ≈ −0.08, as given by the She-Leveque
model [28]). For m > mLN

0 = 3
2 + 1

3η2
(≈ 16.5) (for numerical

estimates we use the LN value, η2 ≈ 0.2/9), the scaling
exponents ζ LN

m monotonically decrease with m, implying
the breakdown of the incompressibility approximation in
the fully developed turbulent state [29]. From (18), ζm is a
monotonically increasing function of m provided m < m0 =
2mLN

0 +δ

2+δ
, and for δ < 0 we have m0 > mLN

0 . Therefore, the
exponents ζm increase with m if the slowly varying upper
bound mmax(r) remains sufficiently close to mLN

0 . That is, if
q − 1 remains close to 2/mLN

0 (≈ 0.12), which is consistent
with our assumption that q − 1 � 1. In other words, for
|q(r) − 1 − 2

mLN
0

| � 1, the corrected model (with δ < 0) rids

the LN model of its decreasing higher order moments, yielding
structure functions only up to order [mLN

0 ] ([ ] stands for the
integer part). Then, it will also satisfy the Novikov inequality
ηm + m > 0, which is violated by the LN model. This can

be readily checked using (17) and noting that 6−δ
10−δ

<
mLN

0
2 <

6mLN
0 +δ−6
2+δ

.
Using the tentative values η2 = 0.2/9 and δ = −0.08,

Table I compares ζm up to order m = 10, as given by
our theory [Eq. (18)], the LN model, and the references
[24,30]. The agreement is quite good considering the un-
certainties involved. In particular, we notice the value of
ζ3, which is only slightly larger than the exact value 1
(implied by the four-fifths law for 〈u3〉) in conformance
with 〈|u|3〉 > |〈u3〉| and the data of [24], theoretically
justifying ESS.
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