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Effects of competition on pattern formation in the rock-paper-scissors game
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We investigate the impact of cyclic competition on pattern formation in the rock-paper-scissors game. By
separately considering random and prepared initial conditions, we observe a critical influence of the competition
rate p on the stability of spiral waves and on the emergence of biodiversity. In particular, while increasing
values of p promote biodiversity, they may act detrimentally on spatial pattern formation. For random initial
conditions, we observe a phase transition from biodiversity to an absorbing phase, whereby the critical value of
mobility grows linearly with increasing values of p on a log-log scale but then saturates as p becomes large.
For prepared initial conditions, we observe the formation of single-armed spirals, but only for values of p that
are below a critical value. Once above that value, the spirals break up and form disordered spatial structures,
mainly because of the percolation of vacant sites. Thus there exists a critical value of the competition rates pc

for stable single-armed spirals in finite populations. Importantly though, pc increases with increasing system
size because noise reinforces the disintegration of ordered patterns. In addition, we also find that pc increases
with the mobility. These phenomena are reproduced by a deterministic model that is based on nonlinear partial
differential equations. Our findings indicate that competition is vital for the sustenance of biodiversity and the
emergence of pattern formation in ecosystems governed by cyclical interactions.
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I. INTRODUCTION

Biodiversity and spatiotemporal dynamics of interacting
individuals are important for the characterization of ecological
systems. Recently, the spatial heterogeneity of species has
attracted much attention because it is closely related to
the stability and coexistence in ecological and evolutionary
systems [1–6], whereas the competition between species, for
example, was invoked as an evolutionary force in community
food webs [7,8]. Since each species has a different competition
rate with which it is able to invade others, Huntley and
Kowalewski studied Phanerozoic fossil records and found that
the competition rate is deeply interrelated with biodiversity
[9]. Theoretically, several aspects of multispecies cyclical
dominance have already been studied in detail. For example, it
has been established that three species in a cyclic dominance
exhibit self-organizing behavior on the spatial grid [10,11]
whereby similar observations can be made also for systems
that incorporate more than three species, provided their total
number does not exceed 14 [12]. Phase transitions and
selection have also been studied in the predator-prey models
allowing some motion throughout inhabitable vacant sites
[13,14]. Recent theoretical studies focused on biodiversity
and the emergence of self-organizing patterns by competing
associations with homogeneous and heterogeneous invasion
rates [15–34], elevating models of cyclical interactions to an
enthusiastically approached field of research.

Despite being fascinatingly simple and seemingly trivial,
cyclical interactions among competing species emerge rather
frequently in nature and are indeed becoming more established
as excellent models for the study of biodiversity, the formation
of defensive alliances [35], and Darwinian selection [36], as

well as structural complexity [37] and prebiotic evolution
in general [38]. Examples of reported real-life occurrences
of cyclical interactions include rodents in the High Arctic
tundra in Greenland [39], lizards in the Inner Coast Ranges
of California [40], overgrowth of marine sessile organisms
[41], and microbial populations of Escherichia coli [42,43].
Recent experiments revealed that cyclical interactions can
promote biodiversity within three strains of Escherichia coli
[43]. However, while the effects of mobility and noise on
cooperation, biodiversity, and spatial pattern formation have
been investigated intensely and with great success [18,44–50],
the effects of different rates of cyclic competition have not
yet been thoroughly investigated. It is thus of interest to
systemically investigate the impact of a cyclic competition
rate on both biodiversity and pattern formation in models of
cyclically competing species.

Accordingly, we investigate the effects of different com-
petition rates on phase transitions and pattern formation by
employing both random and prepared initial conditions. With
increasing mobility, the phase transition from biodiversity to
an absorbing phase, in which two species go extinct, emerges
and the critical value of mobility is critically affected by
the competition rate. Large competition rates lead to vacant
sites surrounding small patches containing all three species,
which results in the fragmentation of macroscopic spirals.
This effect prevents the pattern outgrowing the system size and
thus inducing the promotion of biodiversity. For random initial
conditions our results are in agrement with the seminal results
of Reichenbach et al. [18,19]. For prepared initial conditions,
however, we find that with increasing competition effects, a
sharp transition occurs from a single spiral to multiple spirals
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coexisting. The disintegration is due to the percolation of
vacant sites as well as noise. Since the level of the latter is
directly related to the system size, the critical competition
rate pc increases with increasing system size L × L such
that it is convenient to define the so-called competition effect
as E = p/L, of which the critical value Ec (at which the
single-arm spiral disintegrates) is then independent of L. For
a fixed system size, however, we also find that the value of the
critical competition increases with increasing mobility. It is
thus demonstrated that the rate of cyclic competition may have
positive effects on the promotion of biodiversity, but negative
effects on the sustenance of single-armed spiral waves. The
latter phenomenon is investigated in detail also for different
reproduction rates governing the rock-paper-scissors game.

The remainder of this paper is organized as follows. In
the following section we present the rock-paper-scissors game
employed. The main results on the effects of the compe-
tition on biodiversity and pattern formation are presented
in Sec. III. Section IV features results on the impact of
different reproduction rates on the emergence and stability
of spirals. Section V summarizes the findings and discusses
their potential implications.

II. THE ROCK-PAPER-SCISSORS GAME

We employ the biological rock-paper-scissors game with
the following specifications. Nodes of an L × L square lattice
present mobile individuals belonging to one of the three
species, which we denote by A, B, and C. Each node can
either host one individual of a given species or be vacant.
Vacant sites, which we denote by ⊗, are also the so-called
resource sites:

AB
p−→ A ⊗ , BC

p−→ B ⊗ , CA
p−→ C⊗; (1)

A⊗ q−→ AA, B⊗ q−→ BB, C⊗ q−→ CC; (2)

A� γ−→ �A, B� γ−→ �B, C� γ−→ �C, (3)

where � denotes any species or vacant sites. These reactions
describe three processes, i.e., competition, reproduction, and
exchange, occurring only between neighboring nodes. In
reaction (1), species A eliminates species B at a rate p,
whereby the node previously hosting species B becomes
vacant. In the same manner species B can eliminate species
C and species C can eliminate species A, thus forming a
closed loop of dominance between them. Reaction (2) shows
that individuals can place an offspring at a neighboring vacant
node ⊗ at a rate q. Reaction (3) defines an exchange process
whereby an individual may exchange its position with an
individual belonging to any other species or an empty site
at a rate γ .

Here we use both the stochastic and deterministic ap-
proaches to simulate the rock-paper-scissors game. For the
stochastic approach we make use of a stochastic simulation
algorithm whereby the temporal evolution can be considered
as a random-walk process. The most commonly applied
stochastic simulation algorithm was developed by Gillespie
[51,52], where reactions occur in a random manner.

In particular, competition occurs with probability p/(p +
q + γ ), reproduction with probability 1/(p + q + γ ), and ex-
change (moving) with probability γ /(p + q + γ ). According
to the random-walk theory [53], the mobility of individuals M

can be defined as M = γ /2N , meaning it is proportional to
the typical area explored by a mobile individual per unit time.
As derived in the works of Reichenbach et al. [18,19,54], for
the deterministic approach we use partial differential equations
(PDEs) of the form

∂ta(r,t) = D∇2a(r,t) + qa(r,t)ρ0 − pc(r,t)a(r,t),

∂tb(r,t) = D∇2b(r,t) + qb(r,t)ρ0 − pa(r,t)b(r,t), (4)

∂tc(r,t) = D∇2c(r,t) + qc(r,t)ρ0 − pb(r,t)c(r,t).

Here, D denotes the diffusion rate and ρ0 the density of
vacant sites.

III. EFFECTS OF COMPETITION ON BIODIVERSITY
AND PATTERN FORMATION

To examine the effects of the competition rate p on the
sustenance of biodiversity, we set the reproduction rate q

equal to 1.0 (see Sec. IV for the relaxation of this condition)
and perform extensive computer simulations of reactions
(1)–(3) with no-flux boundary conditions using random initial
configurations where each lattice site is either occupied by an
individual of species A, species B, or species C or left empty
with equal probability. Following Ref. [18], we calculate the
extinction probability Pext that two species have gone extinct
when the system reaches the stationary state. Figure 1(a)
features the results for p = 1.0, which are in agrement to
those reported in Ref. [18], namely, with increasing M , a phase
transition from biodiversity (Pext = 0) to uniformity (Pext = 1)
emerges at a critical value Mc = (4.5 ± 0.5) × 10−4. From
Fig. 1(a) one can also observe that the critical value of Mc

depends on p; in particular, smaller p yield smaller values
of Mc. To study how the competition rate p affects the
biodiversity, we present typical snapshots for p = 1.0 and

FIG. 1. (Color online) (a) Extinction probability Pext as a function
of mobility M for different competition rates p. As M increases,
there is a transition from stable coexistence (Pext = 0) to extinction
(Pext = 1). Also depicted are typical snapshots after a long relaxation
period of the system for (b) p = 1.0 and (c) p = 10.0 at M =
1.0 × 10−4. (d) Phase diagram depicting the critical mobility Mc as
a function of the competition rate p, separating the absorbing single-
species phase (uniformity) and the biodiversity phase. Random initial
conditions N = 1282 and q = 1.0 were used for the results in all
panels.
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10.0 in Figs. 1(b) and 1(c), respectively, at M = 1.0 × 10−4.
We find that while macroscopic spirals exist in the system at
p = 1.0, at p = 10.0 small patches occupied by individuals
of any of the three species are divided (or disconnected) by
vacant sites and hence no macroscopic (large) spiral can be
observed. According to Ref. [18], the loss of biodiversity
results from spirals outgrowing the system size when mobility
M exceeds Mc. Therefore, for a given M , for example,
M = 1.0 × 10−4, the larger value of p promotes biodiversity
better than smaller p. In Fig. 1(d) we present the phase diagram
with the biodiversity phase and the absorbing single-species
(uniformity) phase delineated. There are in fact two different
regimes inferable, which are due to small and large values of
p. For small values of p, i.e., when the reproduction rate
is comparable to the competition rate, Mc grows linearly
with p on a log-log scale. However, for large values of p,
i.e., when the competition rate is significantly larger than the
reproduction rate, the reproduction process limits the dynamics
and therefore Mc disobeys the linear relation and approaches
a constant value for p > 10.

Since pattern formation plays a central role in the suste-
nance of biodiversity [18,19], we focus on the evolutionary
process of pattern formation which is dependent on the
competition rate p. Thus we will consider p and the mobility
M as the two crucial parameters effecting pattern formation in
the model examined. As shown in Fig. 2(a), prepared initial
conditions that facilitate the emergence of spirals are employed
for this purpose. In particular, three roundish areas with a
radius of 10.5 are occupied individually by each of the three
species; the distance between each region is the same. All other
nodes are initially vacant, i.e., providing resources needed
for reproduction. Notably, such a setup has been considered
previously in ecological systems, for example, those aimed at
experimental bacteria growth [55], and is frequently referred
to as growth initial conditions setup.

FIG. 2. (Color online) (a) Illustration of the realization of pre-
pared initial conditions. Here R = 3.5 and every circle is occupied
exclusively with a single species corresponding to the denoted color.
All other sites are left vacant. Note that the distance between any
two circles is the same. The radius R is set to 10.5 throughout this
paper. (b) Phase transitions from single-arm spirals to coexisting
multiple spirals, determined by means of Pm, dependent on E for
M = 5.0 × 10−5, q = 1.0, and different system size N = L2. Here
E describes the so-called competition effect, which we introduce
as p/L. Prepared initial conditions, as depicted in (a), were
used.

We first investigate pattern formation by means of direct
simulations of the game via the Monte Carlo method for
different values of p. An elementary Monte Carlo step consists
of randomly choosing an individual who interacts with one of
its four nearest neighbors, which is also selected randomly, and
then executing the process as determined by the Gillespie’s
algorithm [51,52]. One full Monte Carlo step consists of
N = L2 elementary steps, during which, in accordance with
the random sequential update, each player is selected once
on average. Since noise increases with decreasing system
size, which affects pattern formation, we define the so-called
competition effect as E = p/L. In Fig. 2(b) we plot the
probability Pm of multiple spirals coexisting, dependent on
E for M = 5.0 × 10−5. More accurately, 1 − Pm is defined
as the probability that the spatial grid is occupied by a single
one-armed spiral. A sharp phase transition at a critical value
Ec = (4.5 ± 0.5) × 10−3 is observed. Because the transition
becomes sharper with increasing system size, the phase
transition appears to be discontinuous. It is worth emphasizing
that noise enhances the disintegration of spatial patterns and
thus the critical value of the competition rate pc increases
with increasing system size; for example, pc = 2.3 ± 0.1 for
L = 512 while pc = 3.1 ± 0.1 for L = 700. Figure 3(a) shows
single spirals for different system sizes at E = 2.0 × 10−3

[which is below the critical value Ec that can be inferred
from Fig. 2(b)], while Fig. 3(b) shows pattern formation for
different system sizes at p = 2.5. Because competition effects

FIG. 3. (Color online) (a) Single spirals at E = 2.0 × 10−3 for
different system sizes. (b) Spatial patterns at p = 2.5 for L = 200,
400, 800, and 1000. Accordingly, for L = 200 and 400, because the
competition effect E is 1.25 × 10−2 and 6.25 × 10−3, respectively
(which exceeds Ec), multiple spirals are observed. However, for
L = 800 and 1000, since the competition effect E is 3.125 × 10−3

and 2.5 × 10−3, respectively (which is below Ec), single spirals are
stable. (c) Temporal evolution of typical spatial patterns as emerging
for p = 2.5 and N = 5122. At t = 100 000 a single-arm spiral
emerges when the system is started with prepared initial conditions.
Subsequently, the large spiral starts to break up at t = 110 900 and
111 000 (indicated by the white arrow). Upon reaching the stationary
state at t = 200 000 the single-arm spiral observed at t = 100 000 is
fragmented. In all panels M = 5.0 × 10−5 and q = 1.0.
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at L = 200 and 400 in Fig. 2(b) yield E larger than Ec,
multiple spirals are observed, i.e., the large spiral disintegrates
to several smaller and less ordered spirals. Competition effects
at L = 800 and 1000 in Fig. 2(b), in contrast, are below Ec

and therefore single-armed spirals are stable. By comparing
the patterns at a given system size in Figs. 3(a) and 3(b), one
can also find that the wavelength of the spirals decreases with
increasing p. To get better insight into the fragmentation of
single-arm spirals, without loss of generality, we focus on the
system size L = 512 where pc = 2.3 ± 0.3. In Fig. 3(c) we
first draw typical spatial patterns as obtained over time for
p = 2.5 and M = 5.0 × 10−5. Starting from heterogeneous
initial conditions, a single spiral emerges at t = 100 000.
However, one species in the arm of the single spiral breaks
out at t = 110 900 (marked by arrow) and shortly thereafter
two species break out at t = 111 000. When the system reaches
the stationary state at t = 200 000, the single spiral is virtually
completely fragmented and there is hardly any evidence left of
its earlier existence. As shown in the top panels of Fig. 4, while
globally ordered spiral waves emerge for p = 0.1 and 1.0, the
latter disintegrate for p = 10.0. Further insight can be obtained
by examining the spatial wavelength of spiral waves, defined
as λ = X/L, where X denotes the spatial distance between
neighboring wave fronts with the same species. In particular,
we find that the wavelength of spiral waves decreases as p

increases and the edges of the spirals separating different
species simultaneously become increasingly rough. We argue
that these two facts eventually lead to the disintegration
of globally ordered spiral waves for large enough values
of p. Indeed, globally ordered spiral waves are no longer
attainable for p > pc. This assertion is based on extensive

FIG. 4. (Color online) Typical spatial patterns emerging for
different competition rates p at M = 5.0 × 10−5 (top panels) and
D = 5.0 × 10−5 (bottom panels). Prepared initial conditions, as
depicted in Fig. 2(a), were used. From left to right, the values
of p are 0.1, 1.0, and 10.0, respectively. If p < pc = 2.3 ± 0.3
single-arm spirals emerge, which are characterized by decreasing
spatial wavelengths λ = X/L as p increases. Upon surpassing the
critical value, the large spirals disintegrate into several fragmented
spirals, forming essentially disordered spatial portraits. The three top
panels are obtained from Monte Carlo simulations, while the three
bottom panels depict results from the PDE model. Here N = 5122

and q = 1.0.

FIG. 5. (Color online) (a) Density of vacant sites ρ0 evolving with
time for different competition rates p. (b) Stationary values of ρ0 as
a function of the competition rate p. The inset displays the data on a
log-log scale. Here M = 5.0 × 10−5, N = 5122, and q = 1.0.

Monte Carlo simulations revealing the presence of spatially
periodic structures. This phenomenon is also reproduced by
the PDE model [see Eq. (4)], as shown in the three bottom
panels of Fig. 4.

It is important to note that the competition rate p affects
not only the density of the three species responsible for the
emergence of spatial patterns, but also the density of vacant
sites, as shown in Fig. 5(a). With increasing values of p, the
density of vacant sites increases as well, but the effect is of
a saturating nature, as can be inferred from Fig. 5(b). For
small values of p (at p = 10−2, for example), the reproduction
process (note that here q = 1.0) happens much faster than the
competition process. There ρ0 grows linearly with p on a
log-log scale [see the inset of Fig. 5(b)]. However, for larger
p the reproduction process starts limiting the dynamics of
ρ0. Similarly, as argued for results presented in Fig. 1(d), ρ0

therefore starts disobeying the linear relation with p and it can
be expected that ρ0 → 1.0 as p → ∞ because the system will
then stay in the prepared initial conditions. However, for very
large values of p the density of vacant sites ρ0 indeed increases
slowly. In this case, the dynamics is almost entirely limited by
reproduction and patterns consisting of solitary wave fronts
can be observed [56].

In Fig. 6(a) we show further how the density of vacant sites
varies with the critical competition rate pc as a function of
mobility M . It can be observed that ρ0 remains small for all M

at p = 0.01 because the reproduction process happens much
faster than the competition process. However, ρ0 increases

FIG. 6. (Color online) (a) Density of vacant sites ρ0 as a function
of mobility M . (b) Critical competition rate pc as a function of
mobility M . The shadowed region denotes the emergence of an
absorbing phase (uniformity), where two species go extinct. Here
N = 5122 and q = 1.0.
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with increasing M for large p (for example, at p = 10.0), as
there the reproduction process happens much slower than the
competition process, and hence the large mobility M makes
individuals prey more effectively. In Fig. 6(b) we finally plot
the full pc − M phase diagram, where the biodiversity region
is depicted by white and the absorbing single-species phase
(uniformity) is depicted by shadow. In addition, the line in the
white region delineates single spirals (left) and multiple spirals
coexisting (right).

IV. EFFECTS OF REPRODUCTION RATE
ON PATTERN FORMATION

Based on the results presented thus far, we can conclude
that the cyclic competition has positive effects on biodiversity,
similarly to effects of the reproduction rate reported by
Reichenbach et al. [18], while it has negative effects on pattern
formation. It is therefore of interest to test briefly whether the
reproduction rate might also have negative effects on spatial
pattern formation. To address this, we set the competition rate
equal to p = 1.0 and perform Monte Carlo simulations of
reactions (1)–(3) for different values of the reproduction rate
q. As above, we start from the prepared initial state depicted
schematically in Fig. 2(a) since it promotes pattern formation,
in particular, the emergence of spirals.

Figure 7 presents typical spatial patterns emerging for
different reproduction rates q at M = 5.0 × 10−5. At q = 1.0
a globally stable spiral emerges, as we have already reported in
Sec. III. With increasing values of q, however, the wavelength
of the single-arm spirals first decreases (compare q = 1.0 and
10.0); for higher q (q = 15.0 and 20.0) the single-arm spirals
break up and become more and more fragmented. This is very
much in agrement with what we have reported above for the
impact of p by a fixed value of q and it indeed confirms
that increasing reproduction rates also negatively affects the
emergence and stability of spatial patterns.

V. DISCUSSION

Based on a biological rock-paper-scissors game, the effects
of different rates of cyclic competition on spatial pattern forma-
tion and biodiversity have been investigated. For low mobility
of individuals where three species coexist, we have examined
pattern formation affected by cyclic competition rates between
species, discovering that self-organized structures emerge
if using prepared initial conditions. We have shown that
globally ordered spiral waves, as observed also in excitable
systems [57,58], can emerge from special heterogeneous

FIG. 7. (Color online) Typical spatial patterns emerging for
different reproduction rates q at M = 5.0 × 10−5. Prepared initial
conditions, as depicted in Fig. 2(a), were used. All patterns were
observed after the system reached the stationary state. Here N = 5122

and p = 1.0.

initial conditions only if the competition effect is smaller than
a critical threshold Ec. Since the introduced competition effect
E = p/L depends on the system size, the critical competition
rate pc is therefore itself system size dependent. This is
because the system size determines the level of noise in the
system, which in turn may facilitate the disintegration of spatial
patterns. We found that when approaching pc at a given system
size, the borders separating the species forming the spirals
become increasingly rough (nonsmooth). This is because the
density of vacant sites increases, but also due to noise that is
inherent for finite system sizes. Accompanying this is also a
decrease of the spatial wavelength of spiral waves λ, although
the latter phenomenon bears no relevance for the impending
disintegration of the spirals. At p = pc the disintegration of
the globally ordered spirals occurs, resulting in predominantly
disordered spatial portraits consisting of small fragmented
spiral-like patterns. For random initial condition, in contrast,
our results are in agreement with those reported in Ref. [18],
where biodiversity affected by reproduction rate was studied.
We have also investigated phase transitions [59] related to
the extinction process evoked by different competition rates,
where we found that, similarly to the reproduction rate,
increasing cyclic competition rates might have a positive
effect on biodiversity due to the fragmentation of spirals,
which prevents the patterns from outgrowing the system size.

It is worth noting that spatiotemporal patterns have been
investigated extensively in the past in many different systems,
ranging from chemical reactions on catalytic surfaces to
propagating signals in aggregating micro-organisms [60]. It
has been shown that patterns in excitable systems emerge
primarily due to the instabilities induced by the interplay
between the fast excitatory and slow recovery variables [61].
This kind of mechanism explains well the spiral waves
emerging, for example, in the Belousov-Zhabotinsky reaction
[62] and aggregating amoeba D. discoideum [63]. Spirals in
our systems emerge, however, because of the cyclic interaction
between the three species rather than differences in their
dynamics. In addition, it is well known that the propagating
signals and propagable interactions can lead to complex spa-
tiotemporal patterns in systems describing Ca2+ signaling in
thalamocortical neurons [64] or interactions between predation
and transport processes in a benthic nutrient-microorganism
system [65]. Similar mechanisms can also result in ordered
spatiotemporal patterns occurring in the brain [66–68] and
heart [69]. These mechanisms, however, are significantly dif-
ferent from the cyclic competition presented in this paper, and
the observed patterns and waves are accordingly dissimilar too.
For example, sequential waves were observed for brain [66]
and heart [69] tissue, yet single-armed spirals as we present
herein are rarely reported. Altogether, our findings thus indi-
cate that the competition rate in models of cyclically competing
species is an important factor in determining spatial pattern
formation as well as mechanisms that are able to sustain it.
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(2007).
[30] J. C. Claussen and A. Traulsen, Phys. Rev. Lett. 100, 058104

(2008).
[31] A. Szolnoki, Z. Wang, J. Wang, and X. Zhu, Phys. Rev. E 82,

036110 (2010).
[32] S. O. Case, C. H. Durney, M. Pleimling, and R. Zia, Europhys.

Lett. 92, 58003 (2010).
[33] A. A. Winkler, T. Reichenbach, and E. Frey, Phys. Rev. E 81,

060901(R) (2010).
[34] O. Malcai, O. Biham, P. Richmond, and S. Solomon, Phys. Rev.

E 66, 031102 (2002).
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