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Dynamics and morphology characteristics of cell colonies with radially spreading growth fronts
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1Instituto de Investigaciones Fisicoquı́micas Teóricas y Aplicadas (INIFTA) (UNLP, CONICET), Sucursal 4,
Casilla de Correo 16, (1900) La Plata, Argentina
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The dynamics of two-dimensional (2D) radially spreading growth fronts of Vero cell colonies was investigated
utilizing two types of colonies, namely type I starting from clusters with a small number of cells, which initially
exhibited arbitrary-shaped rough growth fronts and progressively approached quasicircular ones as the cell
population increased; and type II colonies, starting from a relatively large circular three-dimensional (3D) cell
cluster. For large cell population colonies, the fractal dimension of the fronts was DF = 1.20 ± 0.05. For low
cell populations, the mean colony radius increased exponentially with time, but for large ones the constant radial
front velocity 0.20 ± 0.02 μm min−1 was reached. Colony spreading was accompanied by changes in both cell
morphology and average size, and by the formation of very large cells, some of them multinuclear. Therefore the
heterogeneity of colonies increased and local driving forces that set in began to influence the 2D growth front
kinetics. The retardation effect related to the exponential to constant radial front velocity transition was assigned
to a number of possible interferences including the cell duplication and 3D growth in the bulk of the colony.
The dynamic scaling analysis of overhang-corrected rough colony fronts, after arc-radius coordinate system
transformation, resulted in roughness exponent α = 0.50 ± 0.05 and growth exponent β = 0.32 ± 0.04, for arc
lengths greater than 100 μm. This set of scaling exponents agreed with that predicted by the Kardar, Parisi, and
Zhang continuous equation. For arc lengths shorter than 2–3 cell diameters, the value α = 0.85 ± 0.05 would be
related to a cell front roughening caused by temporarily membrane deformations occasionally interfered by cell
proliferation.
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I. INTRODUCTION

In recent years scientists from different areas of expertise
became active in the investigation of laws and mechanisms
related to the dynamics of different condensed phases com-
prising inorganic [1–3] and biological systems [4–11]. These
studies, particularly those concerning living systems, require
an interdisciplinary research approach in which areas of
mathematics, physics, and biology are combined with the aim
of developing models that could provide possible predictions
to the behavior of real systems of medical interest.

The dynamics of different biosystems of increasing com-
plexity has been studied from both the theoretical and the ex-
perimental standpoints. Growth processes in two-dimensional
(2D) and three-dimensional (3D) biosystems have been de-
scribed by a number of computer models and theoretical
approaches [2,3,9,12,13]. These models are under constant
revision as new properties of biosystems are discovered. In
this regard, advances have been made either to compare exper-
imental data based on the complex interactions involved in the
dynamics of biosystems or to envisage possible classifications
of growth patterns in terms of generic mechanisms of single
cell dynamics at growth fronts [14–17].

Experimental work has focused on the study of growth
pattern characteristics by the application of statistical ther-
modynamics to disorderly surface and phase growth, and
their nonequilibrium roughening has been interpreted using
scaling concepts to describe the growth dynamics in the
presence of noise [2,8]. From the front roughness dependence
on time and system size, a set of critical exponents, namely
the global α, the local αl and the spectral αs roughness
exponents, the growth exponent β, and the dynamic exponent
z = α/β can be obtained. The validity of the set of critical

exponents can be tested by either adequate rescaling arguments
or renormalization group transformation so that the scaling
functions collapse into a single curve. In simpler cases, when
a congruent set of those exponents is obtained, it becomes
possible to infer the likely universality class the condensed
phase growth dynamics can be associated with [2,3]. Dynamic
scaling analysis has been applied to growth front data from 2D
bacteria [4] and cell line colonies [5,7], and 3D tumors [7].
However, the validity of conclusions derived from the analysis
of radial growth front data, in terms of universality classes,
has been extensively discussed [18,19]. The comparison of
scaling analysis data derived from radially expanding systems
to predictions from computational models of fixed size systems
is still an open question [11,18–25].

In a recent paper, the 2D quasilinear growth of Vero cell
colonies from initially quasistraight fronts was reported [26].
Vero cells were selected because they exhibit either a null
or almost null contact inhibition, a typical property of cells in
tumors, and continue growing and dividing indefinitely in vitro
as long as adequate culture conditions are maintained [27].
Both the morphology features and dynamic scaling analysis of
colony front data showed a complexity of the biological system
that exceeded the framework of conventional condensed phase
growth models, such as the continuous change of cell shape
and average size distribution, the appearance of large, occa-
sionally multinuclear, cells that resulted in a time-dependent
heterogeneity of growing colonies, and the buildup of local
driving forces contributing to the dynamics of the colony at a
certain stage of growth. Under constant linear front velocity,
the dynamic scaling analysis of quasi-2D fronts, within the
150–15000 μm size range, yielded the critical exponents α =
αs = 0.5 ± 0.05 and β = 0.32 ± 0.04. These figures, within
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the experimental errors, fulfilled the Family-Vicsek relation
and agreed with those predicted by the Kardar-Parisi-Zhang
(KPZ) continuous equation. Although the KPZ model does
not explicitly include most of the above-mentioned facts
inherent to the colony front, it captures the essentials of the
biosystem dynamics, in good agreement with the predictions
of 2D cellular automaton models [10]. On the other hand, for
colony front lengths shorter than 100 μm, the scaling behavior
of the rough front appeared to be dominated by local cell
deformations.

The above results suggested the convenience of investi-
gating the radial spreading of Vero cell colonies to evaluate
whether the preceding conclusions from 2D quasilinear growth
fronts could be extended to 2D radial growth. This aprioristic
question is not trivial since quasi-2D straight-line colony
fronts are constrained to advance almost perpendicularly to
the initial front, whereas 2D radial ones are accompanied by a
progressive expansion of the colony front.

Data reported in this work were derived from two types
of experiments to follow both the morphology evolution
of colonies and their 2D growth front kinetics. For this
purpose runs were performed utilizing two types of colonies,
namely type I colonies consisting of 2D clusters with a small
population of cells, and type II colonies starting to grow from
3D clusters. Experimental data from colonies consisting of a
relative small number of cells follow an exponential spreading
regime, whereas for a population exceeding about 700–1000
cells, the 2D growth fronts exhibit a constant radial velocity. At
this stage changes in cell shape and size contribute to building
up cell local density, concentration, and pressure gradients in
the colony that help radial growth. Likewise, the formation of
3D cell domains, under certain conditions, and the occasional
detachment of cells from the colony are also observed. The
experiments confirm the exponential radial growth crossing
over a constant linear growth velocity regime that has been
reported for different cell lines and tumor models [14,28–31].
In the case of Vero cells, the velocity retardation effect, which
appears during the growth of the colony, can be assigned to
several contributions that hinder the radial spreading of the
2D growth front. From the colony growth pattern morphology
there is evidence of 3D domain formation in the colony bulk,
a process that for 2D Vero cell growth likely plays a relevant
role in the retardation effect.

For front sizes ranging from 100 μm upward, i.e., the cell
colony domain, the dynamic scaling analysis of the entire
quasi-2D front evolution indicates that the KPZ continuous
equation captures the behavior of the biosystem spreading
under constant radial velocity. On the other hand, the critical
roughness exponent derived from front sizes below 100 μm,
i.e., the local cell deformation domain, approaches roughness
exponent values that have been reported for other biosystems
[4,7] and predicted for a growing interface that fluctuates in
random media [2].

II. EXPERIMENT

A. Cell colony growth procedures

Vero cells were cultured using Roswell Park Memorial
Institute (RPMI 1640) medium containing 10% fetal bovine

serum (FBS) maintained in a 5% carbon dioxide controlled
atmosphere at 37 ◦C, changing one half of the culture medium
every 2 days. Colonies were prepared by shedding disaggre-
gated cells (500–1000 cell ml−1, passage 165–180) in Petri
dishes producing a large number of small clusters on the
bottom about 48 h later. Then, about 5–6 clusters from each
Petri dish were selected at random to follow up their quasi-2D
front evolution. These type I colonies exhibited an initial
random geometry that progressively became a quasicircular
one. These experiments allowed us to study the dynamics of
colonies at the early stages of growth.

To investigate the spreading of relatively large 2D circular
fronts, runs were made utilizing type II colonies. In this case,
a type I colony was left growing until a 3D cell cluster of
about 250–300 μm radius was formed at the colony center.
Subsequently, the 3D cluster was carefully removed with a
micropipette and transferred to a second Petri dish containing
fresh culture medium. Eventually, the type II colony continued
spreading from the rim of this 3D seed as a 2D domain
(Fig. 1).

For both types of colonies, the study was continued for
about 7–8 days as the colonies eventually collapsed with
neighbor clusters growing at the same time. For type I colonies,
neighbor clusters are already present from the very beginning
due to the shedding procedure itself, whereas for type II
colonies, neighbor clusters are presumably formed mostly
by occasional cell detachment from 3D colony domains, as
the cell-cell adherence energy there becomes weaker than the
cell-substrate interaction energy [32–35].

Colony fixation and staining with May-Grünwald Giemsa
was occasionally performed to improve the detection of
large multinuclear cells and cell filopodia and to evaluate
the statistical distribution of cell size in 2D growth pat-
terns. The viability of cells was routinely checked using
the exclusion Tripan-Blue test. Cell duplication was deter-
mined by labeling with proliferating cell nuclear antigen
(PCNA).

FIG. 1. Images of type I (a) and type II (b) colonies at advanced
stages of growth. Type I colony, which has been fixed and stained,
shows the formation of incipient 3D domains (black) in the bulk.
Type II colony shows the growth of a large outer 2D domain and a
thin 3D irregular-shaped ring starting from the rim of the 3D central
core (black). Colony contours are highlighted. The scale length is
indicated.
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FIG. 2. Typical spreading of a colony front taken at 3120, 5400,
8520, 12 300, and 15 300 min. The length scale is indicated.

B. Colony imaging and data processing

Colony growth patterns were imaged daily using a Canon
digital camera coupled to a Nikon TS100 phase-contrast
inverted microscope with a CFI flat field ADL 10× objective.
The first image of each colony was taken at t0 = 2880 ±
200 min after seeding either cells or a 3D cell cluster. The entire
image of each colony at time t resulted from the stitch and
composition of a number of partial images with a resolution
of 0.88 μm/pixel.

Colony fronts (Fig. 2) were manually traced using a Wacom
graphic tablet. By conveniently zooming the images on the
computer screen, the error of the traces was reduced to the
order of the pixel. The analysis of the fronts was performed
employing an in-lab developed program that provided the
colony center of mass (c.m.), the instantaneous distance Ri(t)
from c.m. to the ith point at the front (i = 1,2, . . . N), the mean
colony radius 〈R〉 (〈R〉 = ∑

Ri/N), the mean radial front
velocity 〈v〉 = d〈R(t)〉/dt , the instantaneous global roughness
w(L,t) at size L, and the colony front fractal dimension DF .

The scaling analysis was performed by transforming the
front coordinate system from angle radius into arc radius [7,8],
so that the location of each point at the front was determined
by coordinates si,Ri , the arc si being measured along the
circle of radius 〈R〉 (Fig. 3). Hence for the front size L, the
instantaneous global roughness of the expanding front was
determined as the standard deviation of the radial fluctuations

w(L,t) =
[

1

N
�[Ri(t) − 〈R(t)〉]2

]1/2

. (1)

On the other hand, the local roughness of the front, w(s,t),
was evaluated from the standard deviation of radii Ri within
an arc length s (s < L) at time t .

Global and local roughnesses were determined for both
experimental and overhang-corrected data. The overhang-
corrected profiles were obtained by taking the maximum value

FIG. 3. (a) Scheme of a typical quasicircular 2D colony front of
mean radius 〈R〉 measured with respect to the colony center of mass.
(b) Linearized front resulting from the radius-angle to the radius-arc
coordinate transformation.

of Ri(t) for si in Fig. 3(b). As shown in the next section,
the influence of overhang correction, required for scaling the
front roughness, becomes practically null when s, the length
of the colony front, exceeded the length of 3–4 average cell
diameters.

III. RESULTS AND INTERPRETATION

A. Changes in the morphology of growing colonies

Type I colonies growing impromptu from a cluster of a
few cells (5 � n � 80) had unpredictable shapes and their
rough fronts showed irregularities such as protrusions and
valleys, and some voids in the bulk (Fig. 4). However,
despite the arbitrary initial shape of these colonies, once the
population increased above 250 cells, they eventually acquired
a quasicircular geometry (Fig. 5). This geometry appeared as
a consequence of the random spatiotemporal duplication of
cells without any predictable neighbor site location of each
new cell in the cluster. The evolution of the shape of type I
colonies was followed by its aspect ratio, defined by the major
to the minor axis ratio of an ellipse with an area equivalent
to that of the colony. As t increased, the aspect ratio became
closer to 1 (Fig. 6). These plots show fluctuations in the aspect
ratio value due to short time local random branching produced
by cell duplication at the front. Conversely, type II colonies
appeared quasicircular from the very beginning as the 2D radial
displacement starts from the rim of the 3D cluster seed.

In general, the average cell size and shape, resulting from
both types of colonies, depends on n, the cell population,
and the colony age. Thus, for type I colonies consisting of
a few cells, their average cell diameter is 40 ± 10 μm. As n

increases, the average cell size decreases from the colony rim
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FIG. 4. Images of type I colonies at early stages of growth with
different cell populations. For a better visualization of cells, colonies
were fixed and stained with May-Grünwald Giemsa.

inward. At the innermost part of the colony the average cell
size is about 50% their original size (Fig. 7). On the other hand,
at sufficiently long times, some cells, particularly at the rim,
reach diameters above 200 μm. Likewise, the number of voids
in the bulk decreases and the local compactness of the colony
increases. Furthermore, the labeling of growing colonies with

FIG. 5. Shape evolution of a type I colony from a quasilinear
(t = 2880 min) to a quasicircular one (t = 10 890 min). Colony fronts
are highlighted and growth times are indicated.

FIG. 6. Instantaneous aspect ratio versus growth time plots.
Symbols correspond to different type I colonies. The dotted horizontal
line indicates the circular front reference.

PCNA shows that cell proliferation takes place at both the rim
and the bulk of the colony (Fig. 8).

For type I and II colonies and t > 5000 min, a relatively
small number of large, some multinuclear, cells, and filopodia
are formed, particularly at the colony front (Fig. 9). The origin
of the large multinuclear cells, which have been reported
elsewhere [36], is still unclear. These cell morphology changes
modify the average cell size distribution at the colony front as
seen in the corresponding histograms (Fig. 10); the skewness
of the histograms moves from 1.6 to 2.7 in the interval

FIG. 7. Average cell area versus the radial distance from the
center of a type I colony. Values were averaged from four equidistant
colony radius. Colony growth times are indicated.
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FIG. 8. Cell proliferation in a type I colony. The circles indicate
cells that are positive for PCNA, i.e., those that are under mitosis at
the time of labeling. For the sake of clarity, only some cells under
duplication are indicated.

2880–13280 min, i.e., the greater t is, the broader the size
distribution at the colony front results.

These changes result in a time-dependent heterogeneity of
growing colony patterns, principally in the radial direction,
which assist in the buildup of both local cell concentration
and density gradients between the center and the front of the
colony. They generate driving forces assisting mass transport
and, at least in part, influencing 3D phase formation in the bulk
of the colony [Fig. 1(a)].

FIG. 9. Cell arrangement patterns at the rim of a type II colony at
t = 2880, 5700, and 8880 min. The increasing contribution of large
cells and filopodia with time can be observed. The scale length is
indicated.

FIG. 10. Cell size histograms at the front of a type II colony for
different times.

B. Colony growth kinetics

Colony growth kinetic data are obtained by cell counting
from type I colonies. Unfortunately, for type II colonies, no
reliable cell counting could be done because of the presence
of the central 3D cell domain.

For type I colonies with a small initial number of cells (n0),
the instantaneous cell number n(t) increases exponentially
with t . Then, the increase in cell population can be expressed
by a rate equation involving an average first order rate constant
〈kd〉,

n(t)

n0
= e〈kd 〉t , (2)

with 〈kd〉 = 1/〈τ 〉, 〈τ 〉 being the average cell duplication time.
The normalized log(n/n0) versus t plots approach a straight

line with the average slope 2.2 × 10−4 min−1 (Fig. 11). From
this figure, it follows that 〈kd〉 = 5.2 ± 0.7 × 10−4 min−1 and
〈τ 〉 ≈ 2000 min, a value that is within the range of the Vero
cell average duplication time reported elsewhere [37].

On the other hand, for type I colonies a linear log 〈R〉
versus t plot results, the average slope being 1.02 ± 0.02 ×
10−4 min−1 for t < 9000 min [Fig. 12(a)]. The deviation
of data from linearity for t > 9000 min indicates a slower
radial spreading velocity of the colony front. Conversely,
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FIG. 11. Semilog normalized number of cells versus colony
growth time plots [Eq. (2)] for type I colonies. Symbols correspond
to different colonies.

type II colonies, growing around a 3D cluster seed of radius
R0, exhibit a linear 〈R〉 − R0 increase with t [Fig. 12(b)] with
the slope vR = 0.20 ± 0.02 μm min−1. This figure agrees with
that previously reported for the 2D front velocity of Vero cell
colonies started from quasilinear fronts [26].

Considering that for type I colonies with small n, both the
instantaneous size and shape distribution of cells become fairly
homogeneous, and further assuming that the colony geometry
can be approximated to a circle of radius R, the instantaneous
colony area [A(t)] can be related to n(t) cells with the average
radius rc as follows:

A(t) = πR2(t) = n(t)π〈rc〉2. (3)

Equation (3) predicts a linear R versus n1/2 relationship that
is observed from n → 0 up to n ≈ 900 (Fig. 13). For n > 900
experimental data deviate from Eq. (3) and the radial growth
front velocity also deviates from the exponential regime
[Fig. 12(a)].

Furthermore, as comes out from Eqs. (2) and (3), for type I
colonies with 5 � n0 � 90, the 2D radial growth velocity data
approach an exponential law (Fig. 14) resulting from

R(t)√
n0 〈rc〉 = e〈kd 〉t/2 (4)

with a slope 1.1 × 10−4 min−1, i.e., half the slope of Fig. 11,
as expected.

The preceding analysis demonstrates the occurrence of two
radial growth regimes that depend principally on the value of
n(t). Thus, for type I colonies, the lower n(t) is the longer the
exponential spreading regime results. The constant velocity
regime is attained when n exceeds a value of 700–1000 cells.
In contrast, for type II colonies, which involve large values of
n from the very beginning, the constant radial growth velocity
regime is already observed from t ≈ t0 upward [Fig. 12(b)].

FIG. 12. (a) Log colony mean radius versus growth time plots for
type I colonies. (b) 2D domain mean radius versus colony growth
time plots for type II colonies (R0 = initial 3D cluster seed radius).
Symbols correspond to different colonies.

IV. DYNAMIC SCALING ANALYSIS

The fractal dimension of colony fronts spreading at constant
radial velocity, evaluated by the box-counting method, resulted
in DF = 1.20 ± 0.05, a figure that agrees with values of DF

that have been obtained for Vero cell colonies under both
quasilinear [26] and radial [7] growth. In contrast, for clusters
with fronts far from circular, DF was lower than 1.20. These

FIG. 13. Colony mean radius versus the square root of cell
population plot. Symbols correspond to different type I colonies.
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FIG. 14. Semilog plot of Eq. (4) for type I colony data for 〈rc〉 =
15 μm and 5 � n0 � 90.

values of DF indicate complex colony contours with a low
degree of ramification. Accordingly, the scaling analysis of
radial colony fronts that spread at constant velocity was done
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FIG. 15. (a) Front roughness versus growth time log-log plots
for colonies of type I and II from both experimental and overhang-
corrected data. (b) w(s,t) versus t log-log plots from overhang-
corrected data from type II colonies for different s values. Slope
values are indicated on the right. For the sake of clarity, data have
been binned.

by extending the validity of linear growth model equations
to systems of increasing size [7,8,11,20,38] and transforming
front coordinates from angle-radius to arc-radius ones (Fig. 3).
This procedure has been utilized in the growth of plant callus
[8] and a number of cell colonies and tumors [7].

A. Scaling exponents

According to the dynamic scaling theory [2], the roughness
of a growing front of size L, w(L,t), is expected to increase
with tβ until it reaches a saturation value ws(L,t), the
latter following a power law ws(L,t) ∝ Lα . The roughness
exponent α characterizes the stationary roughness regime
in which the height-height correlation length has reached a
value greater than L, while the growth exponent β accounts
for the short time behavior of the growing front. Then, for
a set of scaling exponents one expects the fulfillment of the
Family-Vicsek relation [2]

w(L,t) ∝ Lαf

(
t

Lz

)
. (5)

This approach has been applied to quasilinear single-valued
fronts [26] and also tested for circular systems [21,39].

For roughness values measured along a colony front arc s

relation (5) can be written as

w(s,t) ∝ sαf

(
t

sz

)
, (6)

where s < L (Fig. 3)

FIG. 16. Local colony front roughness versus arc length log-log
plots. Data from type I (a), (b) and type II (c), (d) colonies at
different times, as indicated. Black and open symbols correspond
to experimental and overhang-corrected data, respectively.
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a slope −(2αs + 1) = −2 are drawn to guide the eye.

Thus experimental and overhang-corrected front data from
type I and type II colonies plotted as log w(L,t) versus log
t approach linear relationships with the same average slope
β = 0.32 ± 0.04 [Fig. 15(a)], covering about one decade of
log t for type II colonies, and a shorter range for type I
colonies. It should be noted that for the latter, the evaluation
of β is constrained to colonies growing under constant radial
velocity. In these cases, the average value of β agrees with
that previously reported for Vero cell colonies approaching
a quasilinear front [26]. On the other hand [Fig. 15(b)], the
w(s,t) versus t log-log plots, after overhang correction, in
the range 10 � s � 100, approach straight lines with very
low slopes tending to zero, but when s = L, the slope results
in 0.32.

The log w(s,t) versus log s plots from experimental and
overhang-corrected data (Fig. 16) collapse into a single curve
for s > s0 ≈ 100 μm, irrespective of the type of colony.
These plots indicate that the influence of overhangs on the
front roughness becomes negligible when s > s0, i.e., when
s exceeds the length of about 3–4 cell average diameters.
Data approach a linear region with a slope α ≈ 0.5 that
extends for about one decade before local roughness saturation
is attained, as expected for a system in the absence of
global roughness saturation [26]. In contrast, for s < s0, the
plots of overhang-corrected data strongly deviate from the
experimental roughness data, resulting in a straight line with
a slope of about 0.85 (Fig. 16).

Therefore depending whether s < s0 or s > s0 one scales
either the cell or the colony front domain, respectively. In
general, the influence of overhangs on the radial growth
front roughness appeared to be somewhat diminished as
compared to quasilinear growth fronts [26], probably due to
the increasing free space generated by the radial spreading of
the colony.

A more generic scaling analysis can be obtained consid-
ering the structure factor S(k,t) of the entire (s = L) growth
front [2,10,40,41],

S(k,t) = k−(2αs+1)f (kt1/z), (7)

with αs being the spectral roughness exponent and f (x =
kt1/z) the scaling function, which depends on x as follows:

f (x) =
{

const for x 	 1;
x(2α+1) for x 
 1.

(8)

The advantage of estimating the scaling exponents in the
Fourier space over real space methods is that only long
wavelength modes contribute to the front scaling. Real space
scaling [Eq. (6)] involves all wavelength modes, including
short ones, so that stronger finite size effects should be
expected.

The structure factor versus frequency log-log plots from
overhang-corrected type I and type II colony front data
(Fig. 17) approach a straight line with a slope close to

FIG. 18. Plots of Family-Vicsek scaling relationships [Eqs. (5)
and (7)] for type I and type II colonies, considering α = 0.5 and
z = 1.5. Data have been binned for the sake of clarity.
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−2.0 ± 0.1. Then, in the range 0.02 � k � 1, αs = 0.50 ±
0.05 results, irrespective of both t and the type of colony.
Unfortunately, due to the noise of the system, no further
conclusions about spectra displacement can be drawn from
these plots, as one would expect if any anomalous scaling
effect is involved [40].

The scaling exponents derived from the log-log plots of the
dynamic scaling analysis (Figs. 15–17) were utilized to test
the validity of the Family-Vicsek relation [42]. Thus both plots
resulting from Eqs. (5) and (7) show reasonable collapses ap-
proaching a single universal curve (Fig. 18), in agrement with
cell colonies starting from quasilinear 2D growth fronts [26].

V. DISCUSSION

A. Growth dynamics of clusters with a small number of cells

Radial spreading of cell clusters exhibiting arbitrary-shaped
fronts consists of cells of rather homogeneous average size and
shape. For these clusters, one should expect no appreciable
influence of driving forces on the growth front displacement
generated by concentration and density gradients in the colony,
as occurs for colonies with large n reaching a quasicircular
front. In this case, the average cell size at the front becomes
greater than those of cells in the colony bulk at later colony
growth stages. For these clusters a physical picture of the
2D front roughness evolution should consider at least two
main contributions: one due to the random appearance of
new cells, characterized by the average rate constant 〈kd〉 =
5.1 ± 0.7 × 10−4 min−1, and the other one related to local
fast deformations of cell membranes. After cell duplication,
the cluster front configuration depends on several possibilities
of cell arrangements, some of them resulting in either void
formations or lateral growth. The local fast deformation of cell
membrane may also produce transient protrusions and cavities
with small radii of curvature engendering a contribution to
the front roughness, particularly significant for small clusters
(Fig. 4). Consequently, the dynamics of clusters with small n

largely depends on local stochastic processes associated with
cell duplication and much faster cell membrane deformations.

B. Transition from exponential to constant radial
growth front velocity

For a number of radially expanding cell line colonies,
depending on their cell population, different growth kinetic
regimes have been observed. It has been shown that, starting
from a very low cell population, the colony mean radius
increases exponentially with t , but once a certain value of
n is exceeded, it continues growing at a constant radial
velocity [7,28]. This velocity transition has been investigated
utilizing computational models and interpreted in terms of
sequential growth velocity regimes [28]. Accordingly, an
initial diffusionlike growth regime obeying a t1/2 power law
(phase I) is expected only when the cell motility is high. Then,
an exponential (phase II) velocity regime sets in and, finally, a
crossover to linear growth in the asymptotic limit is attained.
The appearance of this retardation effect has been assigned
to a contact inhibition of cell division as the cell population
increases [28]. Then, a scheme has been proposed consisting

FIG. 19. Scheme of circular colony with a 2D proliferating cell
domain that contributes to the expansion of the colony (light gray),
and a central 3D domain that is related to a retardation effect (dark
gray).

of a central core responsible for the retardation effect, and
an outer ring of effective thickness where cell duplication
occurs and contributes to the 2D expansion of the colony [28].
The growing colony cross section can be approached as an
outer ring of effective thickness �Reff = R(t) − R2(t) and a
central core of instantaneous radius R2(t) associated with the
retardation effect (Fig. 19). Then, considering that at t = 0,
n = n0, and R = R0 < �Reff , the transition from exponential
to constant radial velocity regime has been expressed by the
following equation [28]:

R(t) =
{

R0e
(t/2τ ), t � tc,

π1/2�Reff
2

[
1 + W

(
r4
c n2

0

π2�R4
eff

e(1+2t/τ )
)]

, t > tc,

(9)
with W (x) being the Lambert function and tc =
τ ln(�R2

eff/r2
c n0). Then, as �Reff attains a constant value the

linear R versus t relationship is approached. By plotting our
experimental data according to Eq. (9), considering n0 = 8,
a mean cell radius rc = 15 μm, �Reff = 330 μm, and an
average cell duplication time 〈τ 〉 = 2000 min, they exhibit,
within experimental errors, a reasonable agreement (Fig. 20).
However, it should be noted that, despite this agreement, our
results show that the phenomenology of colony growth exceeds
the assumptions of the model. In fact, the transition from
exponential to linear kinetic regimes appears accompanied by
gradual changes in the colony features, such as (i) a change
of the 2D front from an initially arbitrary to a quasicircular
shape as n increases (Fig. 5); (ii) a decrease in the average
size of cells in going from the colony front inward (Fig. 7);
(iii) the appearance of 3D cell domains in the bulk of the
colony [Fig. 1(a)]; (iv) the progressive formation of large
cells, particularly at the colony rim (Fig. 9). Furthermore,
the proliferation of cells occurs both at the rim and in the
bulk of the colony (Fig. 8). Consequently, the slowdown of
the 2D colony front radial displacement velocity, which has
been attributed to contact inhibition of cell division, actually
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FIG. 20. Radial growth data of type I and II colonies. Data from
type I colonies correspond to a different initial number of cells. The
dashed trace corresponds to the plot of Eq. (9) for n0 = 8, rc =
15 μm, �Reff = 330 μm, and τ = 2000 min.

involves a number of cooperative phenomena in which the
complex mechanisms of each one of them involve biological
and physicochemical interactions. For the case of Vero cells,
the formation of 3D domains in the colony bulk likely plays a
significant role in the retardation effect. This is in accordance
with the fact that Vero cells exhibit either a null or almost null
contact inhibition [27].

C. A likely interpretation of the dynamic scaling exponents

The dynamic scaling analysis of quasicircular growth front
data allows us to distinguish two limiting scaling behaviors,
depending on whether the front size is either lower or greater
than the critical size s0 ≈ 100 μm, i.e., a size of about 3–
4 cell diameters (Fig. 16). This behavior is comparable to
that earlier described for the growth of colonies starting from
quasilinear fronts [26] and shows that one can differentiate two
scaling domains, one related to colony front fluctuations (s >

s0) and the other one where the roughness evolution would be
dominated by the cell membrane properties (s < s0).

For s < s0 (cell domain), the scaling plots of overhang
corrected data furnish the exponent α = 0.85 ± 0.05 (Fig. 16)
and exponent β → 0 [Fig. 15(b)]. The value of α is within
the range of those that have been reported for bacteria
growth (α = 0.75) [4], burning fronts (α = 0.71) [43],
constant fluid flow in porous media (α = 0.81) [44], paper
wetting (α = 0.78) [2], growth of some cell colonies and
tumors (α = 0.9) [7], and multiphase flow through a bead
pack (α = 0.73) [45,46]. For this case, a model has been
proposed for linear front velocity displacement that involves
surface tension, a pushing force, and temporarily quenched
noise. It was expressed by a KPZ-like equation without its
nonlinear term. Considering the system size and time range of

our experiments, a straightforward comparison of our data to
those reported above is not feasible. Then, for the interpretation
of exponents α and β for s < s0 further research work has to
be done. However, at this stage, we can admit that the value
of α would be related to local cell membrane deformations
occasionally perturbed by cell division, whereas exponent β

indicates that in the smallest range of s the rate of roughness
change becomes negligible.

For s > s0 (colony domain), the influence of overhangs on
the front roughness becomes negligible (Figs. 15 and 16), and
the dynamic scaling and the Fourier analysis of roughness
data result in the set of critical exponents α = 0.50 ± 0.05,
β = 0.32 ± 0.04, and z = 1.50 ± 0.2, in agreement with the
predictions of the KPZ equation. Therefore considering the
reproducibility of data and the difficulty to obtain a more
accurate collapse in the S(k,t)k(2αs+1) versus kt1/z log-log
plots (Fig. 18), the fulfillment of the Family-Vicsek relation
is acceptable. This set of KPZ exponents agrees with that
previously reported for Vero cell colonies growing from 2D
quasistraight linear fronts [26] and with the dynamic exponents
derived from a cellular automaton model [10].

The KPZ behavior of growing 2D fronts of spreading
condensed phases involves the participation of processes
whose kinetics can be expressed by a general equation that
contains linear, nonlinear and stochastic terms. The dynamics
of 2D colony growth with a large cell population proceeds by a
number of processes that can be described by linear differential
equations such as those related to bulk diffusion, surface
diffusion, surface tension and convective transport. On the
other hand, biased displacement in the colony front, produced
by the cell’s own duplication and local cell deformations that
contribute to the colony spreading, should also be responsible
for a nonlinear help in the growth process. Finally, stochastic
processes play a relevant role, principally in cell duplication.
Therefore the entire colony growth process becomes extremely
complex because it involves the concerted actions of biological
constituents of the colony and the physicochemical properties
of the whole biosystem, which in turn would depend on the
age of the colony and the size and shape distribution of cells
therein.

VI. CONCLUSIONS

The 2D radial front dynamics of Vero cell colonies
consisting of a small number of cells follows an exponential
law either in terms of n or R, but as n exceeds a critical
value, a constant radial velocity is attained. This radial velocity
transition is accompanied by gradual modifications of rough
growth patterns, such as the evolution of small clusters from
irregular to quasicircular colonies, the increase in the colony
heterogeneity produced by the decrease in cell average size
from the colony front inward, the appearance of large cells,
and the progressive formation of 3D cell domains in the
colony bulk. The change from the exponential to the linear
2D front radial velocity can be described assuming that at a
long time, the colony spreading is due to the contribution of
a proliferating ring around a central core hindering the 2D
colony expansion [28]. However, this retardation effect cannot
just be attributed to a contact inhibition process only, as cell
duplication and 3D phase formation in the bulk of the colonies
are observed.
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The dynamic scaling analysis of colony fronts shows two
limiting behaviors depending on whether the front size s is
below or above a critical value s0 ≈ 100 μm. For s < s0,
the dynamic scaling analysis of the growth front implies
contributions from both cell membrane deformations and the
occasional interference of neighbor cell proliferation. In this
range of s, the presence of overhangs strongly influences
the front roughness value. The exponent α = 0.85 ± 0.05,
obtained after overhang correction, is comparable to those
earlier found for other biosystems. Furthermore, the value
of β obtained for s < s0 indicates that the rate of rough-
ness change under these spatiotemporal conditions becomes
negligible.

On the other hand, for s > s0 the roughness evolution shows
practically no influence of overhangs. The resulting critical
exponents α = 0.50 ± 0.05, β = 0.32 ± 0.04, and z = 1.5 ±
0.2 are consistent with the KPZ universality class, and the set

of critical exponents fulfill, within the experimental errors, the
Family-Vicsek relation.

The agreement between the results reported here for 2D
radially spreading growth fronts and those previously found
for 2D quasilinear ones [26] indicates that the 2D growth
front dynamics of Vero cell colonies fulfills the set of the
scaling exponents derived from the KPZ continuous equation
and agrees with the predictions of the cellular automaton model
proposed earlier [10].
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I. Brú, Biophys. J. 85, 2948 (2003).
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[19] A. Brú, Biophys. J. 88, 3737 (2005).
[20] S. C. Ferreira and S. G. Alves, J. Stat. Mech. (2006) P11007.
[21] B. Brutovsky, D. Horvath, and V. Lisy, Physica A 387, 839

(2008).
[22] C. Escudero, Phys. Rev. Lett. 100, 116101 (2008).
[23] J. Krug, Phys. Rev. Lett. 102, 139601 (2009).
[24] C. Escudero, Phys. Rev. Lett. 102, 139602 (2009).
[25] C. Escudero, Cond. Mat. Stat. Mech., e-print arXiv:0912.2717.

[26] M. A. C. Huergo, M. A. Pasquale, A. E. Bolzán, A. J. Arvia, and
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[40] J. J. Ramasco, J. M. López, and M. A. Rodrı́guez, Phys. Rev.

Lett. 84, 2199 (2000).
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