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Magnitude correlations in global seismicity
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By employing natural time analysis, we analyze the worldwide seismicity and study the existence of correlations
between earthquake magnitudes. We find that global seismicity exhibits nontrivial magnitude correlations for
earthquake magnitudes greater than Mw6.5.
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Recently, a new time domain, called natural time χ ,
has been proposed [1] which has been shown [2] to be
optimal for enhancing the signals’ localization. This result
has been obtained by studying the Tsallis entropy [3] for
q = 2 of the Wigner function in time-frequency space and
reflects that natural time reduces uncertainty and extracts
signal information as much as possible. Natural time analysis
(see below) has been applied to diverse fields like high Tc

superconductivity [4], cardiology [5], statistical physics (e.g.,
an on-off intermittency model [6], multiplicative cascades [7],
and an 1/f model [8]), biological physics [1], as well as for
the case of earthquakes [6,7,9–14] (for a review see Ref. [15]).
For the latter case of earthquakes, the study of their complex
correlations in time, space, and magnitude (m) has been the
object of several recent studies (e.g., see [16–22]).

In a time series consisting of N earthquakes with magni-
tudes mk , k = 1,2, . . . ,N , the natural time χk = k/N serves
as an index [1] for the occurrence of the kth earthquke. It
is, therefore, smaller than, or equal to, unity. For the analysis
of seismicity, the evolution of the pair (χk,Ek) is considered
[9,15], where Ek denotes the seismic energy released during
the kth event. The latter is related [23] to the magnitude
mk by Ek = E0101.5mk , where E0 is a constant related to
the energy units used. On the basis of the pair (χk,Ek),

the normalized power spectrum �(ω) = |
∑N

k=1 Ek exp(iωχk)∑N
n=1 En

|2 =
| ∑N

k=1 pk exp(iω k
N

)|2, where pk = Ek/
∑N

n=1 En and ω is the
natural cyclic frequency, was introduced [1]. �(ω) is a kind
[1,15] of characteristic function for the probability distribution
pk in the context of probability theory. According to the
probability theory, the moments of a distribution and hence
the distribution itself can be approximately determined once
the behavior of the characteristic function of the distribution is
known around zero. For ω → 0, a Taylor expansion of �(ω)
leads to [1,9] �(ω) ≈ 1 − κ1ω

2, where

κ1 =
N∑

k=1

χ2
k pk −

(
N∑

k=1

χkpk

)2

(1)

is the variance of natural time. For critical dynamics, for
example, the seismicity before the occurrence of a main shock
and after the initiation of the seismic electric signal [15,24],
the relation κ1 = 0.070 holds [6,7,10,14].
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The quantity �(ω) for ω → 0 (or κ1) can be considered [9]
an order parameter for seismicity since its value changes
abruptly when a main shock occurs. In a seismic catalog
comprising of W earthquakes, the following procedure is
followed (e.g., see Refs. [9,11,13]): Starting from the first
earthquake, we calculate the κ1 values using N = 6 to 40
consecutive events (including the first one). We next turn
to the second earthquake and repeat the calculation of κ1.
After sliding event by event through the whole earthquake
catalog, this procedure can be followed for n(=W − 39) times,
amounting to n1(=35n) calculated κ1 values. The latter values
enable the construction of the probability density function
(pdf) p(κ1) as well as the estimation of the average value
E(κ1) and the standard deviation σ . For example, upon using
the Southern California Earthquake Catalog comprising of
W = 85 862 earthquakes with m � 2 which occurred during
the period 1981–2003 within the area N37

32 W 122
114 (hereafter

called SCEC), we obtain the pdf p(κ1) depicted with red
plus symbols in Fig. 1. In Ref. [9] the statistical properties
of κ1 (i.e., the order parameter of seismicity in natural
time) have been studied by means of the scaled [25] distri-
bution σp{[E(κ1) − κ1]/σ } [e.g., see the red plus symbols
in Fig. 1(b) for SCEC]. It has been found [9] that the
scaled distributions for different seismic regions collapse
on the same curve, which interestingly exhibits, over four
orders of magnitude, an exponential “tail” similar to that
obtained when studying [25–28] the order parameters of
several equilibrium critical phenomena as well as in nonequi-
librium systems. Such a behavior is strikingly reminiscent
of the one found earlier in the analysis of nonstationary
biological signals including heart rate [29], locomotor activity
[30], etc, where pdf curves obtained for different scales of
observation fall onto a single master curve. The study of
fluctuations of the order parameter of seismicity (i.e., κ1)
in excerpts of regional seismic catalogs before and after
significant main shocks recently revealed [12] the presence
of a pronounced bimodal feature in p(κ1) only before main
shocks. Moreover, it has been shown [13] that in order for the
whole feature of p(κ1) to be reproduced [e.g., see Fig. 1(a)
for SCEC] both the distribution of earthquake magnitudes
as well as long-range temporal correlations between the
magnitudes of successive earthquakes should be taken into
account.

Natural time analysis enables the identification [7,11] and
quantification of magnitude correlations in real seismicity time
series by comparing the value of E(κ1) of the original catalog
with the distribution obtained for E(κ1,shuf) when studying
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FIG. 1. (Color online) (a) The pdf p(κ1) vs κ1 for SCEC and
WWS. (b) The scaled distribution σp(y) vs y = [E(κ1) − κ1]/σ ,
where σ stands for the standard deviation of κ1. The black solid line
corresponds to the scaled distribution of the order parameter for the
2D Ising model of linear dimension L = 256 at (inverse temperature
parameter) β = 0.4707 and has been drawn as a guide to the eye (for
more details, see Ref. [9]).

many randomly shuffled copies of the original catalog. This is
so because it can be shown [7] that when considering a moving
window of N consecutive events

E(κ1) = κ1,M +
N−1∑
j=1

N∑
m=j+1

(j − m)2

N2
Cov(pj ,pm), (2)

where κ1,M is the value of κ1 corresponding to the time
series of the averages μj ≡ E(pj ) of pj , that is, κ1,M =∑N

j=1 (j/N )2 μj − (
∑N

j=1 μjj/N )2, and Cov(pj ,pm) stands
for the covariance of pj and pm defined as Cov(pj ,pm) ≡
E[(pj − μj )(pm − μm)], whereas if we shuffle randomly the
seismicity time series μj becomes equal to 1/N and the
average value of κ1,shuf amounts [7] to

E(κ1,shuf) = κu

(
1 − 1

N2

)
− κu(N + 1)Var(p), (3)

where κu = 1/12 and Var(p) = Var(pj ) = E[(pj − 1/N)2]
independent of j . When studying long-term seismic catalogs
by a sliding window of N earthquakes, it is improbable to

obtain a trend in μj , that is, μj ≈ 1/N , and hence κ1,M ≈
κu(1 − 1/N2) in Eq. (2), leading to

E(κ1) − E(κ1,shuf)

≈ κu(N + 1)Var(p) +
N−1∑
j=1

N∑
m=j+1

(j − m)2

N2
Cov(pj ,pm).

(4)

Thus, the difference between the actual value of E(κ1) for
a seismic catalog from the distribution of E(κ1,shuf) obtained
by randomly shuffling the same catalog mainly results from
the (second order) correlations between earthquakes in natural
time. For the case of SCEC, it has been found [11] that the
magnitude correlations depend on the magnitude threshold
Mthres used for the construction of the seismic catalog. For
each Mthres, the catalog was randomly shuffled and the
distribution of E(κ1,shuf) was determined. It turned out that for
the Mthres considered (see Fig. 2), the distribution of E(κ1,shuf)
was a Gaussian distribution N [μ(Mthres),σ (Mthres)] for which
both the average value μ(Mthres) and the standard deviation
σ (Mthres) depended on Mthres. Since E(κ1,shuf) was a Gaussian
random variable, the presence of temporal correlations could
be quantified by finding the probability that the value E(κ1)
of the original catalog results from N [μ(Mthres),σ (Mthres)].
Equivalently, by finding the z score

z = E(κ1) − μ(Mthres)

σ (Mthres)
, (5)
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FIG. 2. (Color online) The z score of E(κ1) of the worldwide
seismicity (WWS red circles) together with that corresponding to the
SCEC data (cyan plus), discussed in Ref. [11], as a function of the
magnitude threshold Mthres. Both z scores are calculated with respect
to the Gaussian distribution N [μ(Mthres),σ (Mthres)] obtained from
the analysis of E(κ1,shuf) that results from randomly shuffled copies
of the original earthquake catalogs. The intervals corresponding to
the probability P to observe the correlation present in the original
sequence of events by chance are bounded by the horizontal lines
for P = 10−3, 10−2, 10−1, and 0.33. The black solid-dotted line
corresponds the z scores obtained when a randomly shuffled copy of
WWS is studied by the same procedure. For the reader’s convenience,
the inset depicts the results in the range Mthres = 5 to 7 in an expanded
scale.
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FIG. 3. (Color online) The average value E(κ1) for the worldwide
seismicity (WWS circles) vs the magnitude threshold Mthres.

if the z score differs markedly from zero, this indicates the
presence of temporal correlations. The results, which are
reproduced here by the cyan plus symbols in Fig. 2, showed
that magnitude correlations do exist in SCEC but tend to
decrease with increasing Mthres. Moreover, for Mthres > 3.1
no definite results about the existence of correlations could be
statistically inferred [11].

The results mentioned so far refer to regional earth-
quake catalogs. In order to investigate the existence of
magnitude correlations on a global scale, we analyzed in
natural time the worldwide seismicity from the Harvard
Global Centroid Moment Tensor Catalog as reported by
the United States Geological Survey (to be called WWS
hereafter). A minimum magnitude threshold Mthres = 5.0
was used and resulted in W = 29 223 earthquakes during
the period 1 January 1977 to 30 September 2009. For the
global seismicity the pdf p(κ1) is depicted with green circles
in Fig. 1(a) and certainly differs from that of SCEC (cf.
recall that in Ref. [9] the regional seismicities of Japan
and SCEC have been found to coincide, see also below).
Albeit, the scaled distribution σp {[E(κ1) − κ1] /σ } depicted
in Fig. 1(b) exhibits features similar to that of SCEC, that
is, it collapses more or less on the black line, which was
drawn on the basis of the 2D Ising model as a guide to
the eye.

We now investigate the presence of (temporal) magnitude
correlations in WWS by considering various Mthres = 5.0
to 7.5 (cf. for Mthres = 7.5 there are only 127 earthquakes
in the catalog). The values of E(κ1) versus the Mthres

are shown in Fig. 3. For each Mthres, n2 = 103 randomly
shuffled copies of the catalog were studied in natural time
and the distribution of E(κ1,shuf) was found (by means of
the Kolmogorov-Smirnov-Lilliefors test) to be a Gaussian
distribution N [μ(Mthres),σ (Mthres)] up to Mthres = 7.0. As
in the case of SCEC, the average value μ(Mthres) and
the standard deviation σ (Mthres) are both Mthres dependent.
They are given together with the number W of earth-
quakes for each Mthres in Ref. [31]. The standard error
δμ(Mthres)(≡σ (Mthres)/

√
n2) of the mean μ(Mthres) and the

standard error δσ (Mthres) of the standard deviation σ (Mthres)
are also inserted in Ref. [31], we note that for normally
distributed data [32]: δσ (Mthres) = σ (Mthres)/

√
2(n2 − 1) (see

also Refs. [33,34]). An inspection of these values shows
that the maximum relative error for both parameters
does not exceed 5%. Following the procedure described
above for SCEC, the z scores for WWS are depicted in
Fig. 2 with red circles. We observe that for Mthres � 6.5, the
probability to obtain the observed value of E(κ1) by chance
from a randomly shuffled copy of the same catalog falls
below 10% and may reach values close to 1%, for example,
for Mthres = 6.9. As an additional check of the method,
we followed exactly the same procedure for a randomly
shuffled copy of WWS and the calculated z scores are also
shown (with the black solid-dotted line) in Fig. 2. They
fall within the 33% margin and no significant fluctuations
are present even for the large (Mthres � 6.5) magnitude
thresholds. All the above results indicate the presence of
statistically significant correlations in the global seismicity.
In order to exclude the possibility that this phenomenon
is due to aftershocks, we examined the pairs of consec-
utive earthquakes that occurred within 10 deg difference
in latitude (δx) and longitude (δy), that is, |δx| + |δy| <

10◦, for which the Båth law (stating that the difference in
magnitude 	m between a main shock and its largest detected
aftershock is approximately a constant independent of the
main shock magnitude, typically [35] 	m ≈ 1.2) was valid.
We found only three pairs out of the 529 earthquakes in the
catalog corresponding to Mthres = 6.9. Moreover, we note
that in this catalog only 16 earthquakes had magnitudes
larger than or equal to Mthres + 	m = 8.1 and thus could
produce strong aftershocks to be included in the catalog.
Interestingly, the values of E(κ1) that correspond to the
range of Mthres = 6.5 to 7.0 lie from 0.064 to 0.070 (see
Fig. 3).

Finally, let us comment on the fact that although the
scaled distributions of SCEC and WWS exhibit a similar
exponential tail [see Fig. 1(b)], their p(κ1) differ as shown
in Fig. 1(a). This can be understood in the following sense:
Fig. 2 shows that the results for SCEC—which were obtained
for Mthres = 2—exhibit significant temporal correlations (see
also Ref. [13]), whereas those of WWS for Mthres = 5 do not.
Thus, p(κ1) in Fig. 1(a) differ because, as mentioned, both the
distribution and the temporal correlations between magnitudes
have to be taken into account [13] to reproduce exactly the
same pdf. The exponential tail of the scaled distribution,
on the other hand, has been shown to remain unchanged
even when randomly shuffling the earthquake catalogs, see
Fig. 4 of Ref. [9]. An additional point that corroborates
the above explanation is the following: whereas the most
probable value κ1,p(≈0.066) of κ1 for SCEC differs [11]
from that of a randomly shuffled copy of the catalog, the
value of κ1,p(≈0.058) for WWS [see Fig. 1(a)] practically
coincides with the value proposed [11] for randomly shuffled
earthquake data, that is 21.5/b/[3(1 + 21.5/b)2] see their Eq. (3),
when substituting the maximum likelihood estimate [36] of
the b value in the Gutenberg-Richter law for the WWS
data.

In summary, upon employing natural time analysis
in the worldwide seismicity we found statistically sig-
nificant temporal correlations between earthquake magni-
tudes when considering magnitude thresholds Mthres = 6.5
to 7.0.
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