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Regulation by small RNAs via coupled degradation: Mean-field and variational approaches
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Regulatory genes called small RNAs (sRNAs) are known to play critical roles in cellular responses to changing
environments. For several sRNAs, regulation is effected by coupled stoichiometric degradation with messenger
RNAs (mRNAs). The nonlinearity inherent in this regulatory scheme indicates that exact analytical solutions
for the corresponding stochastic models are intractable. Here, we present a variational approach to analyze
a well-studied stochastic model for regulation by sRNAs via coupled degradation. The proposed approach is
efficient and provides accurate estimates of mean mRNA levels as well as higher-order terms. Results from the
variational ansatz are in excellent agreement with data from stochastic simulations for a wide range of parameters,
including regions of parameter space where mean-field approaches break down. The proposed approach can be
applied for quantitative modeling of stochastic gene expression in complex regulatory networks.

DOI: 10.1103/PhysRevE.84.021928 PACS number(s): 82.39.Rt, 87.10.Mn, 87.17.Aa

I. INTRODUCTION

A new paradigm for cellular regulation has emerged in
recent years with the discovery of novel noncoding genes
called small RNAs (sRNAs). In bacteria, sRNAs often function
as global regulators that mediate cellular adaptation to chang-
ing environments [1]. In higher organisms, the corresponding
genes (microRNAs) are known to play key roles in the
regulation of critical processes, such as development, stem cell
pluripotency, and cancer [2,3]. It has been proposed that one of
the key functions of sRNAs in controlling cellular processes
is to regulate the variability (noise) in gene expression [3].
Recent experimental developments have led to approaches
for quantifying such variability using single-molecule mea-
surements of messenger mRNA (mRNA) levels [4]. These
technological advances have now made possible experimental
studies that analyze the roles of sRNAs in noise regulation
during important cellular processes. Correspondingly, there
is a need for theoretical approaches that complement such
experimental efforts to enable a quantitative understanding of
different mechanisms of sRNA-based regulation.

While the molecular mechanisms of sRNA-mediated regu-
lation continue to be investigated, one established mechanism,
representative of several bacterial sRNAs, corresponds to
binding with mRNAs followed by coupled stoichiometric
degradation [5]. An important challenge for current research
is to analyze how this regulatory mechanism impacts the vari-
ability of gene expression across a population of cells. Several
recent theoretical studies [6–12] have analyzed models based
on the corresponding reaction scheme [shown in Fig. 1(a)]. The
nonlinearity inherent in this reaction scheme implies that exact
analytical solutions for the corresponding stochastic model
are intractable; thus approximate analytical approaches are
needed. Previous theoretical studies have primarily focused on
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mean-field (MF) approaches and on steady-state distributions
using expansions around MF solutions. However, MF ap-
proaches are not accurate when we have a combination of non-
linear reaction rates (due to an interaction with small RNAs)
and low mRNA/sRNA levels, which point to the need for the
development of alternative analytical approaches. Some recent
approaches that go beyond the MF approximation involve
methods for estimating the moments from the master equation
[13,14]. It should further be noted that this model gives rise
to a nonequilibrium stationary state for which the well-known
detailed balance criterion is not valid. Therefore, as with many
biological processes, this model is representative of the broader
class of nonequilibrium processes for which it is desirable to
develop analytical approaches that go beyond MF approaches.

In this paper, we analyze stochastic models of sRNA-based
regulation via coupled degradation [as shown in Fig. 1(a)] .
We first discuss the MF approximation, which corresponds to
neglecting mRNA-sRNA correlations, and define dimension-
less variables that are useful in quantifying deviations between
MF results and data from stochastic simulations. To go beyond
MF, we use a variational approach which has been successfully
applied to gene regulatory networks in recent work [15–18].
Within this approach, we present a general ansatz for the
steady-state probability distribution which, at the simplest
level, reduces to the MF approximation. At the next level, the
variational ansatz gives results that are in excellent agreement
with data from simulations for the mean and variance of the
regulated mRNA distribution.

II. MASTER EQUATION AND MEAN-FIELD APPROACH

We begin by considering the kinetic scheme presented in
Fig. 1(a). The probability distribution of mRNA and sRNA
levels per cell, Pm,s(t), obeys the master equation

∂tPm,s = kmPm−1,s + ksPm,s−1 + μm(m + 1)Pm+1,s

+μs(s + 1)Pm,s+1 + γ (m + 1)(s + 1)Pm+1,s+1

− (km + ks + μmm + μss + γms) Pm,s, (1)
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FIG. 1. (Color online) (a) Kinetic scheme for regulation of mRNA
by small RNAs with coupled degradation rate γ . (b) Ratio X =
〈m〉/nm, obtained from simulation data, is plotted as a function of nm

and ns . Parameters are chosen such that εm = εs = 1 and γ = 1. For
nm,ns � 1, X converges toward the MF prediction (X � 0.618).

where kj , μj (j = m,s), and γ are the parameters defined
in Fig. 1(a). We will focus on the stationary distribution,
denoted by P ∗

m,s . It is convenient to define the following set of
independent dimensionless parameters

εm = ksγ

μmμs

, εs = kmγ

μmμs

, nm = km

μm

, ns = ks

μs

. (2)

From the master equation (1), we derive the following exact
equations

∂t 〈m〉 = km − μm〈m〉 − γ 〈ms〉, (3)

∂t 〈s〉 = ks − μs〈s〉 − γ 〈ms〉. (4)

In the stationary state, we can explicitly relate the average
mRNA and sRNA levels to the correlation term 〈ms〉∗ [19,20]
via

1

εm

(
1 − 〈m〉∗

nm

)
= 1

εs

(
1 − 〈s〉∗

ns

)
= 〈ms〉∗

nmns

, (5)

where 〈. . .〉∗ denotes the stationary average. More generally,
moments at one level are coupled to higher-order moments
due to the nonlinear interaction term. This hierarchy makes
the exact solution of the master equation intractable. Defining

X = 〈m〉∗
nm

, Y = 〈s〉∗
ns

, and C = 〈ms〉∗
〈m〉∗〈s〉∗ , (6)

Eq. (5) leads to

1 − X

εm

= 1 − Y

εs

= CXY. (7)

The traditional MF approximation consists of neglecting
correlations through the substitution 〈ms〉∗ → 〈m〉∗〈s〉∗. This
assumption thus corresponds to C = 1 and leads to

εmXY + X − 1 = 0, εsXY + Y − 1 = 0. (8)

Comparing Eqs. (5) and (7), we see that the exact means
[i.e., solutions of Eq. (5)] are generated by the MF solutions
considered with the rescaled interaction parameter γ ′ = Cγ .
Determination of C can therefore provide accurate estimates
of the mean mRNA and sRNA levels. The ratio C is also an
indicator of the accuracy of MF results: the MF is a good
approximation when C � 1, whereas deviations from unity

indicate that better approximations are needed. Furthermore,
note that X and Y are, in general, functions of the four
parameters εm, εs , nm, and ns ; however the MF approximation
(7) predicts that both quantities depend only on εm and εs . It
follows that MF theory breaks down in regions of parameter
space where X and Y depend on the parameters nm and ns (for
fixed εm and εs). These regions are indicated by significant
deviations between the exact ratio X (Y ) and the solution λ+
(λ−) of Eq. (8).

We now analyze deviations of the MF results from stochas-
tic simulations data obtained using the Gillespie algorithm
[21]. The ratios X and C are plotted in Figs. 1(b) and 2(a)
respectively. These data are presented as a function of nm and
ns , keeping εm and εs constant. The figures indicate that both
quantities converge toward the MF predictions in the limit
ns,nm � 1 (X → 0.618 and C → 1). From Eq. (7), it can be
seen that deviations of the exact value of X from the mean-field
predictions are driven by the deviations of C from the MF
predictions. We see that as C → 1 one has X → λ+, i.e., the
mean-field prediction becomes exact. In other words, C and
X behave the same way. More significantly, the data shows
that MF is not a good approximation for small nm and ns . This
is important to note since, in several cellular systems, mRNA
abundances can be low (i.e., nm is small) [22]. This indicates
that more accurate approximations are needed in such cases.

Furthermore, in the uncorrelated approximation, the sta-
tionary probability distribution can be written as the product
of Poisson distributions

P ∗
m,s ≈ �λ+(m) × �λ−(s), (9)

where �x(n) = e−xxn/n!. Defining the marginal distributions
P ∗

m = ∑
s P ∗

m,s and P ∗
s = ∑

m P ∗
m,s , the ratios

dm = 〈m〉∗
〈m2〉∗ − (〈m〉∗)2

, ds = 〈s〉
〈s2〉∗ − (〈s〉∗)2

(10)

measure deviations between the marginals (P ∗
j , j = m,s)

and the simple Poisson distribution. Again, deviations of
D = dsdm from unity reveal that both marginal probability
distributions cannot be approximated by the Poisson dis-
tribution. In Fig. 2(b), stochastic simulations data indicate
that D deviates significantly from 1 for large nm and ns .
This observation implies that higher-order terms, such as
〈m2〉 and 〈s2〉, cannot be obtained using the MF prediction
〈j 2〉 − 〈j 〉2 = 〈j 〉 (j = m,s), even in regions of parameter
space for which the mean values are given accurately by the
MF approximation. From the master equation, in the stationary
state, one can derive the following exact equation

〈m2〉∗ = km

μm

(〈m〉∗ + 1) − γ

μm

〈m2s〉∗, (11)

which indicates that it is only in regions of parameter
space where 〈m2s〉∗ � 〈m2〉∗〈s〉∗ that the uncorrelated (MF)
approximation can give an accurate estimate of the variance
(even assuming that the MF result for the mean is accurate).
In regions of parameter space such that X and C match the
MF solution, the condition 〈m2s〉 � 〈m2〉〈s〉 is not necessarily
a good approximation, hence the discrepancy for D. Interest-
ingly, it is for small parameter values nj (j = m,s), for which
the MF approximation does not give accurate values, that D
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FIG. 2. (Color online) Stationary value of (a) C = 〈ms〉/〈m〉〈s〉
and (b) D = dmds , obtained from simulation data, plotted as a
function of nm and ns . We keep εm = εs = 1 and γ = 1.

approaches 1. This indicates that the Poisson distribution is in
some way embedded in the structure of P ∗

m,s .

III. VARIATIONAL APPROACH

A. Method

Based on the preceding analysis, it seems natural to
approximate P ∗

m,s as a superposition of Poisson distributions.
This approximation can be implemented using the variational
method introduced by Eyink [23], combined with the quan-
tum Hamiltonian formalism of the master equation [15,16].
Following the mapping outlined by Doi [24], we first define
the state vector |m,s〉 of m and s mRNA and sRNA macro-
molecules, respectively. Following the mapping outlined by
Doi [24], the operators a† (a) and b† (b) associated with the
creation (annihilation) of mRNA and sRNA respectively, are
introduced:

a†|m,s〉 = |m + 1,s〉, (12)

b†|m,s〉 = |m,s + 1〉, (13)

a|m + 1,s〉 = (m + 1)|m,s〉, (14)

b|m,s + 1〉 = (s + 1)|m,s〉. (15)

They obey the commutation relation [a,a†] = [b,b†] = 1.
From the normalized vacuum state |0,0〉, any state |m,s〉 is
generated via

|m,s〉 = (a†)m(b†)s |0,0〉, (16)

with 〈m,s|m′,s ′〉 = δm,m′δs,s ′m!s!. Let us now define |ψ〉(t) by

|ψ〉(t) =
∑
m,s

Pm,s(t)|m,s〉, (17)

and rewrite the master equation (1) under the compact form
∂t |ψ(t)〉 = −L|ψ(t)〉 with

L = km + ks + μma†a + μsb
†b + γ a†ab†b

− (kma† + ksb
† + μma + μsb + γ ab). (18)

Focusing on the stationary state, we denote by 〈ψL| and |ψR〉
the left and right eigenstates with vanishing eigenvalue. They
obey 〈ψL|n,m〉 = 〈ψL|ψR〉 = 1. The mapping to the original
problem is given by

P ∗
m,s = 〈m,s|ψR〉

m!s!
. (19)

To initiate the variational ansatz, we define the left and
right trial vectors (〈φL(
L)| and |φR(
R)〉), constructed
using a set of independent parameters, 
L and 
R . Defin-
ing the functional H(
L,
R) = 〈φL|L|φR〉, the eigenstates
are determined using the variational principle δH = 0. A
detailed explanation of the variational scheme is provided
in [23].

We now generalize the uncorrelated approximation to
propose a specific ansatz for the trial vectors as the super-
position of Poisson distributions. A similar ansatz has also
been proposed in a recent study of reaction systems including
different chemical species [18]. We define

〈φL(
L)| = 〈0,0|ea+b

d∏
i,j=0

eθi,j a
ibj

, (20)

|φR(
R)〉 =
d∑

i,j=1

�i,j e
αi (a†−1)eβj (b†−1)|0,0〉, (21)

with 
R = {αp,βq,�p,q} and 
L = {θp,q} (θd,d = 0). In
each vector, the total number of parameters N is given by
N = d(d + 2). The parameters of 〈φL| are imposed by the
condition 〈φL|m,n〉 = 1 which leads to θp,q = 0,∀p,q. It
follows that the set 
R is the solution of 〈δφL|L|φR〉|
L={0} =
0. In other words, 
R is the solution of the set of
equations generated by ∂θi,j

〈φL|L|φR〉|
L={0} = 0 for i,j =
0,1,2, . . . ,d with the pair (i = d,j = d) excluded. Using the
relation

∂θi,j
〈φL|
L={0} = 〈0,0|ea+baibj =

∑
m,s

〈m + i,s + j |
m!s!

,

(22)

our calculation leads to the system of equations

d∑
p,q=1

�p,qα
i
pβj

q × [εsεm(ij + iβq + jαp)

+ insεs(1 − nm/αp) + jnmεm(1 − ns/βq)] = 0, (23)

generated for i,j = 0,1,2, . . . ,d with the pair (i = d,j = d)
excluded. The first equation (for i = j = 0), corresponds to
the probabilistic interpretation 〈φL|φR〉 = 1 and leads to the
normalization constraint

∑
p,q �p,q = 1. From Eq. (23) one

can then generate the N independent conditions required
to determine the right eigenvector parameters. It follows
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that an approximation of the stationary distribution is given
by

P∗
m,s = 〈m,s|φR(
∗

R)〉
m!s!

, (24)

where 
∗
R = {α∗

p,β∗
q ,�∗

p,q} is the solution of Eq. (23). The
latter distribution can be explicitly written as a superposition
of Poisson distributions

P∗
m,s =

∑
p,q

�∗
p,q�α∗

p
(m)�β∗

q
(s). (25)

We note that the MF results are recovered by considering the
ansatz with d = 1. In this case, P∗

m,s is simply a product of
two Poisson distributions with means α and β, respectively.
The variational equations give ns(nm − α) − εmαβ = 0 and
nm(ns − β) − εmαβ = 0, leading to C = D = 1.

B. Comparison with stochastic simulations

Going one step beyond the MF approximation, we consider
the ansatz (21) with d = 2. We first consider the symmetric
case km = ks = k and μm = μs = μ. This choice imposes
αj = βj (j = 1,2) and �1,2 = �2,1. The set 
∗

R , the solution
of the equations generated by Eq. (23), is obtained numerically
using standard routines. From a practical point of view, the
numerical calculation is significantly faster than stochastic
simulations, especially if we need to explore large regions
of parameter space.

Figure 3(a) presents a comparison of our results with data
from stochastic simulations. Keeping the ratios εm and εs

constant, the quantities X, C, and D are plotted as a function
of μ for γ = 1, 5, and 10. Clearly, deviations from MF results
appear more pronounced as γ increases. However, for a range
of parameter values μ and even for a large mRNA-sRNA
coupling, the variational scheme gives accurate values of the
mean mRNA level per cell (〈m〉∗ = Xnm). Additionally, we
checked that the predictions for 〈s〉∗ also present an excellent
agreement with simulation data. Importantly, the agreement
of our predictions with simulation data, for the quantities C

and D, shows that the variational method also gives accurate
values of higher-order terms, such as the correlation 〈ms〉∗
(= C〈m〉∗〈s〉∗) and variance 〈j 2〉∗ − (〈j 〉2)∗ (= 〈j 〉∗/dj ).

To compare our results in the nonsymmetric case, we
consider variations in μm, keeping μs = 2 and γ = 1 fixed.
The set of parameters is computed numerically, solving eight

coupled equations generated from Eq. (23). The ratio εs is kept
equal to unity while εm = 4, 1, and 1/4. As shown in Fig. 3(b),
the ansatz predictions are, once again, in excellent agreement
with simulation data.

IV. CONCLUSION

The variational approach presented can be generalized to
more complex networks and nonequlilibrium steady states
involving multiple interacting species. As in the current work,
the initial step is to obtain the marginal distributions for
the different interacting species using a MF approximation.
Since mean field effectively reduces the problem to one of
noninteracting species in effective fields, it should, in general,
be straightforward to obtain these marginal distributions.
The Ansatz proposed involves weighted combinations of the
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FIG. 3. (Color online) Comparisons of the quantities X =
〈m〉/nm, C = 〈ms〉/〈m〉〈s〉, and D = dsdm extracted from simulation
data (symbols) with the ansatz predictions (lines) and MF results
(dashed lines). (a) Data are plotted as a function of μ = μm = μs on
a logarithmic scale for γ = 1 (black circles), γ = 5 (red squares), and
γ = 10 (green diamonds). We keep εm = εs = 1 with km = ks = k.
(b) Data are plotted as a function of μm on a logarithmic scale for
εm = 4 (top), εm = 1 (middle), and εm = 1/4 (bottom). We keep
μs = 2, γ = 1, and εs = 1.

products of these marginal distributions, where the weight
of each term and the scale parameters of each marginal are
the variational parameters. These parameters are obtained
by solving the set of coupled equations generated with the
variational method. At the lowest order, the approach will
recover the MF results for the mean values, whereas going
to higher orders will yield systematic improvements over the
MF results and accurate estimates for the higher moments. In
particular, at second order, the approach results in a simple set
of algebraic equations which can be solved to get accurate
estimates of the means and variances for the interacting
species. The results derived will aid approaches for inference
of model parameters from experimental measurements of
mean and variance. It is hoped that future work coupling
such approaches with experiments will lead to the quantitative
understanding of gene expression in complex networks.
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