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Monte Carlo study of gating and selection in potassium channels
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The study of selection and gating in potassium channels is a very important issue in modern biology. Indeed,
such structures are known in essentially all types of cells in all organisms where they play many important
functional roles. The mechanism of gating and selection of ionic species is not clearly understood. In this paper
we study a model in which gating is obtained via an affinity-switching selectivity filter. We discuss the dependence
of selectivity and efficiency on the cytosolic ionic concentration and on the typical pore open state duration. We
demonstrate that a simple modification in the way in which the selectivity filter is modeled yields larger channel
efficiency.
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I. INTRODUCTION

Potassium currents across nerve membranes have been
studied for a long time (see, for instance, [1–3] and the
reviews [4–8]). It is now known that ionic channels selecting
potassium currents are present in almost all types of cells in
all organisms and that they play many important and different
functional roles.

An important improvement in experiments was the ap-
pearance of the patch clamp technique (see for instance [9])
which permitted the measurement of the ionic current flowing
through a single channel on the cell membrane. Different types
of measurements (see for instance [10,11]) provide a very
detailed description of the behavior of potassium channels.
Less is known on their structure [6]; some things have been
inferred starting from functional behavior and some have been
deduced via direct inspection.

Despite the large variety of ionic channel types, they all
form selective pores in the cell membrane which open and
close stochastically and, when in the open state, allow perme-
ation of a selected ionic species (potassium in K+ channels).
Gating (i.e., their ability to open and close) and selectivity (i.e.,
their ability to allow the flux of a particular ionic species in
the cytoplasm) are not yet completely understood. The way in
which gating and selection are achieved can be different from
channel to channel [6].

On theoretical grounds this problem has been approached
with a large variety of methods. Molecular dynamics studies
[12] give a very detailed description of the phenomenon and
their results can also be compared with structural experimental
information, but they are usually not able to provide macro-
scopic current estimates due to the too small involved time
scale. A different approach is that of kinetic models [13–17]
which give very useful information since electrophysiological
experiments are performed over time scales much longer than
the atomic one. The drawback is represented by the extreme
simplifications on the structure of the channel.
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Models such as the ones in [14–16] describe to some extent
the dynamics of ion permeation through the selectivity filter
(see also [17]). In this paper, following [18], we introduce a
model where the channel is lumped to a two state stochastic
point system. A remarkable feature of our model is the
interaction between the dynamics of the ions inside the cell
and that of the selectivity filter itself.

In Ref. [18] a very simplified model for the pore behavior
has been proposed. The main idea is that the pore can be in
two states, high and low affinity. In the former, potassium
ions can bind to molecules inside the pore, while smaller
sodium ions cannot. In the latter, on the other hand, no ion
can bind to the pore. We then have that when the pore is in the
low-affinity state, the two ionic species permeate in the same
way. On the contrary, when the pore is the high-affinity state,
sodium particles are reflected by the pore, while potassium
ions bind to it and, eventually, when the pore comes back to
the low-affinity state, dissociate and possibly exit the cell. This
selectivity mechanism controls the potassium flux through the
cell membrane and, hence, yields gating. In [18] it was proven
that it is possible to obtain gating via selection, but it was
also noted that a pronounced reduction in the potassium flux
is observed when the fraction of time the pore spends in the
high-affinity state is large; indeed in this case for long periods
of time no permeation is allowed.

For instance, the Kcv from chlorella virus PBCV-1 [10],
which have no long cytosolic regions, are able to close and
open in response to membrane voltage. For this kind of
channel it is attractive to think that gating is indeed realized via
selection [18]; in other words, researchers were led to suppose
that different current levels are indeed obtained through the
selection mechanism.

The basic motivation of this paper is to study the way in
which the ion dynamics in cytosol affects the pore behavior
and explore the possibility of reducing the potassium flux
loss due to selection. In our model we assume that the ionic
species diffuse in the cytosol through independent random
walks on a two-dimensional lattice and, for the potassium
and sodium flux ratio, we find results comparable to those
in [18], where the motion of ions in cytosol was assumed
to be uniform (constant velocity). As already noted in [18],
good selection is obtained when the time fraction spent in
the high-affinity state is chosen long enough. In this case, the
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potassium flux through the channel is remarkably reduced.
Our results suggest that by modeling the cytosolic dynamics
as a diffusive rather than uniform motion, the potassium flux
loss is less important. Moreover, we prove that it is possible
to compensate for this effect by just allowing the pore to stuff
more than one particle at a time. For realistic concentrations
of potassium inside the cell, it is seen that allowing three (in
rare occurrences four) potassium ions to be packed in the pore,
when it is in the high-affinity state, is enough to compensate
for the potassium flux reduction due to the selectivity filter.
This hypothesis is compatible with what is known about the
structure of potassium channels [12,14].

We also perform an extensive study of the dependence of
fluxes on the two main physiological parameters, namely, the
fraction of time the pore spends in the high-affinity state and
the concentration of the ions in the cell. As it is easy to
guess, the sodium flux is directly proportional to the ionic
density in the cell. For potassium ions, on the other hand,
this linear behavior is found only for small values of the
time fraction spent in the high-affinity state (in this case the
two ionic species behave similarly), while for large values
of such a time fraction a sublinear behavior is found. We
studied the behavior of fluxes as a function of the time fraction
spent in the low-affinity state at fixed ionic concentration; we
found a sublinear increasing behavior for both sodium and
potassium.

Since the pore is modeled in a very simple way (a two state
random variable independent by the random walk dynamics
inside the cell), it is possible to analytically study the model.
We perform an approximate study in the two-dimensional
case and we are able to explain the results found via the
Monte Carlo simulation. The most interesting effect that is
pointed out by this analysis is that the sublinear behavior
discussed above is due to a sort of depletion of the region
close to the pore, which is observed when the typical time
spent by the pore in the low-affinity state is large. The
one-dimensional model has been studied to some extent
exactly in order to support our approximate two-dimensional
analysis and to test the reliability of our Monte Carlo
computation.

The paper is organized as follows. In Sec. II we introduce
the model, describe the quantities that are measured with the
Monte Carlo procedure, and give their physical interpretation.
Sections III–V are devoted to the discussion of our numerical
results: we first focus on the possibility of realizing gating via
selection and on the way in which the potassium flux loss can
be reduced; then we discuss the dependence of the fluxes on
the physiological parameters of the model. In Sec. VI we give
an approximate analytical study of the two-dimensional model
and in Sec. VII we summarize our conclusions. Appendices
are devoted to the detailed algorithmic definition of the model
and to the exact one-dimensional study.

II. THE MODEL

The model that we study in this paper is inspired by the
two-dimensional one proposed in [18]. We now give a quick
glance to the model and postpone the precise description of
the algorithm to Appendix A. The cytosolic region of the
cell is modeled via a finite two-dimensional square lattice �

with L2 sites, where L is an odd integer [see Fig. 1 (left)].
We consider a two-dimensional model for simplicity, but
as it will be discussed in the sequel, the model is able to
capture the main features of the real behavior. Two ionic
species perform independent symmetric random walks on the
lattice with reflectivity conditions on the boundary ∂� of the
volume �. One site of the boundary is special and it is called
pore; its behavior, that will be described below, makes the
potassium walkers not independent. The number of potassium
and sodium walkers are, respectively, denoted by NK and NNa.
The fact that the walkers are independent on � means that the
position of a particle does not affect the motion of the others,
in particular, no constraint to the number of particles on each
site is prescribed.

The pore is modeled by the site in the middle of one of
the four sides of the boundary ∂�. Two states are allowed
for the pore: high-affinity and low-affinity. The pore switches
between the two states randomly; the probability that the pore
is in the low-affinity state is denoted by p. The behavior of
the particles on the site neighboring the pore depends on the
state of the pore itself as it is precisely stated in Fig. 1. The
idea is the following: if the pore site is in the low-affinity state,
both potassium and sodium ions can enter it; when they enter
the pore they immediately dissociate so that, with probability
1/2, they reenter � and with the same probability exit the
system. If the pore is in the high-affinity state, sodium ions
are reflected by the pore site and potassium ions are reflected
by the pore if it is occupied, while they can enter it if it is
free. In this last case the ion does not dissociate immediately,
but it remains bounded to the pore until its state is changed
to the low-affinity one. As noted above, due to the pore rule,
the sodium walkers are independent while the potassium ones
are not.

Whenever an ion exits the system a particle of the same
species is put at random with uniform probability 1/L2 on
one of the L2 sites in � so that the number of sodium and
potassium ions in the system remains constant.

The model described above is implemented with the
Monte Carlo algorithm which will be described in detail in
Appendix A. An iteration or sweep of the Monte Carlo is the
collection of the steps that are performed at each time t . The
number of iterations that are performed in a simulation is tmax.

A. Measured quantities and goal

The particles that exit the system model the outgoing
ionic flux. This is precisely what we want to measure. For
a single numerical experiment we let MNa(t) [MK(t)] be
the number of sodium [potassium] particles which exited
the system in the time interval [0,t]. Moreover, we let the
sodium [potassium] fluxfNa(t) [fK(t)] at time t be MNa(t)/t

[MK(t)/t]. Since we defined the Monte Carlo algorithm
in such a way that the number of sodium and potassium
ions keep constant in the volume �, both fNa(t) and fK(t)
approach a constant value for t → ∞. To estimate these
limiting values, which are denoted by f̄Na and f̄K, we perform
different numerical experiments with number of iterations tmax

sufficiently large, we then average the experimental measures
fNa(tmax) and fK(tmax) and compute the associated statistical
errors.

021920-2



MONTE CARLO STUDY OF GATING AND SELECTION IN . . . PHYSICAL REVIEW E 84, 021920 (2011)

�

Λ

∂Λ

pore

1/4

1/4

1/4

1/4

(a)

1/4

1/4
(c)

1/4

1/4

1/4

(b)

(d)

High–affinity (K):

1/4

1/4

1/4

1/4

(free)

1/4

1/4

1/4

(occupied)

High–affinity (Na):

1/4

1/4

1/4

Low–affinity (Na and K): same

as high–affinity (K)

FIG. 1. On the left: thin line intersections represent the lattice sites; intersections between thin and thick lines represent the boundary sites.
The pore is in the middle of the right-hand boundary side. (a) Rules for a particle in the bulk: the particle jumps with uniform probability 1/4
to one of the four nearest neighboring sites. (b) Rules for a particle close to the boundary: the particle jumps with uniform probability 1/4
to one of the three nearest neighboring sites in the lattice; with probability 1/4 the particle does not leave the site. (c) Rules for a particle in
the corner: the particle jumps with uniform probability 1/4 to one of the two nearest neighboring sites in the lattice; with probability 1/2 the
particle does not leave the site. (d) The rules for a particle in the site neighboring the pore depend on the state of the pore and are explained
in the picture on the right. Pore in the high-affinity state (potassium): when the pore is free the particle jumps with uniform probability 1/4 to
one of the four nearest neighboring sites (pore included); when the pore is occupied the particle jumps with uniform probability 1/4 to one of
the three nearest neighboring sites in the lattice (it cannot enter the pore); and with probability 1/4 the particle does not leave the site. Pore
in the high-affinity state (sodium): the particle jumps with uniform probability 1/4 to one of the three nearest neighboring sites in the lattice
(it cannot enter the pore) and with probability 1/4 the particle does not leave the site. Pore in the low-affinity state: same rule as that for the
potassium particle faced to the pore in the high-affinity state; it is worth remarking that the pore in the low-affinity state will never be occupied
(see the description of the algorithm in the text).

Our aim is to measure f̄Na and f̄K and to prove that the
model provides selection in an efficient way. The two ionic
species interact in the same way with the pore in the low-
affinity state (see the rules in Fig. 1); hence, when p is close
to one, no difference should be observed in the potassium
and sodium fluxes. A different behavior should be observed
at smaller p, indeed when the pore is in the high-affinity state
the sodium flux is blocked while some residual potassium flux
should be recorded.

We shall then compute the ratio f̄K/f̄Na and prove that
it becomes large for small p. Moreover, we shall discuss if
this selection mechanism is efficient, namely, we shall see
that selection is provided with a potassium flux comparable
with the flux measured when the pore is constantly in the
low-affinity state. In particular, in the sequel we shall discuss a
slightly different model which will provide selection without
flux reduction.

B. Choice of the parameters

We first describe how the physiological parameters of the
model have been chosen. We have considered different values
of the number of potassium (NK) and sodium (NNa) particles.
Although cytosol is typically much richer in potassium than
in sodium, in order to check the efficiency of the selectivity

filter, we have always taken NNa = NK. In all the simulations
discussed in this section we have chosen L = 101, while we
considered the cases

NNa = NK = 100, 1000, 3000, 5000, 10 000

and

p = 0.001, 0.003, 0.005, 0.007, 0.01, 0.03,

0.05, 0.07, 0.1, 0.3, 0.5, 0.7, 1.

Note that the total time fraction the pore spends in the low-
affinity state is essentially equal to tmaxp.

It is worth noting that, provided L = 101, the most
physiologically reasonable choice for the number of potassium
ions among those listed above seems to be NK = 100. This
is supported by the following very rough computation. The
concentration of potassium ions in cytosol is approximatively
equal to c = 150 mM (millimolar), that is c mole per cubic
meter. The radius of the potassium ion is r = 1.52 × 10−10 m;
assuming that each site of the lattice can accommodate at most
n ions, we can ascribe the volume n(2r)3 to each site of the
lattice. The number of potassium ions that must be put on the
lattice is then

number of potassium ions = cL2n(2r)3nA = 25.88n
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where nA = 6.02 × 1023 is the Avogadro number, that is, the
number of ions in a mole. Assuming that reasonable values of
n ranges between 1 and 10, we have that realistic values of
the number of potassium ions on the lattices ranges from 25
to 250.

The sole Monte Carlo parameter to be fixed is the number
of sweeps tmax. As explained above, it must be taken large
enough in order to get a good estimate of the outgoing fluxes.
In all the cases that we considered it was sufficient to take
tmax = 107.

III. GATING AND SELECTION

As it has already been stated, our first purpose is checking
the behavior of the ratio f̄K/f̄Na as a function of the probability
p. Results are shown in Fig. 2: from the bottom to the top the
ratio f̄K/f̄Na for NNa = NK = 10 000, 5000, 3000, 1000, 100
has been plotted as a function of p. We have that the
ratio between the potassium and the sodium outgoing fluxes
increases when the probability for the pore to be in the
low-affinity state is decreased. This is precisely the result
in [18]; in particular for NNa = NK = 100 our data are not
only qualitatively but also quantitatively close to those in [18],
although a different ion dynamics in the cytoplasm has been
considered. As noted in [18] it is then possible to imagine a
potassium channel in which gating is realized via the selectivity
filter.

The log-log plots in Fig. 2 shows a straight line behavior for
large p, say p � 0.08. Note that the threshold where the linear
behavior starts is smaller for smaller values of the ionic density
in cytosol. This means that in this regime, say p � 0.08, the
ratio f̄K/f̄Na can be well approximated by a power law

f̄K

f̄Na
= a1(p)−b1 . (1)

The coefficient a1 and b1 can be computed by fitting
the data plotted in Fig. 2; we obtain a1 = 0.863, 0.904,

0.974, 1.014, 1.072 and b1 = 0.860, 0.798, 0.694, 0.616,

0.480, respectively, for NK = NNa = 100, 1000, 3000, 5000,

10 000.
It is worth noting that, if the density of ions in the cytosolic

region is not too high, good selection ratios are reached at
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FIG. 2. Log-log plot of the ratio f̄K/f̄Na as a function of the
probability p. Data refers to the cases NNa = NK = 10 000(�),
5000(©), 3000(�), 1000(×), 100(+).

not too small p; this is good news, since too low values of
p would imply very small ionic currents. In particular, good
results are found for the physiologically reasonable parameters
NNa = NK = 100. When the number of particles in the system
is raised, the selection effects are widely reduced. This is quite
intuitive, indeed, when the density is large, the average number
of particles trying to enter the pore is large as well; in other
words, the time between two consecutive attempts to enter
the pore is small. If the typical duration of the intervals in
which the pore stays in the high-affinity state is larger than this
“knocking” time, a lot of attempts to enter the pore will abort
since the filter is occupied by another particle. It is then clear
that the selection mechanisms does not work in the optimal
regime. In the sequel we shall propose a modified version of
the model which will take care of this problem.

We have seen that the algorithm provides good selection for
small enough p; at physiological concentrations, in order to get
a ratio f̄K/f̄Na larger than 100, the low-affinity state probability
p must be chosen smaller than 0.01. In this regime we expect
a potassium flux reduction with respect to the case p = 1.
We estimate this loss by plotting in Fig. 3 the normalized
potassium and sodium fluxes, namely, the ratio between fluxes
at any p with the corresponding fluxes at p = 1. We first note
that the flux reduction is more effective for the sodium ions
rather than for the potassium ones; this is obvious since the
selectivity filter favors potassium particles. Moreover, in the
case of sodium particles, the reduction does not depend on
the number of particles on the lattice and this is due to the fact
that all the sodium related measured quantities are directly
proportional to the sodium density in cytosol.

Potassium flux, on the other hand, experiences a remarkable
loss at small low-affinity state probability p. This reduction
gets more and more important as the density is increased. At
physiological potassium density the flux reduction is about the
40% at very small low-affinity state probability. With respect
to this point, it seems that our algorithm is more efficient than
the one proposed in [18], indeed, in that paper, with a similar
selection ability, larger potassium flux losses were found. In
other words, the importance of potassium flux loss depends
on how the cytosol dynamics is modeled, indeed in our model
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FIG. 3. Log-log plot of the normalized fluxes as functions
of the low-affinity state probability p. For the potassium the
data in the picture refers to the cases NK = 10 000(�), 5000(©),
3000(�), 1000(×), 100(+); for the sodium we used the symbol �
for the five cases NNa = 10 000, 5000, 3000, 1000, 100.
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ions move inside the cell according to a symmetric random
walk, while in [18] they perform a uniform motion until the
boundary is reached. In the next section we propose a modified
version of the model aiming to reduce potassium losses.

IV. IMPROVING EFFICIENCY

As it has been discussed above, the model which has been
proposed before is able to describe the gating attitude of a
potassium channel via a suitable selectivity filter.

The main problem with this approach is that the presence of
the filter reduces the amount of the permeating potassium ions.
To be more precise, in order to obtain a remarkable selection
one has to assume that the time fraction in which the pore is
in the low-affinity state is very small. From the data in Fig. 2
it follows that, at physiological concentrations, in order to get
the ratio f̄K/f̄Na larger or equal to 100 one has to assume
p � 0.1. As shown in Fig. 3, at these values of the low-affinity
state probability an important reduction of the potassium flux
is observed.

This phenomenon has a simple explanation: at small p

many attempts performed by K+ ions to exit the cell abort
since it often happens that the pore is in the high-affinity state
and occupied by another potassium particle. This problem can
be bypassed by assuming that more than one ion at a time
can be accommodated in the pore. We test this idea in the
simplest possible way without modeling the pore structure
or any possible interaction between ions in the pore as it
has been done in [18] (this is obviously a very interesting
question deserving future investigation). We simply assume
that there is no upper bound to the number of ions that can be
accommodated in the pore (see below). In other words, when
the filter is in the high-affinity state, a potassium particle can
enter it even if the pore is currently occupied by one or more
potassium ions.

This modified version of our model will assure no potassium
flux reduction since all the potassium ions trying to enter the
pore in the high-affinity state will be accepted and then will be
released when the state of the filter switches to the low-affinity
one.

This model will not be physiologically reasonable if the
typical number of potassium ions stuffed inside the pore is
large. From what it is known on the structure of ionic channels
(see, for instance, [12,19,20]), a potassium channel is about
12 Å long and 2.5 Å in diameter. This means, recalling that
the radius of a potassium ion is approximatively 1.5 Å, that
at most four or five potassium particles can coexist inside the
pore. We stress that in this simple model we do not take into
account any interaction, for instance electrostatic repulsion,
between ions in the pore. As we shall see, at physiological
densities, that is, NNa = NK = 100 and for p � 0.01, the
average number of potassium ions in the pore will be very
low and at most four particles (in very rare cases) will be
simultaneously accommodated inside the pore. We shall then
conclude that in this regime our simple model is reasonable on
physiological grounds.

The results are shown in Figs. 4 and 5. By comparing Figs. 4
and 2, it is clear that the selectivity attitude of the new model
does not depend on the density of the ions in cytosol and that
the modified model is more selective. Figure 5 is even more
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FIG. 4. Log-log plot of the ratio f̄K/f̄Na as a function of the
probability p for the modified model; this picture should be com-
pared with Fig. 2. Data refers to the cases NNa = NK = 10 000(�),
5000(©), 3000(�), 1000(×), 100(+).

interesting, indeed it shows that the potassium flux does not
depend on the low-affinity state probability. In other words,
the model introduced in this section behaves precisely as we
expected and, hence, it provides the solution to the potassium
flux loss.

It is important now to discuss the physiological reasonable-
ness of the model. In order to answer this question, which
is very important in the present context, we have run a long
simulation (about 3 × 107 sweeps) recording at each instant
the number of potassium particles accommodated in the pore
site. In the three cases NNa = NK = 100, 1000, 5000 [see
Figs. 6(a)–6(c)] the number of simultaneously stuffed particles
is, along the whole simulation, respectively, smaller than 4, 15,
and 62.

It then follows that at physiological values of the cytosolic
ion density, that is, for NNa = NK = 100 and for low-affinity
state probability not too small (p � 0.01), the model is
completely reasonable.

We can then conclude that a model of potassium channels is
feasible in which the gating attitude is obtained via a selectivity
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FIG. 5. Log-log plot of the normalized fluxes as func-
tions of the low-affinity state probability p for the modified
model; this picture should be compared with Fig. 3. For the
potassium the data in the picture refers to the cases NK =
10 000(�), 5000(©), 3000(�), 1000(×), 100(+); for the sodium we
used the symbol � for the five cases NNa = 10 000, 5000, 3000,

1000, 100.
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FIG. 6. Number of potassium ions accommodated inside the pore in an interval of time of few thousands sweeps out of 3 × 107 for the
modified model. Parameters of the simulation: p = 0.01, (a) NNa = NK = 100, (b) NNa = NK = 1000, and (c) NNa = NK = 5000.

filter and such that the filter does not produce any potassium
flux reduction.

V. DISCUSSION

We now discuss the behavior of the sodium and potassium
flux in the basic model as a function of the two main physical
parameters: the ionic cytosolic density and the time fraction
in which the pore is in the low-affinity state (which, we recall,
is essentially p). In this section we shall simply describe the
numerical results; the next section will be devoted to their
physical interpretation via a simple analytical model.

It is difficult to have an intuition on the potassium flux
behavior, indeed the way in which the selectivity filter acts
upon its current is not transparent at all. Since the filter acts
simply as a gate on sodium, it is rather natural to expect that
the sodium flux will be directly proportional to the sodium
density on the lattice; on the other hand, the way in which it
depends on the the low-affinity state probability, that is, on the
time fraction the filter spends in the low-affinity state, cannot
be easily guessed a priori.

We discuss first how the sodium flux depends on con-
centration in cytosol. In Fig. 7 we have plotted the sodium
flux f̄Na as a function of the sodium density �Na = NNa/L

2

on the lattice. Only the curves corresponding to the values
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FIG. 7. Sodium flux f̄Na as a function of the sodium den-
sity �Na. Data in the picture refers to the cases p = 1(�),
0.7(©), 0.5(�), 0.3(×), 0.1(+). The other values of p are not shown:
the behavior is linear with smaller and smaller slope (see Table I).
Note that the behavior in the picture is reasonable since the selectivity
filter does not affect the sodium dynamics.

p = 1, 0.7, 0.5, 0.3, 0.1 are shown; other values of the low-
affinity state probability yield similar results. As expected, the
flux is directly proportional to the density with slope depending
on the low-affinity state probability. We have fitted our data
with the function

f̄Na = a2 + b2�Na (2)

and computed the parameters a2 and b2 for the different values
of p; results are shown in Table I. It is very interesting to remark
that the slope coefficient b2 depends linearly on p in the interval
[0,0.1]; for larger values of the low-affinity state probability
the behavior departs from linearity. To illustrate this remark,
in Fig. 8 we have plotted the coefficient b2 as a function of
p (we recall that the time fraction spent by the pore in the
low-affinity state is, roughly speaking, equal to p). The picture
shows that for small low-affinity state probabilities the slope b2

is directly proportional to p, that is to the time fraction that the
pore spends in the low-affinity state. This result is consistent
with a theorem proven in [21] in a three-dimensional diffusion
model.

The predictions of (2) with the coefficient a2,b2 chosen as
in the caption of Fig. 8, that is,

f̄Na = �Na
p

a′
3 + b′

3p
, (3)

are compared with the experimental data in Fig. 9 and the
matching is striking.

We now come to the results related to the potassium flux.
Potassium flux as a function of potassium density in the lattice
bulk �K = NK/L2 has been plotted in Fig. 10. In this case the
behavior is approximatively linear for values of the low-affinity
state probability p close to one. But at smaller values of p the
graph remarkably departs from linearity. In other words, when

TABLE I. Values of the parameters a2 and b2 introduced in Eq. (2)
and obtained by fitting the data plotted in Fig. 7.

p a2 b2 p a2 b2

0.001 0 0.000131 0.07 0 0.008424
0.003 0 0.000376 0.1 0 0.011714
0.005 0 0.000626 0.3 0 0.030739
0.007 0 0.000877 0.5 0 0.045562
0.01 0 0.001220 0.7 0 0.057753
0.03 0 0.003608 1.0 0 0.071680
0.05 0 0.006034
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FIG. 8. Plot of the slope coefficient b2 introduced in Eq. (2) as a
function of the low-affinity state probability p. The dotted straight line
has been obtained by fitting the data with the function b2 = a3 + b3p

on the interval [0,0.1]; the result of the fit is a3 = 0 and b3 = 0.118.
The solid line has been obtained by fitting the data with the function
b2 = p/(a′

3 + b′
3p) on the whole data set, that is, on the interval [0,1];

the result of the fit is a′
3 = 7.96 and b′

3 = 5.98; note that the derivative
in 0 is 1/a′

3 = 0.1256 ≈ b3.

the time fraction spent by the pore in the low-affinity state is
large, the potassium flux is, with good approximation, directly
proportional to its density in the bulk. On the other hand, when
the time fraction spent by the filter in the low-affinity state is
smaller, the potassium flux exhibits a sublinear behavior with
density.

Finally, in Fig. 11 the potassium flux as a function of the
low-affinity state probability p is reported.

VI. ANALYTICAL STUDY

In this section we analytically study the basic model
introduced in Sec. II in order to give a physical interpretation
of the behavior of sodium and potassium flux on the species
density and on the low-affinity state probability. In our model
the pore is modeled in a very simple fashion, indeed it is just a
two state Bernoulli process; the main difficulty is, obviously,
the interaction between the random walk inside the volume �
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FIG. 9. Log-log plot of the sodium flux f̄Na as a function of the
low-affinity state probability p. Data refers to the cases NNa = 100(•),
1000(×), 3000(�), 5000(�), 10 000(+). Lines are the graph of the
function (3) with the appropriate values of �Na.
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FIG. 10. Potassium flux f̄K as a function of the potassium
density �K. Data in the picture refers to the cases p = 0.005(©),
0.05(•), 0.07(�), 0.1(+), 0.3(×), 1.0(�). The other values of p are
not shown: the behavior is similar. Lines are drawn to guide the eyes.

and the pore itself. We consider the stationary state reached by
a walker and denote by qK (qNa) the probability for a potassium
(sodium) ion to occupy the site x of � neighboring the pore.

Since sodium particles can exit the system only when the
pore is in the low-affinity state, the sodium flux is simply given
by

fNa = 1
8NNaqNap, (4)

where, we recall, NNa is the number of sodium ions in the
volume �. Indeed, the probability for a sodium ion to be on
the site x neighboring the pore is qNa, the probability for such
a particle to jump to the pore itself is 1/4 and, once in the pore,
the probability to really exiting the system is 1/2.

When dealing with potassium, one has to take into account
that, when the pore switches to the low-affinity state, the
possibly trapped potassium ion is released with probability
one half. We then have for the potassium flux

fK = 1
8NKqkp + 1

2pr, (5)

where we have denoted by r the stationary probability for the
pore to be occupied by one of the NK potassium particles.

The problem now is that of computing the stationary
probabilities qNa,qK, and r . The following study is related to

 0.0001

 0.001

 0.01

 0.1

 0.001  0.01  0.1  1

po
ta

ss
iu

m
 fl

ux

low-affinity state probability

FIG. 11. Log-log plot of the potassium flux f̄K as a function of the
low-affinity state probability p. Data refers to the cases NK = 100(•),
1000(×), 3000(�), 5000(�), 10 000(+).
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the two-dimensional model discussed in the above sections;
in Appendix B we address the same problem in the one-
dimensional case, which is an interesting case, since some
of the involved computations can be performed exactly.
The related results will both support our two-dimensional
approximate discussion and confirm the reliability of our
Monte Carlo measurements.

We first consider the sodium case. An obvious guess is
that the probability qNa is q

(0)
Na = 1/|�|, that is, it is uniform

throughout the system. In this way we get

f
(0)
Na = 1

8
NNa

1

L2
p. (6)

Note that this simple model provides the estimate 8 for the
constant a′

3 = 7.96, obtained by fitting the data in Fig. 8, and 0
for the constant b′

3 = 5.98. The comparison between the Monte
Carlo data and the theoretical prediction f

(0)
Na is good for small

values of the low-affinity state probability, while (see Fig. 12)
the experimental data departs from the predicted behavior for
large p.

This behavior is not surprising: at large p the outgoing flux
is so important that one has to expect a sort of depletion of the
region close to the pore. To estimate this effect we develop a
sort of “mean field” argument: we imagine that in all the sites
of � different from the one neighboring the pore the stationary
probability qNa,0 is uniform. To get the stationary probability
qNa in the site x close to the pore we make the following
probability balance:

qNa = 3

4
qNa,0 + 1

4
(1 − p)qNa + 1

4

1

2
pqNa + 1

4

1

2L2
pqNa,

where, on the right-hand side, the first term is the probability
that the particle moves from � \ {x} to x, whereas the other
terms take into account the probability that the particle in x

remains in x. The above equation, together with the obvious
normalization condition,

(L2 − 1)qNa,0 + qNa = 1
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FIG. 12. Sodium flux as function of the low-affinity state proba-
bility. Pluses are the Monte Carlo results for NNa = 3000. The solid,
long dashed, and short dashed lines are the corresponding graphs of
the functions f

(0)
Na (p), f

(1)
Na (p), and f

(2)
Na (p), respectively.
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FIG. 13. Referring to the left side of the picture, from the top
to the bottom the graphs of the functions q

(1)
Na (p), q

(2)
Na (p), q

(1)
K (p),

and q
(2)
K (p) for NK = 10 000, q

(1)
K (p) and q

(2)
K (p) for NK = 100, are

plotted.

yields

q
(1)
Na = 1

L2 + p(L2 − 1)2/(6L2)

for the occupation probability and, hence,

f
(1)
Na = 1

8
NNa

p

L2 + p(L2 − 1)2/(6L2)

for the sodium outgoing flux. This approximation provides the
estimate 8 for the constant a′

3 = 7.96, obtained by fitting the
data in Fig. 8, and 4(L2 − 1)2/(3L4) = 1.33 for the constant
b′

3 = 5.98. The graph of the occupation probability is plotted
in Fig. 13; the guessed depletion effect is found and the
occupation probability decreases when p is increased.

For small p and large L, f
(1)
Na ≈ f

(0)
Na ; this is reasonable,

since in this limit the depletion effect is negligible. As
it is shown in Fig. 12 the function f

(1)
Na is a quite good

approximation of the experimental data, which, as we have
seen above, are perfectly fitted by the function f̄Na given in
Eq. (3).

A more detailed description of the dynamics close to
the pore can yield a better estimate of the depletion effect.
Consider one of the NNa walkers on � and let, as we did
before, qNa be the probability that it occupies the site x in
�, neighboring the pore. Say that the boundary is along
the north-south direction and that the pore is to the east of
the site x. Let qNa,1 be the probability that the particle is on
the site to the north of x and that it is equal to the probability
that the walker occupies the site to the south. Let qNa,2 be the
probability that the particle is on the site to the west of x.
Assume that for the remaining L2 − 4 sites of the lattice the
occupation probability is qNa,0.

As before it is not difficult to write the following probability
balance equations:

qNa,1 = 2qNa,0/4 + qNa/4 + qNa,1/4,

qNa,2 = 3qNa,0/4 + qNa/4,

qNa = qNa,2/4 + 2qNa,1/4 + (1 − p)qNa/4 + pqNa/8,

where we have neglected the terms proportional to 1/L2.
The above equations, together with the obvious normalization
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condition

(L2 − 4)qNa,0 + qNa,2 + 2qNa,1 + qNa = 1

yield

q
(2)
Na = 12/23

1 + 12(1 + 6p/25)(L2 − 23/12)/23

for the occupation probability and, hence,

f
(2)
Na = 1

8
NNa

1

L2 + 6p(L2 − 23/12)/25
p

for the sodium outgoing flux. This approximation provides
the estimate 8 for the constant a′

3 = 7.96, obtained by fitting
the data in Fig. 8, and 48(1 − 23/(12L2))/25 = 1.92 for the
constant b′

3 = 5.98. Note that for small p and large L, f
(2)
Na ≈

f
(0)
Na . As it is shown in Fig. 12 the function f

(2)
Na is a better

approximation of the experimental data with respect to f
(1)
Na

and f
(0)
Na .

The graph of the occupation probability q
(2)
Na (p) is plotted in

Fig. 13; the depletion effect is more pronounced with respect
to that described by the approximation q

(1)
Na (p).

We now come to the computation of the potassium flux.
We consider a potassium walker and we note that for such
a particle the random walk is performed in � ∪ {pore}. We
assume that in the stationary state the probability that the
potassium walker is in the pore is r/NK. Thus in the stationary
state

r

NK
= 1

4
(1 − p)(1 − r)qK + (1 − p)

r

NK
,

where, we recall, qK is the probability that the potassium
ion occupies the site x in � neighboring the pore. Indeed,
by stationarity, the probability that the particle is in the
pore is equal to the probability that the pore is empty in
the high-affinity state and that the particle jumps from x

to it plus the probability that the pore is occupied and in
the high-affinity state. From the equation above we easily
get

r = 1

4
NKqK(1 − p)

1

p + NKqK(1 − p)/4
. (7)

Then we have to estimate qK. As we have done in the case of
sodium we first consider the stationary occupation probability
uniform inside the volume � and equal to q

(0)
K = 1/L2. The

corresponding probability r (0) for the pore to be occupied is
given by Eq. (7) and the corresponding potassium flux f

(0)
K ,

given by (5), is plotted in Fig. 14. The comparison with the
experimental data is very good at small low-affinity probability
p, while the experimental results depart from the predicted
behavior at large p.

As before this is due to the depletion of the region close
to the pore. We repeat the same computation described in
detail for the sodium particles. Here we just give the main
formulas: the first approximation consists in the probability
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FIG. 14. Potassium flux as function of the low-affinity state
probability. Pluses are the Monte Carlo results for NK = 3000.
The solid, broken (large), broken (small), dotted lines are the
corresponding graphs of the functions f

(0)
K (p), f

(1)
K (p), and f

(2)
K (p),

respectively.

balance equation

qK = 3

4
qK,0 + 1

8
qKp + 1

8L2
qKp + 1

4
qK(1 − p)r

+ 1

2L2
p

r

NK
+ 1

2
p

r

NK

By using the obvious normalization condition (L2 − 1)qK,0 +
qK + r/NK = 1, by neglecting all the terms proportional to
1/L2 and to 1/NK, and by recalling Eq. (7), we get

r (1) = AD + Bp −
√

(AD + Bp)2 − 4ACDp

2Cp

and

q
(1)
K = A

B − Cr (1)
,

where

A = 3

4

1

L2 − 1
, B = A + 1 − 1

8
p, C = 1

4
(1 − p),

and

D = CNK.

The corresponding potassium flux f
(1)
K given by (5) is depicted

in Fig. 14. The improvement with respect to f
(0)
K is striking.

We can further improve the way in which the depletion
effect is estimated as we did for the sodium particles.
By neglecting, as we did above, contributions proportional
to 1/L2 and to 1/NK, we get the probability balance
equations

2qK,0/4 + qK/4 − 3qK,1/4 = 0,

3qK,0/4 − qK,2 + qK/4 = 0,

qK,2/4 + 2qK,1/4 − 3qK/4 − qKp/8

−(1 − p)qK(1 − r)/4 = 0,

and the obvious normalization condition

(L2 − 4)qK,0 + qK,2 + 2qK,1 + qK = 1.
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The above equations, together with (7), yields for r (2) and q
(2)
K

the same expression as those for r (1) and q
(1)
K with

A = 25

48

1

L2 − 23/12
and B = 23

12
A + 37

48
− 1

8
p,

whereas C and D are as before. The corresponding potassium
flux f

(2)
K , given by (5) and plotted in Fig. 14, improves the

estimate f
(1)
K .

We finally comment on the behavior of the occupation
probability qK as function of the low-affinity state probability
p. In Fig. 13 we have plotted q

(1)
K and q

(2)
K for NK = 100

and NK = 10 000. We note that those curves tend to the
same value of the corresponding curves for the sodium
occupation probability when p tends to one. This proves that
the approximations are coherent, indeed, in this limit sodium
and potassium particles behave similarly. We also note that
sodium occupation probabilities are decreasing functions of
the low-affinity state probability p. For potassium ions the
occupation probability decreases at small p and increases at
large p. This is due to the fact that at large p the probability
r that the pore is occupied is small and so is the associated
contribution to the potassium flux.

VII. CONCLUSIONS

Potassium channels are special transmembrane proteins
allowing selected potassium permeation outside cells. Gating
and selectivity attitudes are not fully understood. For special
K+-channel types it has been supposed that gating is realized
via a selectivity filter. In this paper we have proposed and
studied a lattice model, in the same spirit of [18], in which
a pore selection rule ensures both selection and gating.
This model has been studied both by means of a Monte
Carlo method and via an analytical approximation. We have
estimated both potassium and sodium fluxes through the
membrane.

We have proven the possibility of achieving selection and
gating and we have discussed the potassium flux reduction due
to the presence of the selectivity filter. In particular we have
shown that allowing more than one potassium ion at time to
be accommodated inside the pore the potassium flux loss is
completely recovered when physiological cytosolic densities
are considered. We then conclude that gating can be achieved
via a selectivity filter in an efficient way.

We have also studied extensively the model discussing the
behavior of potassium and sodium fluxes as functions of the
interesting physiological parameters, that is, the ionic cytosolic
density and the time fraction the filter spends in the low-affinity
state. It is remarkable to notice that the flux of the ionic
species which is not affected by the selectivity filter, sodium
in our model, is directly proportional to the cytosolic density.
A sublinear behavior is found for potassium

In conclusion, we think that lattice models provide essential
and tunable tools to investigate efficiently the properties of
ionic channels by analyzing the wealth of experimental data
available on this subject.
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APPENDIX A: DETAILED DEFINITION OF THE MODEL

In this section we describe in detail the Monte Carlo scheme
that we have studied and whose behavior has been discussed
above.

We consider an integer time variable t . We set t = 0 and
choose at random with uniform probability 1/L2 the position
of the NNa sodium particles and the NK potassium particles.
We then repeat the following steps until t equals the given
integer number tmax:

(1) Set t equal t + 1.
(2) Select at random the state of the pore: choose the low-

affinity state with probability p and the high-affinity one with
probability 1 − p.
(2a) If the pore is in the low-affinity state and it is occupied

by a particle, the particle is released with the following rule:
it jumps with probability 1/2 to the site of � neighboring the
pore or (with the same probability) it exits the system.
(2b) If a particle exits the system, a particle of the same

species is put at random with uniform probability 1/L2 on one
of the L2 sites in �.

(3) The position of each particle on the lattice is updated
following the rules defined in Fig. 1.
(3a) If a particle enters the pore and the pore is in the low-

affinity state, the particle is immediately released by the pore
with the following rule: it jumps with probability 1/2 to the
site of � neighboring the pore or (with the same probability)
it exits the system.
(3b) If a particle exits the system, a particle of the same

species is put at random with uniform probability 1/L2 on one
of the L2 sites in �.

We considered a second model with the aim of improving
the potassium flux efficiency at low-affinity state probability.
This model is defined as the basic one with a single difference:
the rule for a potassium ion in the site neighboring the pore
when the pore is occupied and in the high-affinity state (see
the right top part of Fig. 1) is the same experienced when the
pore is free in the high-affinity state.

APPENDIX B: ONE-DIMENSIONAL MODEL

The basic model introduced in Sec. II can be easily
specialized to the one-dimensional case. The lattice is � =
{1, . . . ,L} and the pore is the site L + 1 of Z. Equations (4)
and (5) become

fNa = 1
4NNaqNap (B1)

and

fK = 1
4NKqkp + 1

2pr. (B2)
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In order to compute qNa we consider the random walk of
a single sodium ion on the lattice {1, . . . ,L}. The transition
matrix elements different from zero are

πi,i+1 = 1
2 for i = 1, . . . ,L − 1

for nearest-neighbor jumps to the right,

πi+1,i = 1
2 for i = 1, . . . ,L − 2

for nearest-neighbor jumps to the left,

πL,L−1 = 1
2 + 1

4L
p

for the nearest-neighbor jump to the left starting from the site
L,

πL,i = 1

4L
p for i = 1, . . . ,L − 2

for left jumps starting from the site L (this not zero transition
matrix elements are due to the fact that particles exiting the
system are put at random with uniform probability in one site
of the lattice �), and finally

π1,1 = 1

2
and πL,L = 1

4
p + 1

4L
p + 1

2
(1 − p).

We let qi , with i = 1, . . . ,L, be the stationary probability
that the walker occupies the site i. Since the pore is the site
L + 1 of Z, we have that qNa is nothing but qL. Recalling the
definition of stationary measure

qi =
L∑

j=1

πi,j qj

for i = 1, . . . ,L, we have

q1 = 1

2
q1 + 1

2
q2 + 1

4L
pqL,

q2 = 1

2
q1 + 1

2
q3 + 1

4L
pqL,

... (B3)

qL−1 = 1

2
qL−2 + 1

2
qL + 1

4L
pqL,

qL = 1

2
qL−1 + 1

4
pqL + 1

4L
pqL + 1

2
(1 − p)qL.

By using the first L − 1 Eqs. (B3) by recursion we get

qk = qk+1 + k

2L
pqL (B4)

for k = 1, . . . ,L − 1. By recursion, again, it is also easy to
prove that (B4) implies

qL−i = qL + 2iL − i(i + 1)

4L
pqL (B5)

for i = 1, . . . ,L − 1, so that the probabilities q1, . . . ,qL−1 are
all expressed in terms of qL. Note that qL−i decreases when
i runs from L − 1 to 1, so that the depletion phenomenon
discussed in Sec. VI is found also in the one-dimensional
case.

In order to find qL, we finally require that the normalization
condition

q1 + · · · + qL = 1
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FIG. 15. Sodium flux as function of the low-affinity state proba-
bility in the one-dimensional case for L = 100. The points ∗, ×, and +
are the Monte Carlo results, respectively, for NNa = 3000, 1000, 100.
The three lines are the graphs of the function (B1) with qNa given by
(B6) for the corresponding values of NNa.

is satisfied. A straightforward computation yields

qL = 1

L + (2L2 − 3L + 1)p/12
. (B6)

The one-dimensional sodium flux can be finally computed
by using (B1) with qNa given by (B6). Monte Carlo results are
compared with this theoretical prediction in Fig. 15 and the
matching is perfect.

The computation of qK is more difficult, since the interac-
tion between the potassium ions and the pore is not as trivial as
for sodium. In particular, due to the possibility that a potassium
ion is trapped in the pore, the potassium walkers cannot be
considered independent. We shall treat this case by assuming
that in the stationary state the probability for the pore to be
occupied by one of the NK potassium ions is r . We then study a
potassium walker on the lattice � = {1, . . . ,L,L + 1}, where
the site L + 1 is the pore, and at the end we shall require that
qL+1 = r/NK. In other words, we shall finally assume that,
in the stationary state, the probability for a single walker to
occupy the pore is equal to the probability that the pore is
occupied by one of the walkers divided by the number of
potassium ions.

We do not list all the not zero transition matrix elements,
but only those differing from the sodium case:

πL+1,i = 1

2L
p for i = 1, . . . ,L − 1

due to particles released by the pore when it flips to the low-
affinity state, and

πL,L = p/4 + p/(4L) + (1 − p)r/2,

πL,L+1 = (1 − p)(1 − r)/2,

πL+1,L = p/2 + p/(2L),

πL+1,L+1 = (1 − p)

for the interaction between the pore and its neighboring
site.

Now we repeat the same computation as in the sodium case.
We first exploit the definition of the stationary measure to
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FIG. 16. Potassium flux as function of the low-affinity state
probability in the one-dimensional case for L = 100. The points
∗, ×, and + are the Monte Carlo results respectively for NK =
3000, 1000, 100. The three lines are the graphs of the function (B2)
with qK given by (B10) and r given by (B9) for the corresponding
values of NK.

write

q1 = 1

2
q1 + 1

2
q2 + 1

4L
pqL + 1

2L
pqL+1,

q2 = 1

2
q1 + 1

2
q3 + 1

4L
pqL + 1

2L
pqL+1,

... (B7)

qL−1 = 1

2
qL−2 + 1

2
qL + 1

4L
pqL + 1

2L
pqL+1,

qL = 1

2
qL−1 + 1

4
pqL + 1

4L
pqL + 1

2
(1 − p)rqL

+ 1

2
pqL+1 + 1

2L
pqL+1,

qL+1 = 1

2
(1 − p)(1 − r)qL + (1 − p)qL+1.

As for the sodium we obtain

qL−i = qL + 2iL − i(i + 1)

4L
pqL + 2iL − i(i + 1)

2L
pqL+1

(B8)

for i = 1, . . . ,L − 1, so that the probabilities q1, . . . ,qL−1 are
all expressed in terms of qL and qL+1. By combining (B8) with
the expression of qL in (B7) we get

qL = 2p

(1 − p)(1 − r)
qL+1,
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FIG. 17. Sodium and potassium flux as function of the low-
affinity state probability in the one-dimensional case for L = 1000.
The points +, �, and ∗ are the Monte Carlo estimates of the sodium
flux, respectively, for NNa = 1000, 3000, 5000. The points �, ×, and
◦ are the Monte Carlo estimates of the potassium flux respectively
for NK = 1000, 3000, 5000. The lines are the graphs of the function
(B1) and (B2) for the corresponding values of NNa and NK.

which is obviously equivalent to the last equation
in (B7).

As discussed above, we finally assume qL+1 = r/NK and,
by exploiting the normalization condition q1 + · · · + qL +
qL+1 = 1, we get

r = NK + B + C −
√

(NK + B + C)2 − 4NKC

2C
(B9)

and

qL = 2p

(1 − p)(1 − r)

r

NK
, (B10)

where we have set

A = 2L2 − 3L + 1

3
, B = 2p

1 − p

(
L + 1

4
Ap

)
,

C = 1 + 1

2
pA.

The one-dimensional potassium flux can be finally com-
puted by using (B2) with qK given by (B10). Monte Carlo
results are compared with this theoretical prediction of r in
Fig. 16 and the matching is perfect.

In Fig. 17 we have compared Monte Carlo and analytical
results for L = 1000. Graphs have been plotted on the same
figures in order to show that even in the one-dimensional case
the selection effect can be appreciated.

[1] A. L. Hodgkin and A. F. Huxley, J. Physiol. 116, 473 (1952).
[2] E. Neher and B. Sakmann, Nature (London) 260, 799 (1976).
[3] B. Hille, Ion Channels of Excitable Membranes, 3rd ed.

(Sinauer Associates, Sunderland, MA, 2001).
[4] S. A. N. Goldstein, D. Bockenhauer, I. O’Kelly, and

N. Zilberberg, Nat. Rev. Neurosci. 2, 175 (2001).
[5] A. M. J. VanDongen, Comm. Theor. Biol. 2, 429 (1992).
[6] C. Miller, Genome Biol. 1, reviews0004 (2000).

[7] D. Fedida and J. C. Hesketh, Prog. Bio. Mol. Biology 75, 165
(2001).

[8] M. Recanatini, A. Cavalli, and M. Masetti, Chem. Med. Chem.
3, 523 (2008).

[9] B. Sakmann and E. Neher, Ann. Rev. Physiol. 46, 455 (1984).
[10] A. Abenavoli, M. L. Di Francesco, I. Schroeder, S. Epimoshko,

S. Gazzarini, U. P. Hansen, G. Thiel, and A. Moroni, J. Gen.
Physiol. 134, 219 (2009).

021920-12

http://dx.doi.org/10.1038/260799a0
http://dx.doi.org/10.1038/35058574
http://dx.doi.org/10.1186/gb-2000-1-4-reviews0004
http://dx.doi.org/10.1016/S0079-6107(01)00006-2
http://dx.doi.org/10.1016/S0079-6107(01)00006-2
http://dx.doi.org/10.1002/cmdc.200700264
http://dx.doi.org/10.1002/cmdc.200700264
http://dx.doi.org/10.1146/annurev.ph.46.030184.002323
http://dx.doi.org/10.1085/jgp.200910266
http://dx.doi.org/10.1085/jgp.200910266


MONTE CARLO STUDY OF GATING AND SELECTION IN . . . PHYSICAL REVIEW E 84, 021920 (2011)

[11] Y. Zhou and R. Mackinnon, J. Mol. Biol. 333, 965 (2003).
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