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Noise-assisted interactions of tumor and immune cells
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We consider a three-state model comprising tumor cells, effector cells, and tumor-detecting cells under the
influence of noises. It is demonstrated that inevitable stochastic forces existing in all three cell species are able
to suppress tumor cell growth completely. Whereas the deterministic model does not reveal a stable tumor-free
state, the auto-correlated noise combined with cross-correlation functions can either lead to tumor-dormant
states, tumor progression, as well as to an elimination of tumor cells. The auto-correlation function exhibits a
finite correlation time τ , while the cross-correlation functions shows a white-noise behavior. The evolution of
each of the three kinds of cells leads to a multiplicative noise coupling. The model is investigated by means of a
multivariate Fokker-Planck equation for small τ . The different behavior of the system is, above all, determined by
the variation of the correlation time and the strength of the cross-correlation between tumor and tumor-detecting
cells. The theoretical model is based on a biological background discussed in detail, and the results are tested
using realistic parameters from experimental observations.
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I. INTRODUCTION

Tumor growth has become an important issue in medicine,
biology, and physics. The understanding of cancer growth
mechanisms is necessary to develop relevant strategies against
the disease. In the past, deterministic models have been
proposed for interacting tumor and immune cells, which are
investigated by performing stability and bifurcation analysis
[1–3]. Moreover, a deterministic mathematical model with
strong relation to experimental data is presented in Ref. [4].
As a new aspect, the delay time between the detection of
tumor cells by the immune system and the arrival of activated
killer cells at the tumor site was taken into account in
Ref. [5]. All these mathematical models can be considered
as two-state models of predator-prey type. In general, such
models can show interesting behavior as demonstrated in
many examples in Ref. [6]. Recently, Ref. [7] has discussed
the effect of deterministically imposed transitions in reaction
and population systems on the rates of rare events such as
a crossing-over to population extinction. Another approach
was chosen in Ref. [8], where the early stages of tumor
growth were investigated. More precise, the geometrical aspect
of contour instabilities was related to cell-cell interactions.
Likewise, the role of noisy influences can be regarded. As
a result, the stochastic forces may change the dynamics, in
particular it was shown that the evolutionary dynamics are
altered if demographic noises are included in a deterministic
model of interacting players [9]. As well, intrinsic stochasticity
was considered in Ref. [10], applied to the Lotka-Volterra
model with special emphasis on the elimination of species.
In addition, the extinction of stochastic populations caused by
intrinsic noise was analyzed in Ref. [11]. Regarding tumor
evolution, one often refers to a logistic growth model, which
offers relevant results in spite of its simplicity [12]. In the
present paper, we also use as the basic model the logistic
equation for the deterministic cancer-cell growth dynamics;
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see Eq. (1). Recently, a generalized logistic equation was
studied by supplementing the birth rate by a Markovian
dichotomic noise [13]. Another essential point is that the tumor
genesis is often accompanied by an abnormal proliferative
activity of human tissue. In Ref. [14], the authors have reported
on a mathematical model that covers the growth properties
in terms of a variable renewal rate of cell populations in
colon crypts. A further class of models is related to a single
population where only the tumor cells are considered as the
relevant variable. Here, the deterministic equation is subjected
to additional random forces, which allows an analysis in terms
of the related Fokker-Planck equation. Models for white noise
[15] and for colored noise [12] have been predicted. The latter
one contains tumor-immune interactions in an implicit manner.
Later, a modified model was investigated by introducing a
bounded noise, which mimics the reduction of the tumor size
due to a possible immune response [16]. Therefore, the random
nature is also attributed to the immune system.

This idea plays likewise a significant role in the present
approach. Different to former works [12,16], the tumor-
immune interplay is now incorporated explicitly. However, the
main point is that we demonstrate tumor-immune cell reactions
can be induced by stochastic forces. To be more specific, our
model describes the time evolution of a three-state model,
which are refereed as three different cell types: (i) tumor
cells the density of which is denoted by X(t), (ii) effector
cells with density Y (t), and (iii) tumor-detecting cells with
density Z(t). Whereas the last kind of cells is only able to
recognize tumor cells but not to kill them, effector cells have
the ability to eliminate tumor cells. Let us expressly emphasize
that the different cell types, especially those denoted as Y

and Z, are introduced to characterize special functions of
the immune system; see also the discussion in next section
after Eq. (1). The deterministic model introduced in Sec. III
describes the mutual interaction between the three species.
However, this model offers no stable tumor-free state. Due to
the inclusion of inevitable randomness, the growth and death
rates of the immune and tumor cells, respectively, are altered
immediately. Toward a more realistic description, we allow
the occurrence of cross-correlations between the noise acting
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on the tumor cells and the noise acting on the detecting cells.
The resulting set of stochastic equations with multiplicative
noise can be transferred to the related Fokker-Planck equation.
By variation of the strength of the cross correlation and the
finite correlation time, the system tends to different stable
states, which differ from those of the deterministic system.
Especially, we show that the noisy system exhibits complete
suppression of the tumor. The paper is organized as follows.
First, we present in Sec. II some biological ideas concerning
the tumor-immune interaction. The mathematical model is
developed and discussed in Sec. III. Due to the inclusion of
randomness, the related Fokker-Planck equation is introduced
in Sec. IV. We present our results in Sec. V before we finish
with some conclusions in Sec. VI.

II. BIOLOGICAL MOTIVATION

Before we present in the forthcoming section the mathe-
matical model, let us summarize some biological mechanisms
concerning the interaction between the tumor and the immune
system. In particular, this section is focused on the main
underlying ideas that are necessary for the understanding of our
presented model. Introduced in the early 1900s [17] and again
suggested in the middle of the 20th Century [18,19], there is
the hypothesis that the immune system is able to detect and
to eliminate nascent transformed cells. During the last decade,
the concept of the immune surveillance of the body played a
significant role in tumor elimination, too. The investigations
are supported by experimental results verifying the immune
surveillance hypothesis (Ref. [20] and references therein).
Furthermore, the immune surveillance concept was modified
and is now known as “immunoediting,” which reflects the
dual role of the immune response during the early stages of
cancer growth [21–23]. The term immunoediting means both
the ability of the immune system to destroy the tumor cells
and a possible sculpting of the cancer cells. As the result,
all cells with a low immunogenicity will survive and begin
to proliferate. This escape of the tumor from the control of
the immune system can be regarded as a special feature of
tumor growth [24]. As the consequence of the transformation
of normal cells into cancer cells, the immune system reveals
different response mechanisms, which are described in more
detail in Refs. [21,22]. First, the nascent transformed cells
have to be identified. Candidates for the detection of tumor
cells are the components of the innate immune system known
as natural killer cells (NK), natural killer T-cells (NKT), and so
called γ δ T-cells. When the tumor cells have been recognized,
the killer cells produce the cytokine Interferon-γ (IFN-γ ) as
an important immunologic regulator [25]. Moreover, IFN-γ
can cause the death of the tumor cell directly via apoptotic
mechanisms [26]. The released IFN-γ leads to a stimulation
of both the innate [activation of macrophages and presentation
of antigens by dendrite cells (DC)] and the adaptive immune re-
sponse (generation of antigen-specific B- and T-lymphocytes).
Eventually, the lymphocytes (CD8-positive T cells) migrate to
the tumor site, detect the tumor cells, and initiate a powerful
immune reaction, which may end up in the destruction of the
tumor tissue. The complete suppression of the cancer by the
immune system is only one scenario. Likewise, an imprinting
of the tumor cells by their immunologic environment can

occur during the tumor-immune cells reaction. So a selective
pressure is exerted on the tumor which favors the creation of
tumor cell clones that offer a low or even a non-immunogenic
behavior. The very different response reflects the paradox role
of the immune system of cancer promotion due to a sculpting
of the immunogenic phenotype of the tumor. The numerous
genetic alterations of the cancer cells during the sculpting
process can be regarded as a sequence of stochastic events.
Therefore, the modeling of the situation in a mathematical
model should include both deterministic and stochastic parts.
In addition, the hypothesis of immunoediting suggests the
occurrence of a phase with metastable states. Within this phase,
the tumor will neither grow to its final size nor be eliminated by
the immune system. Because the tumor is under immunogenic
control, such a state can be regarded as tumor dormancy. As
argued in Ref. [23], the period of this dormant state could equal
the lifetime of the host. Despite the short extract of possible
effects, one realizes that the immune system is a complex
network where a variety of distinct cell types are involved with
coordinated functions. An essential ingredient is that nearly
all different cell types carry more than one function. So the
natural killer cells are able to release Interferon-γ and have
simultaneously the ability to recognize and eliminate cancer
cells. A further example is the immunomodulating agent
IFN-γ , which can on the one hand promote the proliferation
of lymphocytes and on the other hand can directly effect the
life of a cancer cell.

Due to this diversity of cells and their functions and the
fact that the interplay between tumor and immune cells is
far from being understood completely, the development of a
mathematical model is necessary. Although, one cannot expect
that such models cover all the underlying biological aspects.
A very detailed description of the tumor-immune interaction
seems not to be realistic. Otherwise, such a coarsened model
should include the main features of the immune system,
namely detection, stimulation, and elimination of tumor cells.
Our approach simulates the different functions by introducing
two kinds of immune cells, tumor detecting cells (TDC) and
effector cells. The detecting cells are able to recognize the
malignant cancer cells and stimulate the production of effector
cells. The latter have the ability to kill tumor cells. Insofar,
we map the three functions of the immune system onto two
artificial cell types, the detecting cells and the effector cells.
This mapping of the main functions of the immune cells allows
us to construct a mathematical model, the details of which are
discussed in the following section.

III. MODEL

As discussed in the previous section, the immune system of
the human body comprises various components that interact
mutually. Moreover, the tumor cells are subjected to genetic
alterations. Therefore, the tumor system can be regarded as
being composed of different kinds of cells. In order to present
an accessible theoretical model of a possible immune reaction
against tumor growth, we refer to the following coarsened
description. The tumor system is assumed to consist of one
single cell type, the density of which at time t is denoted as
X(t). Unlike the immune system is realized by two kinds of
cells responsible for detection, stimulation and elimination,
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respectively. The elimination process is performed by the
effector cells with density Y (t), which are able to kill the tumor
cells. The second immune cell type—the tumor detecting cells
(TDC) designated as Z(t)—have the ability to recognize the
harmful cancer cells and in addition stimulate the proliferation
of the effector cells. As a basic model, the three-state system
obeys the following set of deterministic equations:

d

dt
X(t) = a[X(t) − b X2(t)] − c X(t) Y (t),

d

dt
Y (t) = eY (t) Z(t) − ρ̃ Y (t), (1)

d

dt
Z(t) = −μ̃ Z(t),

where the parameters a, b, c, e, ρ̃, μ̃ > 0 will be discussed
now. This model incorporates a logistic growth of the cancer
cells X(t) with the birth rate a. The undisturbed evolution
of the cancer would end when the tumor reaches its final
size—the carrying capacity b−1. The effector cells Y (t) can
interact with the tumor cells and, hence, the size of the tumor
is reduced. The parameter c is a measure for the strength of
the tumor-effector cell reaction. As suggested in the previous
section, the effector cells with the ability to kill the cancer
cells do not exist without an external stimulus. The production
of the effector cells will be mediated by the TDC with
density Z(t). The term e Y (t) Z(t) in Eq. (1) describes the
initiation of effector cells due to the TDC. The parameter e

is the production rate. Because the immune system can exert
its influence only for a limited period, we have introduced
the terms −ρ̃ Y (t) and −μ̃ Z(t) in Eqs. (1). They reflect
the finite lifetime ρ̃−1 and μ̃−1 of the effector cells and the
TDC, respectively. As visible from Eq. (1), an elimination
of the tumor is not possible within this approach because a
release-term for the tumor-recognizing cells is not taken into
account and thus effector cells are not produced.

Let us emphasize again that we do not associate a certain
cell type with the artificial tumor recognizing Z-cells but only
the function “detection” of the immune system. Thus, Eq. (1)
reflects the situation that the tumor can elude the detection
by the immune system. In this sense, Eq. (1) is supposed
to be a model for an insufficient immune response due to the
incapability of “seeing” the tumor cells. In that case, the tumor
would reach a lethal size. The biological background is that
the tumor is able to develop strategies to avoid the detection by
the immune system, e.g., the down-regulation of the amount of
I MHC molecules on the surface of the tumor cell. Therefore,
a deterministic source term for the Z-cells is missing in our ap-
proach. In the forthcoming analysis, based on Eqs. (3) and (4),
we demonstrate that stochastic forces are the origin of such an
effective immune response. This approach seems to be reason-
able because one can attribute the random nature to the mech-
anism of detection. First, an appropriate immune cell that is
able to detect transformed cells is needed and, second, this cell
has to be located in the direct vicinity of the tumor. This coin-
cidence may be also due to inevitable stochastic forces. The in-
clusion of randomness, especially within the detection process,
is the new aspect in our model and will be discussed below.

The three-state model for [X(t),Y (t),Z(t)] in Eq. (1) offers
two stationary states, (0,0,0) and (b−1,0,0), where the tumor-

free state Xs = 0 is never stable. Instead of that, the state Xs =
X(t → ∞) = b−1 with a finite tumor population is realized.
Equation (1) predicts that the tumor will always reach its
final size determined by the carrying capacity. As discussed in
Sec. II, the tumor-immune interaction is subjected to numerous
stochastic events. In the following, we will demonstrate that
random forces are able to create a birth term for the TDC
Z(t). As the consequence, the behavior of the system is
changed drastically. To reduce the number of parameters, let
us introduce dimensionless variables according to

x = b X, y = c

a
Y, = e

a
Z, ρ = ρ̃

a
,

μ = μ̃

a
, t̄ = a t. (2)

In terms of these quantities and under introducing random
forces ηi(t), the deterministic set of Eq. (1) is changed to the
stochastic differential equations

d

dt
xi(t) = ψi[x(t)] + �ij [x(t)] ηj (t). (3)

Here, for simplicity of notation the dimensionless time
variable t̄ is replaced by t and summation over double indices
is understood. Equation (3) describes the noisy tumor-immune
interaction. The vector ψ and the matrix � are defined by

ψ =

⎛
⎜⎝

x − x2 − x y

y z − ρ y

−μz

⎞
⎟⎠, � =

⎛
⎜⎝

z 0 0

0 y 0

z 0 x

⎞
⎟⎠. (4)

Further, we have introduced the vector x = (x,y,z) and the
vector of the stochastic force η = (ηx,ηy,ηz); i.e., the noise ηi

is associated with the cell type xi .
Before proceeding with the mathematical treatment, we

should give some further motivations for the introduction
of noise terms in the tumor evolution. Tumor cells are
genetic instable and reproduce themselves very frequently.
This random proliferation process can lead to the creation
of cancer cells with different growth behavior and individual
immunogenicity. In other words, the genetic mutation may
select low immunogenic or resistant tumor cell variants that
can circumvent the immune response by possibly not being
recognizable anymore and eventually proliferate undisturbed.
In that manner, the evolution of the tumor itself is thought to be
a source of stochasticity. Insofar, the randomness is supposed
to influence the ability of being detectable by the immune
system. Consequently, the dynamics of the tumor-detecting
z cells can be altered. Vice versa, one can conclude that
the detection process lead to random events in the tumor
subsystem, too. Thus, the noise force ηx stemming from the
tumor cells is coupled to the z cells. Such a coupling term
occurs in the evolution equation of the cancer cells x as well
as in that of the TDC z because it should effect the dynamics
of both x and z cells. It is entirely conceivable that parts of
the immune system experience random genetic alterations,
although they do not occur as frequent as in cancer cells;
i.e., the noise terms ηy and ηz are supposed to exist, too.
Equations (3) and (4) include the obvious possibility, that the
tumor cells x are coupled to the random force ηz originated in
the TDC subsystem. The corresponding coupling term appears
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in the equation of motion of the TDC z. The special form
of the couplings was chosen to emphasize the importance of
recognizing tumor cells and the related stochastic processes.
Consequently, the noise ηy referring to the effector cells y is
only coupled to the y subpopulation in which it arises.

Mathematically, the properties of the stochastic forces are
expressed by the following relations

〈ηk(t)〉 = 0 ,

χkl(t,t
′) = 〈ηk(t) ηl(t

′)〉 = Dkl

τkl

exp

[
−| t − t ′ |

τkl

]
(5)

τkl→0−−−→ 2 Dkl δ(t − t ′).

The components ηk(t) have a zero mean. In the limit that
the correlation time tends to zero, τkl → 0, the usual white
noise properties are recovered. The correlation strength and
correlation time matrices D and τ , respectively, are assumed
to take the forms

Dkl =
⎛
⎝Dx S R

S Dy P

R P Dz

⎞
⎠, τkl =

⎛
⎝τ 0 0

0 τ 0
0 0 τ

⎞
⎠,

(6)
Dx,Dy,Dz, S, R, P, τ, > 0.

The matrix of the correlation time τkl reveals that all auto-
correlations are characterized by the finite correlation time τ ,
whereas the cross-correlation functions with strengths R,S,
and P offers white-noise properties with the δ function
according to Eq. (5).

IV. PROBABILITY DISTRIBUTION

In this section, we derive the probability distribution P (x,t),
which is related to the set of stochastic equations determined
by Eqs. (3)–(6). Following Refs. [27,28], we define

P (x,t) = 〈δ [x(t) − x]〉 . (7)

Here the 〈. . .〉 means the average over all realizations of the
stochastic process. The vector x(t) represents the stochastic
process, whereas the x are the possible realizations of the
process at time t . Due to the colored noise, the corresponding
Fokker-Planck equation can be obtained only approximatively
in lowest order of the correlation time. The time evolution of
Eq. (7) can be written in the form

∂

∂t
P (x,t) = LP (x,t). (8)

In deriving this expression, we have used the time evolution
of x(t) according to Eq. (3), the Novikov theorem [29], and
the correlation function in Eq. (5) with τkl and Dkl presented
in Eq. (6). The form of the operator L is given in a correlation
time and cumulant expansion [30–32] by

L(x) = − ∂

∂xi

ψi(x) + Dkl

∂

∂xi

�ik(x)
∂

∂xn

{
�nl(x) − τkl Mnl(x)

+Dmr τkl

[
Knlm(x)

∂

∂xs

�sr (x)

+ τkl

τkl + τmr

�nm(x)
∂

∂xs

Kslr (x)

]}
, (9)

with

Mnl = ψr

∂�nl

∂xr

− �rl

∂ψn

∂xr

, Knlk = �rk

∂�nl

∂xr

− ∂�nk

∂xr

�rl.

(10)

The single probability distribution is determined by the
operator L in Eq. (9). Notice that the representation is valid
for sufficiently large time scales compared with the correlation
times τkl when transient terms are negligible. Euations (8)–(10)
enable us to find the equation of motion for the expectation
values 〈xj (t)〉. It follows

d

dt
〈xj (t)〉 = 〈ψj 〉 + Dkl

〈
∂�jk

∂xn

(�nl − τkl Mnl)

〉

−Dkl Dmr τkl

{〈
∂

∂xs

(
∂�jk

∂xn

Knlm

)
�sr

〉

+ τkl

τkl + τmr

〈
∂

∂xs

(
∂�jk

∂xn

�nm

)
Kslr

〉}
. (11)

Remark that in the limiting case of white noise, all terms
including τkl vanish. Further, we want to point out that the
expression in Eq. (11) contains quadratic terms like 〈xi xj 〉
due to the nonlinear system in Eq. (3). In the same manner
as before, one can derive a higher-order joint probability
distribution; see Ref. [33]. Following this procedure, we get
a whole hierarchy of evolution equations. Instead of that, let
us make the simplest approximation 〈xi xj 〉 = 〈xi〉〈xj 〉. Under
the approximation of Eq. (11) and by applying Eq. (10), the
equation of motion for the mean values can be rewritten as

d

dt
〈x(t)〉 =

[
1 + R(1 − Dxτ ) + 1

2
DxDzτ

]
〈x(t)〉−〈x(t)〉2

−〈x(t)〉〈y(t)〉+ [Dx(1 + Rτ )]〈z(t)〉,
d

dt
〈y(t)〉 = 〈y(t)〉〈z(t)〉−(ρ − Dy)〈y(t)〉, (12)

d

dt
〈z(t)〉 = [R(1 − Dxτ ) + DxDzτ ]〈x(t)〉

−
{
μ−

[
R(1 + Dxτ ) + Dx(1 + 1

2
Dzτ )

]}
〈z(t)〉.

As can be seen from Eq. (12), the random process referring
to the correlation strength and correlation time presented
in Eq. (6) influences the dynamical system in a significant
manner. The behavior is illustrated in Fig. 1. Let us compare the
results of the stochastic approach with the deterministic model.
The birth rate of the tumor cells 〈x〉 is affected by the noise

z y
creation

x

reproduction

x -eliminationmutual
influence

deca ecay

decay

FIG. 1. (Color online) Schematic illustration of the model pre-
sented in Eq. (12).
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correlation strengths Dx , Dz associated with the tumor cells
and the tumor-detecting cells as well as their cross-correlation
R. Likewise, the decay rate ρ in the equation for the effector
cells 〈y〉 is reduced by the noise strength Dy , i.e., by the noise
related to the effector cell subsystem itself. As a new nontrivial
result, we find noise-induced terms in the evolution equation,
Eq. (12). The term ∝ 〈x(t)〉 appears in the equation for the
z cells, which are able to recognize cancer cells. In the same
manner, the generating term ∝ 〈z(t)〉 arises in the equation for
the tumor cells. These terms are originated exclusively due to
the randomness in Eqs. (3) and (4). In this context, the most
important parameter is played by the cross-correlation strength
R of the correlation function χxz = χzx , i.e., the correlation
between the noise sources inherent in the tumor cells and
the tumor detecting cells. Notice that in the noise-free case
such an interlink between these two cells is missing; compare
again Fig. 1. Moreover, the death rate μ is altered due to
the stochastic process. Based on the implementation of noisy
forces, the resulting Eq. (12) differs from the deterministic
equation twice. (i) First, the birth and death rates as well are
altered due to stochastic parameters such as the correlation
time τ and the correlation strengths Dx , Dy , Dz, and R

defined in Eq. (6). Although the cross-correlations S and P

were included in Eqs. (3) and (4), they do not appear in the
final expression Eq. (12). This fact is related to the special
kind of multiplicative noise of our model. (ii) Second, two
new terms exist in Eq. (12). The origin of both can be solely
ascribed to stochastic sources. Regarding the evolution of the
tumor-detecting cells 〈z〉, the new term disappears in case
R = 0 and τ = 0. So both parameters R (the cross-correlation
strength between ηx and ηz) and τ (the correlation time of
the auto-correlation functions 〈ηi(t)ηi(t ′)〉) are of significant
relevance. In the subsequent section, the analysis is focused
on both parameters.

V. RESULTS AND DISCUSSION

As remarked in the previous section, the parameters R

and τ inhere a special meaning in discussing the set of
Eq. (12). Before we proceed with the stability analysis and
the results, we want to estimate the model parameters. The
starting point is the deterministic Eq. (1). One finds different
values for the intrinsic tumor growth rate a: 0.18 day−1 [1] and
0.51 day−1 [4]. Our own study leads to 0.57 day−1 [12]. The
first two values are based on mouse models, while the latter
one was obtained by means of in vitro cultivation of tumor
cells. The growth rate is insofar of importance as it determines
the time scale of the dynamics; see Eq. (2) [t(in days) = t̄/a].
Here, we use a = 0.5 day−1. Thus, t̄ = 1 is tantamount to
t = 2 days. An estimation of the carrying capacity is b−1 =
109cells [1,4]. Further, the reaction rates take approximately
c = 10−7cell−1 day−1 = e [1,2,4,5]. An estimation for the
decay rates in Eq. (1) is given by ρ̃ = 3 × 10−2 day−1 and
μ̃ = 10 day−1 [2,4]. In relating our results to real units, one
should take into account the scaling properties of Eq. (2). All
the results are collected at the end of this section in Table I.
For the subsequent analysis, it is more convenient to use
dimensionless quantities. The two most relevant parameters
of stochastic forces are the auto-correlation time τ and the
cross-correlation strength R. Both quantities R and τ will be

TABLE I. Comparison of model quantities in arbitrary and real
units. See also Eq. (2).

Quantity Arbitrary units Real units

Time t 1 2 days
Auto-correlation time τ 1 2 days
Cross-correlation strength R 1 0.5 day−1

Number of tumor cells 〈x〉 1 109cells
Number of effector cells 〈y〉 1 5 × 106cells
Number of tumor-detecting cells 〈z〉 1 5 × 106cells
Frequency (period) of cycles 0.029 ≈0.01 day−1

according to Fig. 2(d) (≈34.5) (≈69 days)

altered within the interval [0,5]. The remaining parameters are
assumed to be fixed; i.e., Dx = 2.1, Dz = 1.2 and Dy = 0.01.
The values for Dx and Dz are chosen arbitrarily, whereas the
value for Dy is suggested to be smaller than ρ = ρ̃/a = 0.06
in order to guarantee a sufficient stability of the differential
equation system Eq. (12), cf. the term ∝ 〈y〉. Moreover, since
we consider cell populations, the solutions of Eq. (1) should
yield positive values for the cell numbers. So values of R and
τ are excluded when they induce negative values for the cell
populations.

Now, we perform the stability analysis according to the
tumor-immune cells reaction system satisfying Eq. (12). We
note that the numerical bifurcation analysis is performed by
means of the program [34], which contains the bifurcation tool
[35]. This set of equations exhibits three different equilibria,
i.e., the tumor-free E1 = (0,0,0), and two non-tumor-free
states designated as E2 and E3. The last ones are given
by lengthy expressions in terms of the model parameters.
Only one of the three equilibria is stable simultaneously. It
is also possible that the total system becomes unstable as
discussed below. The solution of Eq. (12) depends strongly
on the correlation time τ and the cross-correlation strength
R. Concerning τ , we find three different regions (labeled as
I–III) where the solution of Eq. (12) has different properties.
The threshold values referring to our specific numerical
values of the remaining model parameters are τc1 = 0.636
and τc2 = 4.016. We proceed by considering these three
regions determined by the correlation time τ ∈ [0,5]. As fixed
initial values for the tumor and the tumor-detecting cells,
respectively, we choose 〈x(t = 0)〉 = 10−6 and 〈z(t = 0)〉 =
0. This reflects a situation where the tumor is small and
tumor-detecting cells are not present. In our case, this equals
an initial tumor cell number of 103cells, which is clinically not
detectable (early stages of tumor evolution).

Tumor-detecting cells should be only generated due to
stochastic influences and did not exist a priori. For the initial
state of the effector cell population, we have to choose a
nonzero value of 〈y(t = 0)〉 > 0. Otherwise, the solution will
differ from the predictions based on the stability analysis,
which is due to the structure of the differential equation system
in Eq. (12). In some regions this value can be very small (almost
zero, e.g., ∼10−20), whereas in other areas corresponding to
the parameters R and τ the stability of the solution depends on
〈y(t = 0)〉 significantly. In what follows, these distinct cases
will also be discussed while we want to restrict the possible
values for 〈y(t = 0)〉 to the left-open interval [0,10].
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FIG. 2. Behavior of the solution representing the regions I–III mentioned in the text. The parameters take ρ = 0.06, μ = 20, Dx = 2.1,
Dy = 0.01, and Dz = 1.2. (a)–(c): bifurcation diagrams. (d) Limit cycles in the 〈x〉 − 〈z〉−phase space.

Region I (0 � τ � τc1 = 0.636): Within this range a stable
tumor-free state is missing for R ∈ [0,5]. All three fixed points
exist in this region. The solution tends either to the steady states
E2 or E3, one of which is asymptotically stable, which depends
on the cross-correlation strength R. For the case of τ = 0.3,
the equilibrium value of the tumor cell population, designated
as 〈x〉0 as a function of R, is depicted in Fig. 2(a). As is visible
for all 0 � R � 5, the solution will always reach the fixed
point E2. Further, the equilibrium value 〈x〉0 decreases with
increasing R. In region I, the initial value of the effector cells
can take arbitrary positive values in (0,10) without changing
the solution of Eq. (12). An exemplary dynamical solution is
illustrated in Fig. 3(a).

Region II (τc1 = 0.636 < τ < τc2 = 4.016): In this area,
the behavior is changed and one observes diagrams like that
one shown in Fig. 2(b) for τ = 2.0. The three fixed points
E1,2,3 survive for R ∈ [0,5], but the stability is changed. If we
start at R = 0 and increase the cross-correlation strength R,
the behavior of the solution traverses four different regions.
For 0 � R < 1.242, the steady state E2 is stable. At R =
1.242, a transcritical bifurcation occurs where E2 is not
stable anymore. The fixed point E3 becomes stable but only
within the interval 1.242 � R < 1.325. At R = 1.325, another
transcritical bifurcation occurs, namely the transition to the
tumor-free state E1, which becomes stable while E3 loses its
stability. Biologically, such a transition is of great relevance

because it manifests that the immune system is able to
eliminate a growing tumor provided the tumor-immune cells’
reaction is assisted by a cross-correlation between stochastic
events occurring in the tumor and in the tumor-detecting cells’
subsystem. Notice that sector A in Fig. 2(b) has to be excluded
because the eigenvalues of E1 = (0,0,0) develop an imaginary
part, indicating the solution tends to E1 on a stable spiral.
However, during the evolution toward the equilibrium value
(〈x(t)〉 → 〈x〉0, t → ∞), the tumor cell population 〈x(t)〉
takes negative values. This happens for R > 1.733, which is
indicated by sector A in Fig. 2(b). In the area R � 1.733,
there are no restrictions on the initial value for the effector
cells 0 < 〈y(0)〉 � 10. In Fig. 3(b), the time evolution of the
tumor cell number 〈x(t)〉 is shown for different values of
the cross-correlation strength R. Summarizing the result, we
observe in region II the occurrence of tumor escape as well as
the possibility of tumor elimination, depending on the value
of the cross-correlation strength R.

Region III (τc2 = 4.016 � τ � 5): In this parameter range,
one observes a new behavior determined by the cross-
correlation strength R and the initial value of the effector
cells 〈y(0)〉. For the following discussion we refer to Fig. 2(c).
Starting from R = 0 and increasing this parameter, the solution
of Eq. (12) tends to the stable fixed point E2. A related
solution is represented in Fig. 3(c), where it needs a rather
long time until E2 is reached, about t ∼ 19 000. The fixed
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FIG. 3. Exemplary dynamic solutions according to the regions I–III mentioned in the text. The parameters take ρ = 0.06, μ = 20, Dx = 2.1,
Dy = 0.01, and Dz = 1.2.

point E2 is realized on a stable spiral within the interval
0 � R < 0.888. The smaller the cross-correlation strength R

is, the shorter is the time scale to reach E2; for instance, we
need t = 1000 in the case of R = 0.01. When the critical
value R = 0.888 is exceeded, a periodic limit cycle evolves
related to the occurrence of a Hopf bifurcation. In Fig. 2(c),
the minimal and the maximal numbers of tumor cells are
plotted within such a limit cycle. The numerical values range
below and above the former stable equilibrium E2, which
now becomes unstable. After the Hopf bifurcation, the steady
states E1 and E3 are no longer detectable. Further, Fig. 2(c)
reveals that the the parameter range is limited in which
such stable periodic oscillations emerge. The dashed line
represents the boundary to sector B, where the total system
bifurcates into an unstable state and the dynamical system is
uncontrollable anymore. Thus, sector B will be excluded as
a domain of accessible solutions within our tumor-immune
model. Nevertheless, periodic orbits can be observed for
0.888 � R � 1.101 and fixed correlation time τ = 4.5. For
varying values of R, the periodic solutions are depicted in
the two-dimensional 〈x〉 − 〈z〉−phase space, see Fig. 2(d).
The number shown above each orbit is the frequency of the
oscillations between two maxima. With growing R from 0.9
to 1.0, the minimal and the maximal cell numbers increase for
both 〈x〉 and 〈z〉 while the frequency decreases; i.e., the period
of the oscillation is enlarged. This result is also valid for the
effector cells 〈y〉, which are not shown here. Coming back to

the influence of the initial values of the effector cells 〈y(0)〉:
as already mentioned, they play a decisive role in the regime
of periodic limit cycle solutions. For very low initial values,
the system loses its stability and the solution is not accessible
biologically. The curve that separates stable periodic cycles
from unstable solutions is displayed in Fig. 4. The question
arises: what does it mean for the real tumor-immune cells’
interactions if stable periodic oscillations occur? In that case,
we argue that an intensive interaction between the cancer and
the immune cells takes place at the beginning of the tumor
growth as well as after a long period later. If the nascent
transformed cells start to grow up, the immune system is able
to detect this harmful process and it responds. Such an immune
attack reduces the tumor size without deleting it completely.
Notice that our numerical estimation represented in Fig. 2(c) is
also compatible with an elimination of the tumor cells because
the lower branch is partly not distinguishable from zero in
the interval 0.888 � R � 1.101. But the tumor starts anew to
grow up, signalizing the latent facility that the tumor evolution
goes on. Otherwise, if the cancer growth is continued, the
immune system remains active and, consequently, it is still
able to eliminate a large amount of tumor cells. After a certain
time, one expects that a balance between tumor growth and
the response of the immune system is evolved. From here, one
concludes that the tumor is under the control of the immune
system and a so-called tumor-dormant state emerges. In the
same manner, the region with R < 0.888 (before the Hopf

021927-7



THOMAS BOSE AND STEFFEN TRIMPER PHYSICAL REVIEW E 84, 021927 (2011)

y
(t

=
0)

R

stable
steady
state
E2

stable cycle

unstable

FIG. 4. Distinction between stable and unstable solutions depend-
ing on 〈y(0)〉 and R. Further description in the text.

bifurcations appears) may also be interlinked to the tumor
dormant state. In that case, the number of tumor cells is low
compared to other parameter regimes; see Fig. 2. For instance,
the value R = 0.6 yields an equilibrium tumor cell population
of 5% of the carrying capacity in Fig. 2(c). However, as a
result of our computations, the size of the maximal number
of tumor cells within one cycle can take large values, e.g., for
R = 1.1 we find 〈x〉max = 0.88. The tumor reaches 88% of its
carrying capacity. The time-dependent solution for R = 1.0
is depicted in Fig. 3(d) within the interval 0 � t � 500.
Eventually, a periodic cycle with 〈x〉max = 0.54 will be reached
after t ∼ 12000.

At the end of this section, we want to convert some
dimensionless quantities into quantities with real units. The
results are particularized in Table I.

Not commented yet is that the strengths in the correlation
functions in Eq. (5) carry the unit day−1 after conversion
to real units. This follows from the correlation function in
real units, i.e., 〈ηiη

′
j 〉 a2 ∝ (Dij a)/(τij /a), where the intrinsic

tumor growth rate a = 0.5 day−1 and Dij and τij are given
in arbitrary units. Thus, the strengths occurring in the noise-

noise correlation functions in Eq. (5) have the meaning of a
rate.

VI. CONCLUSIONS

We have presented a mathematical model for the tumor-
immune cells reactions, which is essentially supplemented
by stochastic forces. The present approach is mainly focused
on the random events referring to cancer-cell detection. The
parameters of the noise-correlation function have a great
impact on the behavior of the coupled tumor-immune cell
interaction, especially on the response of the immune system.
In particular, we have emphasized that the auto-correlation
time τ and the cross-correlation strength R are able to
control the evolution of the tumor. More precise, these two
quantities discriminate whether the system tends to tumor
suppression, tumor progression, or tumor dormancy. The
assistance of an inevitable noisy influence seems to play a
crucial role during cancer genesis and growth in humans.
The involved random forces may be originated within the
tumor as well as inside the immune system and can even
interact mutually, which is manifested in the cross-correlation.
Our model should be considered as an attempt toward a
more detailed analysis of tumor-immune systems. It elucidates
that noise plays an decisive role in such systems. The
model can be refined immediately, e.g., a finite correlation
time might be attributed to the cross-correlation functions,
too. In that case, the correlation time matrix, Eq. (6), is
modified and new terms in Eq. (12) occur. We believe
that our approach includes the most relevant degrees of
freedom.
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