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Role of hydrodynamic behavior of DNA molecules in dielectrophoretic
polarization under the action of an electric field
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A continuum model is developed to predict the dielectrophoretic polarizability of coiled DNA molecules
under the action of an alternating current electric field. The model approximates the coiled DNA molecule as
a charged porous spherical particle. The model explains the discrepancies among scaling laws of polarizability
of different-sized DNA molecules with contour length and such discrepancies are attributed to different
hydrodynamic behavior. With zero or one fitting parameter, theoretical predictions are in good agreement
with various experimental data, even though in experiments there are some uncertainties in regard to certain
parameters.
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I. INTRODUCTION

Dielectrophoresis (DEP) has been proposed to assemble
DNA molecules into molecular electronics, which holds the
promise of revolutionizing semiconductor manufacturing [1].
In addition, DEP is also widely used to manipulate DNA
molecules including trapping [2,3], immobilization [4,5],
separation, and purification [6,7], with applications to biotech-
nology and nanotechnology.

To optimize the usage of DEP in the aforementioned
applications, it is important to understand the physical prop-
erties of DNA, particularly its dielectrophoretic polarization,
which determines its interaction with external electric fields.
Considerable experimental studies have been conducted to
characterize the polarizability [1]. For example, its depen-
dencies on contour length, electric field frequency, and bulk
concentration have been intensively examined by various
methods, i.e., transient electric birefringence [8,9], dielectric
spectroscopy [10,11], and optical microscope observing the
escape of DNA from DEP traps [5–7]. Scaling laws of
measured polarizabilities (α) with the number of base pairs
(N ) (α ∼ Nβ) exhibit a wide range of scatter: for linear DNA
molecules, Stellwagen [8] found β = 2 when N is less than
300 base pairs (bp). Elias and Eden [9] reported β = 3 in a
range up to 120 bp and gradually changed to a linear relation
(β = 1) when N ranges from 300 bp to 5 kbp. For N from 6
to 164 kbp, β was fitted to be 0.4 ± 0.1 [6,7]. For supercoiled
DNA molecules ranging from 7 to 21 kbp, β = 2.0 ± 0.4 [7].
The discrepancies among β values of different-sized DNA
molecules indicate that a coherent systematic study of the
underlying physics governing the polarization is in need.

Compared to considerable efforts made in experimental
investigations, theoretical understanding of polarization of
a DNA molecule attracts less attention. Most theoretical
studies are mainly based on the Maxwell-Wagner model
relying on empirical parameters fitted by experimental data.
However, even with fitting parameters, the Maxwell-Wagner
model still cannot fully explain the frequency dependance
of the polarizability and fails to predict the low-frequency
dispersion without making further assumptions. On the other
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hand, the Poisson-Nernst-Planck equations coupled with the
Stokes equation have been demonstrated to be capable of
predicting the polarization of rigid particles over a broad range
of frequency (termed the PNP model) [12]. When the contour
length of a DNA molecule is less than its persistence length
(∼150 bp) [13], the DNA can be modeled as a rigid
elongated rod and theoretical predictions from the PNP model
without any fitting parameters were compared and favorably
agreed with experimental data for double stranded, short
DNA molecules (N < 150 bp) [14]. In addition, theoretical
predictions are qualitatively consistent with experimental
observations that reported superlinear dependence of the
polarizability on the contour length for shorter molecules [9].
However, the above PNP model is not applicable for long
DNA molecules as these molecules are likely to bend and
coil.

II. MATHEMATICAL MODEL

In this paper, we modify the standard PNP model to
accommodate the configuration of a long and coiled DNA
molecule. As a first step, we approximate a coiled DNA
molecule as a charged porous spherical particle with a radius
Rg where Rg is the radius of gyration [15,16]. For linear DNA
molecules, Rg is given by [17]

Rg =La

[
L

3La

− 1 + 2La

L
− 2

(
La

L

)2

(1 − e−L/La )

]1/2

. (1)

In the above, L is the DNA contour length, which is
equal to the product of the number of base pairs (N ) and
the axial distance per base pair (0.34 nm) and La = 46 nm is
a fitting parameter. Equation (1) was in good agreement with
experimental data for linear DNA molecules [17].

The spherical porous particle is assumed to have uniformly
distributed fixed electric charge density within the entire
sphere. The electric charge attracts counterions, repels coions,
and forms an electric double layer (EDL) within and near the
porous sphere. A uniform ac electric field (E0e

iωt �ez) imposes
an electrostatic force on mobile ions in the solution. Excess
counterions inside the EDL migrate, drag water with them, and
induce an electro-omostic flow. Simultaneously, the charged
porous sphere experiences an electrophoretic motion with
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a velocity �U (t) = U0e
iωt which also drags the surrounding

liquid to move. To facilitate the computation, we use the
Galilean transformation to fix the origin of the coordinate
system at the particle’s center. The particle’s velocity �U is not
known a priori and will be determined as part of the solution
process. We use the spherical coordinate system (r,θ,ϕ) with
its origin at the center of the particle. θ is defined as the angle
between �ez and �er .

For simplification, here we will focus on a 1-1 binary
electrolyte with permittivity ε (it is straightforward to adapt to
a general electrolyte). Since the Reynolds number associated
with electrokinetic flows is small, the flow velocities �u satisfy
the Stokes equation:

− ∇p + μ∇2 �u − ρ∇φ − h(r)γ �u = 0. (2)

The fluid is incompressible:

∇ · �u = 0. (3)

The electric potential φ obeys the Poisson equation

ε∇2φ = −(ρ + h(r)ρfix). (4)

Ionic concentrations (C±) are governed by the Nernst-Planck
equations,

∂C±
∂t

= ∇ ·
[
D±∇C± + FaD±z±

RT
C±∇φ − C±�u

]
. (5)

In the above, ρ = Fa(C+ − C−) is the charge density due
to mobile ions; Fa is the Faraday constant; z± = ±1 is ions’
valence; ρfix = ρ0N/Vp is the fixed charge density of the
porous sphere where Vp = 4/3πR3

g is the volume occupied
by the DNA and ρ0 = 0.33 × 10−18C/bp is the DNA linear
charge density [1]. h(r) is a function of location: h(r) = 1
for the region occupied by a DNA (r � Rg) and h(r) = 0 for
the rest (r > Rg). γ = μf Ns is the hydrodynamic frictional
coefficient inside the porous sphere. Ns = N/(150Vp) is
the number density of the hydrodynamic frictional polymer
segments; since DNA can be viewed as a connection of rigid
segments, each segment can be considered as a rod with a
radius of a = 1 nm and a length of its persistence length
Lp = 50 nm (150 bp) [18,19], and there are N/150 segments
in total. f is the draining factor.

Far from the particle,

φ = E0r cos θeiωt , C± = C0, and

�u = −U0e
iωt �ez at r → ∞. (6)

It is recognized that similar equations to Eqs. (2)–(5) were also
used to model soft particles [20–22].

Assuming that the imposed electric field is much smaller
than that induced by the fixed charge, one can use a regular
perturbation expansion in terms of the applied electric field
about the fix charge:⎛
⎜⎝

φ

C±
�u

⎞
⎟⎠ =

⎛
⎜⎝

φ(0)

C
(0)
±
0

⎞
⎟⎠ + δRe

⎡
⎢⎣

⎛
⎜⎝

φ(1)

C
(1)
±

�u(1)

⎞
⎟⎠ eiωt

⎤
⎥⎦ + O(δ2), (7)

where the symbol Re is the real part of a complex number and
δ is the ratio between the magnitude of the external electric
field and that associated with the fix charge.

A. Zeroth order approximation

In the absence of an external electric field, there is no flow
and the ions’ concentrations obey the Boltzmann distribution:

C
(0)
± = C0e

∓Faφ
(0)/RT . (8)

The electric potential φ(0) satisfies

ε∇2φ(0) = 2FaC0 sinh

(
Faφ

(0)

RT

)
− h(r)ρfix. (9)

The boundary conditions are

φ(0)(0) = RT

Fa

asinh

(
ρfix

2FaC0

)
and φ(0)(∞) = 0. (10)

B. First-order approximation

The first-order equations are linear in the perturbed quan-
tities and the dependent variables oscillate at the forcing
frequency. Accounting for the linearity of the first-order
equations, one can decompose the first-order problem into
two problems: (1) the E problem consists of a stationary
sphere under the action of the same electric field as the
original problem at infinity, and (2) the U problem consists
of a stationary sphere in a uniform flow field in the absence
of the external electric field [12,23–25]. Once the solutions of
E and U are obtained, the solutions of the first-order problem
can be written as the superposition:

X(1) = (X(1)E + U0X
(1)U )eiωt , (11)

where U0 is the electrophoretic mobility and will be deter-
mined by nullifying the net force acting on the particle.

All the equations are identical for E and U problems. We
omit below the superscripts E and U. Substituting Eq. (7) into
Eqs. (2)–(5), retaining terms up to the first order, and replacing
the time derivative with iω, we have

−∇p(1) + μ∇2 �u(1) − ρ(0)∇φ(1) − ρ(1)∇φ(0) − h(r)γ �u(1) = 0,

(12)

∇ · �u(1) = 0, (13)

ε∇2φ(1) = −ρ(1), (14)

iωC
(1)
± = ∇ ·

[
D±∇C

(1)
± + FaD±z±

RT
(C(0)

± ∇φ(1) + C
(1)
± ∇φ(0))

−C
(0)
± �u(1)

]
. (15)

III. SOLUTION PROCEDURE AND CODE VERIFICATION

The above zeroth-order and first-order equations with corre-
sponding boundary conditions were solved by the commercial
finite element software COMSOL 3.5 (Comsol, Los Angeles,
USA). The computational domain consisted of a finite domain
0 � r � R. We selected R = 104 since a tenfold increase in
R resulted in variations smaller than 1%, indicating that the
domain is sufficiently large to render the computational results
R independent. To resolve the details of the electric double
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FIG. 1. (Color online) The electrophoretic mobility U0 as a
function of dimensionless Donnan potential when κRg = 50 and
λRg = 40. The line and the symbols correspond, respectively, to
the mobility predicted by Eq. (16) and that computed by numerical
simulations.

layer and porous particle, nonuniform elements were used
with a dense mesh concentrated inside the particle and next
to the particle surface as well. The element size gradually
increases as the distance from the particle increases. The mesh
was refined a few times to make sure that the results are mesh
independent.

To verify the computational algorithm, we computed the
electrophoretic mobility of a porous particle in the case of thin
double layers and compared our numerical results with the
analytical solution [15,26]:

U0 = ρfix

μλ2

[
1 + 1

3

(
λ

κ

)2 2κ + λ

κ + λ

]
, (16)

where λ = √
γ /μ and κ = √

2F 2
a C0/εRT is the inverse of

Debye screening length. Equation (16) was derived under the
assumption of κRg 	 1 and λRg 	 1 [15,26].

Figure 1 plots the mobility U0 as a function of the di-
mensionless Donnan potential φfix = asinh( ρfix

2FaC0
) normalized

by RT/Fa when κRg = 50 and λRg = 40. The line and the
symbols correspond, respectively, to the mobility predicted
by Eq. (16) and that computed by numerical simulations.
Our numerical simulations agreed well with Eq. (16) when
φfix < 1. Since Eq. (16) is derived under the condition of
low Donnan potentials by neglecting double layer polariza-
tion [16,26], it is not surprising that the computed mobility
deviates from theoretical prediction at large φfix.

IV. RESULTS

The DNA and its adjacent EDL perturb the electric field.
Far from the DNA, the first-order perturbed field behaves like
a field induced by a dipole and the electric potential admits
the form E0 cos θ (−r + K/r2), where K is the dipole moment
and can be deduced from the behavior of the first-order electric
potential as a function of r sufficiently far from the particle
(0 	 r 	 R). The DNA polarizability α is 2πεRe(K).

FIG. 2. (Color online) A schematic of draining conditions: (a)
free draining; (b) nondraining.

In our continuum model (2)–(5), only the draining factor
f is unknown a priori and all remaining parameters are fixed
for a given DNA. f depends on the hydrodynamic behavior
of a DNA [15] and the hydrodynamic behavior of a DNA is
affected by degree of draining [27].

Draining can be categorized into three types: (1) free
draining; (2) partial draining; (3) nondraining. Free draining
implies that the perturbation to the flow field induced by
one polymer segment has no impact on the flow fields near
other polymer segments. In other words, the fluid appears
to penetrate the DNA and interacts with each segment
independently [Fig. 2(a)]. In this case, the draining factor f =
4πLp/[ln(Lp/a) + 0.193] (153 nm) for a rod-shaped segment
with a radius of a = 1 nm and a length of Lp = 50 nm [28]. For
larger polymers, the free-draining condition appears to break
down [27]. Instead, partial-draining condition was proposed
to explain the experimental observations where neighboring
polymer segments partially screen more interior units from the
flow [29]. Under the partial-draining condition, the draining
factor f is believed to be larger than that of free draining. In
the limit of the strong screening, often termed nondraining,
condition (f → ∞), the flow cannot penetrate into the DNA
and the DNA acts like an impermeable sphere with a radius
of Rg [Fig. 2(b)]. Hence f ranges from 153 nm to ∞. Here
we must emphasize that in the case of nondraining, although
there is no flow inside the DNA, mobile ions still can migrate
into/out of the DNA and such migration can influence the
polarizability.

It is recognized that the larger the draining factor (f ), the
smaller the polarizability (α) since a larger draining factor
corresponds to weaker convection inside the porous sphere,
which leads to a reduction of α. However, how f affects
scaling laws of α with contour length remains unknown and is
worthstudying.

In the set of experiments, Elias and Eden [9] deduced
electrical polarizability of linear DNA molecules ranging from
64 bp to 5 kbp in 1 mM Na+ solution via transient electric
birefringence at 4 ◦C and around the kHz frequency range.
Here we only focus on DNA molecules whose contour length is
larger than their persistence length. Thus we can treat the DNA
as a porous sphere. Figure 2(a) depicts the polarizability α as a
function of N . In our simulations, Rg is given by Eq. (1). With
respect to free draining and nondraining (solid and dash-dotted
lines), there are no fitting parameters. In the case of partial
draining (dashed line), the draining factor (f = 1000 nm) was
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FIG. 3. (Color online) The polarizability α (Fm2) as a function of N . (a) For DNA molecules ranging from 200 bp to 5 kbp, the symbols
correspond to experimental data [9]. The solid, dashed, and dash-dotted lines correspond, respectively, to the theoretical predications of free
draining (f = 153 nm), partial draining (f = 1000 nm), and nondraining (f → ∞). (b) For DNA molecules from 6 kbp to 164 kbp [7],
symbols correspond to theoretical predictions of nondraining (f → ∞). The line is fitted to reveal a scaling relation α ∼ Nβ .

fitted by matching the polarizability of 5 kbp DNA and the
rest of the parameters remain the same as those in the experi-
ment. Figure 3(a) strongly suggests that different-sized DNA
molecules adopt different draining conditions and have distinct
hydrodynamic behavior: When N < 500 bp, DNA moves in
the form of free draining. As N increases (N > 500 bp),
partial draining becomes more appropriate to describe the
hydrodynamics. The different hydrodynamic behavior can
be explained: there are experimental evidences that in the
presence of an external electric field, long DNA molecules
are more likely to be stretched [30,31]. Thus, owing to
stretching, the persistence length may increase and inter-
actions among polymer segments may become appreciable.
Both effects can contribute to an increase of the draining
factor f .

For even longer linear DNA molecules ranging from 6 to
164 kbp, a different scaling law (α ∼ N0.4±0.1) was reported in
contrast to the linear relation (α ∼ N ) held by DNA molecules
below 5 kbp [7]. Figure 3(b) plots theoretically predicted α as
a function of N (N � 6 kbp) in a 2 mM Na+ solution at 60 Hz
where parameters except f are the same as those reported
in experiments [7]. Symbols are theoretical predictions in
the case of nondraining. The line is best fitted to reveal
scaling laws (α ∼ Nβ) where β = 0.5, which is consistent
with the experiment [7]. In contrast to Fig. 3(a) where good
quantitative agreements with experiments were observed,
Fig. 3(b) indicates that our model underestimates α by orders
of magnitude compared to experimental data where α is around
10−29 Fm2. Nonetheless, still, our model accurately captures
the scaling law and suggests that very long coiled DNA
molecules (N � 6 kbp) act more like nondraining entities.
It is recognized that for large N , the excluded-volume effect,
where a position in space cannot be occupied by two segments
at the same time, can induce an extra repulsion. In other words,
the conformation of very long DNA (N � 6 kbp) is no longer a
Gaussian coil as that of short DNA [18]. The crossover N from

random coil to excluded-volume conformation is about 10 kbp
depending on salt concentration [32,33]. One shall expect that
this excluded-volume effect may further increase f due to
extra repulsion, giving rise to the nondraining condition for
very long DNA molecules.

To further conform our speculation, we compare our
theoretical predictions to another set of experiments. In Fig. 4,
α is plotted against the frequency ω for a 12 kbp linear DNA in
ddH2O without any fitting parameters. Figure 4 suggests that
theoretical predictions with nondraining agree much better
with experimental data than those with free draining. The
polarizability of partial draining lies in between those of free
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FIG. 4. (Color online) The polarizability α (Fm2) as a function of
the frequency ω for a 12 kbp linear DNA molecule. The symbols
correspond to experimental data [10]. The solid and dash-dotted
lines correspond, respectively, to the theoretical predications of free
draining (f = 153 nm), and nondraining (f → ∞).
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FIG. 5. (Color online) The polarizability α (Fm2) of supercoiled
DNA molecules as a function of N . The symbols and the line
correspond, respectively, to experimental data [7] and theoretical
predictions of free draining (f = 153 nm).

draining and nondraining (not shown here). In other words, the
comparisons with a different set of experiments conform to our
assumption that the excluded-volume conformation adopted
by very long linear DNA molecules (N � 6 kbp) possibly
shields flow away from the DNA and the DNA behaves like
an impermeable sphere [Fig. 2(b)].

In summary, for linear DNA, the hydrodynamic behavior of
DNA plays an important role in determining the polarizability.
It changes from free draining to partial draining and eventually
reaches nondraining as the contour length of N increases. It
is different hydrodynamic behavior adopted by different-sized
DNA molecules resulting in scattered scaling laws.

Finally, we turn our attention to supercoiled DNA
molecules where the situation is quite different. Supercoiled
DNA molecules often have a branched plectonemic structure
(a starlike configuration) rather than random coiled one
adopted by their linear counterparts [7,34]. Such unique spatial
conformation is expected to impact the hydrodynamic behav-
ior and hence modifies the polarization. Indeed, Regtimeier

et al. [7] measured the polarizability of supercoiled DNA
molecules ranging from 7 to 21 kbp and discovered that their
polarization is qualitatively different from that of linear DNA
molecules. Here we apply our model to study the polarization
of supercoiled DNA molecules. In our model, parameters
are the same as those of linear DNA molecules except that
the radius of gyration (Rg) is obtained from experimental
measurements [7].

Figure 5 compared our theoretical predictions assuming
that supercoiled DNA molecules adopt free draining with
experimental data. In Fig. 5 there are no fitting parameters. The
agreements are remarkable. Not only does our model capture
the scaling law of the polarizability with N , but also theoretical
predictions quantitatively agree well with experiments. The
excellent agreements strongly suggest that the hydrodynamic
behavior of supercoiled DNA molecules has the form of free
draining. The configuration of supercoiled DNA is starlike
with visible branches as shown by AFM (Fig. 6 in [7]) and
this loose structure may effectively reduce the impact of the
excluded-volume effect on hydrodynamic interactions among
segments. Hence it is possible that each segment becomes
hydrodynamically independent again.

V. CONCLUSION

In summary, we developed a continuum model to quantita-
tively characterize the dielectrophoretic polarization of DNA
molecules. Our predicted polarizabilities of both linear and
supercoiled DNA molecules were in reasonable agreement
with various experimental data with zero or only one fitting
parameter. More importantly, our model suggested that the
different hydrodynamic behavior adopted by different-sized
DNA molecules is responsible for the discrepancies among
scaling laws of polarizability with contour length. Our contin-
uum model is not restricted to DEP only and can be readily
extended to study other electrokinetic phenomena associated
with coiled DNA molecules, such as electrophoresis.
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