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Effectiveness of beads for tracking small-scale molecular motor dynamics
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Investigations into molecular motor dynamics are increasingly focused on small-scale features of the motor’s
motion. We define performance measures of a common type of single-molecule motility assay, the bead assay, for
its ability to detect such features. Using numerical models, we explore the dependence of assay performance on a
number of experimentally controllable parameters, including bead size, optical force, and the method of attaching
the bead to the motor. We find that the best parameter choice depends on the objective of the experiments, and
give a guide to parameter selection. Comparison of the models against experimental data from a recent bead
assay of myosin V exemplifies how our methods can also be used to extract additional information from bead
assays, particularly that related to small-scale features. By analyzing the experimental data we find evidence
for previously undetected multiple waiting states of the bead-motor complex. Furthermore, from numerical
simulations we find that equilibrium bead dynamics display features previously attributed to aborted motor steps,
and that bead dynamics alone can produce multiple subphases during a step.
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I. INTRODUCTION

Molecular motors such as myosin V and kinesin are
naturally occurring, nanoscale machines that transport cargo
within eukaryotic cells [1]. Although significant progress has
been made toward understanding their motion, for example,
that both myosin V and kinesin walk “hand-over-hand” [2,3],
many aspects remain unresolved. Questions remain over the
stepping dynamics of kinesin [4,5], including claim and
counterclaim over the existence of substeps 3 to 4 nm long
[6–9]. For the myosin V motor, the existence and size of
substeps [10,11], the presence of the so-called “telemark” state
[12–15], and other aspects of its stepping dynamics [10,16–19]
are all under investigation.

Many experiments aiming to resolve such questions use the
“bead assay” [6,8,10,11], where an artificial bead is attached
to the motor, manipulated by optical tweezers [20,21] and its
position monitored as a substitute for that of the motor itself.
Indeed, this technique was used by Svoboda et al. [22] in their
seminal studies of kinesin steps. The very first observations of
kinesin stepping were also made with a similar technique [23].

We consider two mechanisms that may affect a bead assay’s
ability to accurately infer properties of the motor. First, the
bead is not fixed relative to the motor, since the attachment
between bead and motor may deform and since the bead
can rotate about the motor. These effects are magnified when
the bead is much larger than the motor, which is usually the
case [22,24]. Second, the bead (or a cargo) can affect the
behavior of the motor itself, for example, its velocity and
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gait [25–28]. Here we focus on assays investigating small-scale
motor dynamical features, which require small spatial and fast
temporal resolutions.

Using three-dimensional numerical models of a bead and
motor, we define and calculate measures of a bead assay’s
ability to detect such small-scale features, including bead
noise, response time, and stepping time. To aid design and
interpretation of future assays, we investigate the dependence
of these performance measures on controllable experimental
parameters. Parameters we consider include the way the bead is
attached to the motor, the optical tweezer force, the size of the
bead, and the presence of a substrate. The choice of parameters
will change according to the experiment’s objectives we find,
and we give a guide to their selection.

We also compare the bead dynamics in the models against
a recent myosin V bead assay [10] using their Kramers-
Moyal coefficients, which are position-dependent, short-time,
effective drift and diffusion coefficients [29]. We find in
the experimental data evidence for multiple waiting states
that had not previously been detected. Furthermore, forward
excursions of the bead, which were previously interpreted
as aborted motor steps, we find are also consistent with the
normal behavior of the bead-motor complex at equilibrium.
Finally, we find that the dynamics of the bead alone can
produce fast and slow phases during a motor step, similar to
experimentally observed phases that previously were ascribed
to motor dynamics.

II. MODELS AND DATA

To investigate the bead’s dynamics independently of the
motor’s, our first class of models assumes the point where
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FIG. 1. (Color online) (a)–(d) Schematic summary of the models
and bead attachments. In the myosin V model [(c) and (d)], the bead
(large gray sphere) is attached to a biologically realistic mechanical
model [30] of the myosin V molecular motor (red two-legged shape)
with either a nonlinear tether [(a) and (c) blue rod connecting motor
and bead] or no tether [(b) and (d)]. In the fixed-attachment-point
model [(a) and (b)], the bead through its tether attaches to a
point on the motor rigidly fixed in space (small red sphere). The
fixed-attachment-point model (b) also includes steric interactions
between the bead and a fixed trailing leg (red rod). In all models
the motor will preferentially walk in the x direction, against the
optical force (green arrow pointing left from center of bead), along an
actin filament (not shown) attached to the substrate (black surface).
“Position” in this article refers to displacement in the x direction,
unless stated otherwise. (e) The output of each model is a time
series of bead position, the properties of which are then analyzed.
A sample time series is shown here. (f) A sample time series from
the experimental data. A likely cause for the faster fluctuations in the
model (e) compared to experiment (f) is our estimate of the bead’s
damping coefficient, as explained in the text.

the bead attaches to the motor is fixed [as in Figs. 1(a) and
1(b)]. A second class of models [sketched in Figs. 1(c) and
1(d)] investigates the effect of the bead on motor dynamics
using extensions to a previous model of myosin V [30]. We
vary parameters of these models, including the type of bead-
motor connection and the presence of steric interactions, as
summarized in Table I and described in more detail below. We
take as their output time series of bead position [such as that in
Fig. 1(e)]. We also compare these models’ time series against
a recent myosin V bead assay [10]. As described below, our
parameters for both classes of models match this assay.

Both models incorporate Brownian forces acting on the
bead or motor elements. As sketched in Fig. 1, both models
also have an optical force, which we assume to be constant
over a single step of the motor. The force acts on the center of
mass of the bead and parallel to the motor track, and originates
from the restoring force of the optical tweezers. As we will
discuss, the optical force constrains the bead’s motion. It can
also serve as a load force in experiments.

A. Numerical fixed-attachment-point model of bead

This model simulates the dynamics of the bead alone.
The Brownian and optical forces described above cause the
bead to rotate in three-dimensional space about its attachment
point to the motor, and its tether (if present, see below) to
expand or contract. To reflect the structure of myosin V, we
set the attachment point to a fixed location at 29 nm above
the substrate [31]. The bead may also interact sterically (via
“excluded volume”) with a substrate, if present. In the no tether
case, steric interactions with a fixed trailing neck domain are
also included [as sketched in Fig. 1(d)]. No other aspects of
the myosin V motor are explicitly modeled. See Ref. [31] for
the mathematical formulation of the model.

We analytically projected the fixed-attachment-point model
onto the x axis [31] to permit faster prediction of some
bead properties. Analytical calculation of the drift coefficients
involves assumption of the Markov property (that is, the pro-
jected system has no memory). Although the approximation is
accurate (Fig. S3 of [31]), we verify all analytical predictions
with direct numerical calculations.

B. Numerical model of bead attached to myosin V

We extend a previous coarse-grained, Brownian,
mechanochemical model of myosin V [30] to include a
large viscous bead. This model treats the neck domains as
semielastic filaments with state-dependent attachment angles
to the actin-binding heads, and assumes a flexible juncture
between neck domains. This structure and its mechanical
parameters were constrained by previous experimental results.
Simulations were carried out using Brownian dynamics, in
which the positional coordinates of the motor components
were updated based on internal forces and external thermal
noise forces. The results of the model have shown good agree-
ment with experimental performance characteristics including
stall force and processivity [30].

The model’s dominant cycle is through three distinct
mechanical states. There is a two-head bound, approximately
symmetrical state that we refer to as the “pre-phosphate-
release” (state I in Ref. [30]). Following phosphate release
from the leading head, the motor is stressed into the so-called
“telemark”’ state (state II in Ref. [30]). The trailing head
then unbinds and searches for the next binding site on the
actin filament in the “diffusional search” state (state III in
Ref. [30]). In experiments, the actin filament is usually fixed
by attachment to a substrate.

To this model we added a bead, connected to the motor by
either of the two attachments described below, and an optical
force acting on the bead [31]. The bead interacts sterically
with the motor and substrate. In the simulations required for
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TABLE I. Model parameters varied to explore effects on bead assays.

Line and marker colors and styles in Figs. 2(d) and 3–5

Red Green Dark blue Light blue Purple
dot-dashed line line with cross-ticks dotted line dashed line solid line

Model parameters and crosses and triangles and diamonds and squares and asterisks

Bead attachmenta NL NL NT NT NT
Substrate No Yes No No Yes
Steric bead-motor interactionsb No No No Yes Yes

Bead diameter 0 to 500 nm
Optical force 0 to 1.5 pN

aNL and NT refer to beads attached by a nonlinear tether and no tether, respectively.
bFor the fixed-attachment-point model. The myosin V model always models steric interactions between the motor and bead.

Fig. 2, the motor was initialized in state I (though we found
no significant difference in the results when the motor was
initialized in state II) and state transitions were suppressed. In
the simulations required for Fig. 5, the model was initialized
in state II, allowed to equilibrate, and then forced into state III.

We estimated damping coefficients for the bead (and other
bodies) using Stokes’ law. As will be shown in Figs. 2(a)
and 2(b), this produced model drift and diffusion coefficients
about a factor of 5 larger than the experimentally measured
drift and diffusion coefficients. This difference could partially,
but not completely [31], be caused by the increase in
effective damping coefficient of a bead near a surface [21].
In the absence of a clear physical explanation for the full
discrepancy, we chose neither to incorporate surface effect
corrections nor to attempt to tune the diffusion coefficients
into agreement, in both myosin V and fixed attachment point
models.

This discrepancy in diffusion coefficients may lead to some
quantitative changes in the properties calculated below. We
have confirmed by simulation [31], however, that all key
qualitative results are affected by neither the choice of bead
damping coefficient, nor that the damping coefficient may
depend on the bead’s proximity to the substrate.

C. Bead attachments

There is much evidence for both myosins [32] and kinesin
[6,22] that in bead assays the connection through the motor
between the bead and motor track is nonlinear. A nonlinear
connection also aids motor performance [26].

When connected to the end of kinesin’s or myosin V’s
natural tether or “tail,” this nonlinearity is due, in the normal
region of the motor’s operation, to entropic effects in the
tail’s uncoiling [32] leading to a nonlinear stiffness. In the
nonlinear tether configuration [as sketched Figs. 1(a) and
1(c)] we model the bead as connected to the motor with
a tether of the nonlinear elasticity found by Schilstra and
Martin [26] for myosin V, based on experimental results
combined with theoretical considerations. They found that a
good model for the tether’s restoring force when at length
ε nm is f (ε) = 0.005ε + (0.018ε)10 pN.

A nonlinear stiffness between bead and motor may in
principle also be achieved, as we will show, by affixing the
bead directly (or with a short tether) to the motor and allowing

the bead to rotate freely about this point. This is the “no tether”
model [sketched in Figs. 1(b) and 1(d)].

D. Myosin V bead assay

We used time series of the x coordinate of bead position
in the myosin V assay of Cappello et al. [10]. A section of
one such time series is shown in Fig. 1(f). Their assay used a
200 nm bead. Except when being explicitly varied, we use the
same bead size in our models. The time series available were at
2 mM ATP concentration and were already separated into steps
and what we will refer to as “waiting periods,” where the motor
was not stepping and the bead distribution was approximately
(statistically) stationary.

III. METHODS

We now outline the methods we used to analyze the model
and experimental time series data.

A. Model characterization

The numerical and experimental time series x(t) were
characterized with the Kramers-Moyal coefficients [29]

D(n)(x0) = lim
τ→0

1

n!τ
〈[x(t + τ ) − x(t)]n |x(t) = x0〉.

For n = 1 and 2 these are the drift and diffusion coefficients,
respectively. Note these are local, or short-time quantities.
“Diffusion coefficient” throughout this article refers to this
definition, rather than a long-time mean-square displacement,
unless otherwise noted. If the time series is nearly Markovian,
then the drift and diffusion coefficients often fully characterize
the process, including its equilibrium probability density; but
if not, they still yield useful information about the process [33].
From an analytical model the drift and diffusion coefficients
can be extracted directly [34], while from a numerical
or experimental time series they can be approximated by
stopping the limit at the sampling interval and replacing the
conditional part of the expectation with a binning procedure.
If the sampling interval is not small, biases can arise [35],
but this was not the case for the bead here. The 0.3 nm
(white, uncorrelated) experimental noise [36], which is small
in comparison to the movement of the bead should add
a constant offset of 0.1 nm2/μs to the estimated diffusion
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FIG. 2. (Color online) Characterization of bead motion in models
and bead assay. (a) Drift, (b) diffusion, and (c) equilibrium probability
distribution for the motion parallel to the motor track of the stationary
sections of the experimental data of Cappello et al. [10] (colored thin
lines, left axes) and our myosin V model (black, thick lines and
markers, right axes) of Figs. 1(c) and 1(d). Results from the myosin
V model are plotted for a bead connected by nonlinear tether [thick
black left-pointing triangles, and thick dashed line in (c)] and no tether
[thick black downward-pointing triangles, and thick solid line in (c)].
The position axis is with respect to the mean of each time series. Also
plotted in (b) are the analytical results for the diffusion coefficients of
beads attached to a fixed point with a nonlinear tether (thick dashed
line) and no tether (thick solid line). (d) Diffusion coefficients for
the motion parallel to the motor track in the fixed attachment point
model. Results were calculated with the three-dimensional numerical
model (markers) and its one-dimensional analytical simplification
(lines). Line and marker colors and styles are as listed in Table I. The
position axis is with respect to the bead attachment point.

coefficient, and not affect the estimated drift coefficient [37].
During the analysis we confirmed that the sets of increments
[x(t + τ ) − x(t)]x(t)=x0 were normally distributed. The code

used to calculate the drift and diffusion coefficients is provided
in Ref. [31].

B. Response time prediction and estimation

By Onsager’s mean regression hypothesis [38], the time
for a phase variable of a system near equilibrium to return
to equilibrium, its response time, is also the correlation time
of that phase variable in equilibrium. For the numerical
models, the bead’s average correlation time in equilibrium
tcorr was estimated through the Green-Kubo relation [38,39]
tcorrσ

2
x = D∞(∫x), where ∫x(t) ≡ ∫ t

0 [x(t ′) − x̄]dt ′ and x̄ and
σ 2

x are the mean and variance of x(t), respectively. The
long-time diffusion coefficient of the process y(t), D∞(y) =
limt→∞ [〈y(t)〉 − y(0)]2 /2t , was estimated by averaging over
independent pairs at delay t of a single time series [40], to
shorten computation time, then averaging over the delays
at which the D∞ estimates plateaued. For the analytical
projection, the response (correlation) time could be predicted
nonstochastically by the formula of Jung and Risken [41],
but we found that due to the assumptions involved in the
projection the correlation time predictions were not accurate.
The projection captures the short time scales in the bead’s
motion through the drift and diffusion coefficients very well
( [31], Fig. S3); however, the bead response time is limited by
the longest time scales. These time scales involve, for example,
motion of the bead transverse to the motor track changing the
range of motion parallel to the track that steric interactions
allow.

IV. CHARACTERIZATION OF MODELS
AND MYOSIN V BEAD ASSAY

Our first goal is to investigate whether the experimental
parameters and configuration, for example the type of bead
attachment, can be inferred from position time series of the
bead. This could be useful in characterizing assays where,
for example, the chemistry of the bead attachment is not
precisely known, or for verifying that the bead was attached as
intended. Equilibrium probability distributions are one way
to characterize these time series, but the (local) drift and
diffusion coefficients or “Kramers-Moyal coefficients” [29], as
introduced in Sec. III A, we will show reveal more information
about the motion of the bead. The drift coefficient amounts
to a position-dependent effective force, and is most useful
for inferring potentials. The diffusion coefficient amounts
to an effective temperature, and can be useful for inferring
geometry [33,42].

Drift and diffusion coefficients, along with equilibrium
probability distributions, are shown in Figs. 2(a)–2(c) for the
waiting periods in the time series of Cappello et al. [10] and
the numerical myosin V model. In the simulations, a substrate
was included and an optical force of 0.83 pN was used in
order to match the standard deviation of the experimental data;
this is the only parameter that was tuned. The experimental
time series used were the eight longest of the waiting periods
available for analysis; all were at least 20 ms long.

Figure 2(c) shows that little distinction between the model
configurations can be drawn on the basis of the probability
distributions, for which (with one exception) the agreement
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with experiment is excellent. The drift coefficients in Fig. 2(a)
differ only by a vertical magnification, due to the difference
in bead damping coefficient between model and experiment
discussed in Sec. II B. We therefore now focus on the diffusion
coefficients, which show significant variation among modeling
and experimental results in Fig. 2(b).

As we have shown analytically [31] and graphed in
Figs. 2(b) and 2(d) the diffusion coefficients for beads
connected to a fixed bead attachment point by a nonlinear
tether and no tether fall on a constant value and part of an
inverted parabola, respectively. [In Fig. 2(d) to make these
shapes visible the optical force was decreased to 0.25 pN.]
These results are independent of the steric interactions and
optical force, which only change the part of the line or parabola
on which the coefficients fall. The direct numerical simulations
of Fig. 2(d) are in excellent agreement with the analytical
predictions, and Fig. 2(b) (crosses and triangles) shows that
inclusion of a motor structure, in this case myosin V, does not
significantly affect the shapes of these predicted curves. Thus
the type of bead attachment may be discernible from the shape
of the diffusion coefficient, and from this coefficient alone.

We now compare the diffusion coefficients of the two
attachment types against the experimental time series. The
drift and diffusion coefficients for experimental data in Fig. 2
are (statistically) stationary within each waiting period, in that
the curves shown are robust to sampling smaller sections
of the time series. This stationarity does not hold across
intervening steps. Two of the eight waiting periods exhibit
diffusion coefficients that are constant functions of position,
within experimental error, while the other six are increasing.
The motor-bead complex appears not to have one unique
waiting conformation, but to have at least two such waiting
states.

Transitions between the pre-phosphate-release and tele-
mark states in our myosin V model do not produce changes in
the diffusion coefficients matching the two shapes in Fig. 2(b),
nor did we find any correlation between the shapes of these
diffusion coefficients and distance from the optical trap. As
discussed above, a constant diffusion coefficient is, however,
consistent with the presence of an elastic tether. We can infer
from the drift coefficients in Fig. 2(a) for the two time series
with constant diffusion coefficients that the elasticity of this
tentative tether is nonlinear (see also Ref. [31]). The other
six time series exhibit diffusion coefficients that are consistent
with a rigid bead attachment, as for a bead attached with no
tether, or more precisely are consistent with a time scale of
fluctuations in the length of the tether much shorter than the
sampling interval. The different waiting states observed in the
bead dynamics might therefore correspond to changes in the
structure of the tether, its attachment to the bead, or possibly
in optical trap alignment.

Cappello et al. [10] observed during waiting periods large
and relatively frequent forward excursions of the bead, see
for example Fig. 1(f) around 2300 μs. This forward bias is
evident in the long forward tails in the experimental probability
distributions of Fig. 2(c). Long forward tails are also present
in the probability distributions of the myosin V model plotted
in Fig. 2(c) (black lines) and the fixed-attachment-point model
in Fig. S3(c) of Ref. [31]. A possible forward excursion is
also visible in the sample model time series in Fig. 1(e)

near 3700 μs. Therefore these excursions may be a natural
feature of the bead during waiting periods rather than, as
Cappello et al. suggested, chemical state changes associated
with “aborted attempts [at] stepping.” Both conclusions are
consistent with current experimental data; further exper-
iments and modeling would be necessary to distinguish
them.

V. LIMITS TO RESOLVING MOTOR MOTION
IN BEAD SIGNAL

We now investigate and quantify what factors can limit the
ability to observe motor dynamics from bead position time
series.

Brownian fluctuations of the bead can make motions of
the motor to which it is connected difficult to observe.
Figure 3(a) shows how the standard deviation in bead position
at equilibrium, or bead noise, varies with optical force, which
would not occur with a linear bead-motor connection [24].
Although in the data available to us, the bead noise of
Cappello et al. [10] in these states did not display any such
correlation, dependences of bead noise on optical trapping
force similar to those in Fig. 3(a) were observed in other
assays [7,22]. For a bead connected with a nonlinear tether,
the increasing optical force extends the tether into a higher
stiffness region, decreasing the bead noise. In the no tether
case, steric interactions between the bead and motor neck
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FIG. 3. (Color online) (Top) Standard deviation of the bead
fluctuations, or bead noise, and (bottom) response time of the bead,
according to the fixed-attachment-point model, as functions of (left)
optical tweezer force with 200 nm bead diameter and (right) bead
diameter with 0.25 pN optical force in the −x direction. Results were
calculated from direct numerical simulation of the fixed-attachment-
point model (markers) and from the approximate analytical model
(lines, bead noise only). The methods used to predict response times
are described in Sec. III B. Line and marker colors and styles for
the different bead attachments and steric interactions are as listed in
Table I.
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domain or substrate, or the restricted tether length, provide
barriers to the bead’s rotation. As the optical force increases,
the bead’s range of Brownian motion is compressed against
the barrier, reducing the bead noise. It is remarkable that the
dependence of bead noise on optical force for the different bead
attachment models are so similar, considering the different
physical origins of the nonlinear stiffness. At zero or very
low optical force, other barriers to motion determine the bead
noise.

Figure 3(b) shows that the bead noise has little dependence
on the bead’s size. The exception is at very small sizes,
particularly for a bead attached with no tether, where the small
diameter means the bead’s center cannot move far. At this limit
the bead noise should scale with the bead’s diameter d, since
this determines the range of the bead’s motion.

A second mechanism limiting the resolution of motor
dynamics from bead time series is the temporal response of the
bead. Figures 3(c) and 3(d) plot the characteristic response time
of the bead to small perturbations from equilibrium. Figure 3(c)
shows that, like for the bead noise, increasing optical force
rapidly decreases the response time through changes in the
effective bead-motor stiffness. Nishiyama et al. [7] observed
a qualitatively similar dependence on optical force in their
kinesin bead assay.

As a function of bead diameter [plotted in Fig. 3(d)] there
are two possible extremes in the response time’s behavior.
Where the bead motion is dominated by extensions in the
tether, or constrained by optical forces to diffusion on a small
region of a sphere, the response time scales with d. (Many
previous authors have anticipated such a dependence on bead
diameter based on Stokes’ law.) Where the bead motion is
dominated by diffusion on a sphere, the response time scales
with d3 [31]. At d less than about 80 nm, beads attached with
no tether enter this latter regime (although this transition is less
defined in the blue diamonds, no steric effects case), while the
nonlinear tether models remain dominated by tether length
fluctuations.

The response times of Figs. 3(c) and 3(d) are valid only
for small perturbations to the bead attachment point. We also
consider the response of the bead to perturbations that are not
small. Figure 4 shows the response of the bead to a 36 nm step
of the bead attachment point, averaged over many realizations
of the process (as in Figs. 3 and 4 of Cappello et al. [10]).
Although the motor step is instantaneous, the bead response
shows two distinct phases at the optical force chosen. The “fast
response” phase has the bead following the motor step almost
exactly. This is more significant for a bead attached with no
tether (dark blue trace with diamond, light blue trace with
square, and purple trace with asterisk), where the restricted
tether length combined with steric interactions means the bead
cannot lag more than d/2 behind its attachment point. The bead
in the nonlinear tether model (red trace with cross and green
trace with triangle) does not have such limits to its motion,
but fast and slow regions can also be distinguished due to
the changing stiffness of the tether with extension. The slow
response phases have the bead-motor connections relaxing on
a time scale similar to that predicted in Figs. 3(c) and 3(d).

Cappello et al. [10] observed two similar fast and slow
phases in their experiments on myosin V and ascribed them
to the power stroke and diffusional search phases of the
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FIG. 4. (Color online) Averaged bead responses to an instanta-
neous 36 nm step of the motor (black line), under different bead
attachment models. Line colors are as listed in Table I, with one
marker as per that Table included to aid interpretation of the figure
when printed in black and white. The position axis is relative to the
mean position of the (averaged) bead before the step. The average
was performed over 500 realizations of the step. The optical force was
0.25 pN in the −x direction and the bead diameter 200 nm. Further
details of the simulation are provided in Ref. [31]. (inset) A histogram
of the fast phase size for a bead connected with no tether, moving
in the presence of a substrate and undergoing steric interactions with
the trailing motor leg (purple trace with asterisk marker in the main
figure).

motor, respectively. The characteristic relaxation time of their
diffusional search phase, at 1300 ± 300 μs, is substantially
slower than those of the bead responses in Fig. 4, which
exhibit characteristic relaxation times of around 200 μs. This
difference suggests that two different motor phases are indeed
present in the experiment of Cappello et al., and are not in
this case a result of bead dynamics alone. (If a larger model
bead damping coefficient is appropriate due to surface effects,
however, as discussed in Sec. II B, the longer response time
may bring the bead response time closer to the characteristic
time of the diffusional search phase in the experiment, possibly
making the distinction between bead dynamics and motor
dynamics less clear.) The presence of two motor phases is
also supported by other evidence [11,16,18].

The inset in Fig. 4 shows a histogram of these fast bead
phases that could be (in this simulation) falsely attributed to a
fast motor substep. The variance in the size of the fast phase
is very large. In fact, during many motor steps (around 15%
of motor steps), the bead happened to be so far forward that it
was not forced into a fast motion of any size.

The fast substep histogram shown is for a bead attached with
no tether. Under this attachment, there is a maximum distance
that the bead may lag behind the motor, depending on the
size of the bead and the steric interactions it experiences (see
Fig. S2 in Ref. [31]). The fast substep sizes were calculated as
the difference between the initial bead position {determined
by the distribution in Fig. S3(c) of Ref. [31]} and the position
of the bead when at maximum lag behind the new motor
position. Therefore no analysis of bead position time series
was involved. In practice, however, measuring substep sizes
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from experimental time series is a difficult task [5], and the
shape of the histogram will depend on the technique used to
extract the substeps and estimate their sizes. The mean value
of the fast substep size is also strongly dependent on the bead
size, optical force, and other experimental parameters.

VI. EFFECT OF THE BEAD ON THE MOTOR

Figure 5 plots the average time for the motor to complete
a step using the myosin V model, which incorporates motor
structure. The average stepping time for the motor without a
bead is also shown for comparison. For the nonlinear tether
attachment at zero optical force, the average stepping times
are similar to that of the motor without a bead. If larger optical
forces are used, for example, as discussed in the previous
section to achieve small bead noise or fast response time, the
bead pulls the motor further from the next binding site, making
the completion of the step less likely. A slower stepping time
also leads to lower processivity, that is, the motor is likely to
take fewer steps before detachment.

A bead attached by no tether (blue diamonds and purple
asterisks in Fig. 5) has overall more effect on the motor
than one attached with a nonlinear tether (green triangles
and red crosses), as measured by comparison to the stepping
time without a bead. This is mostly due to steric interactions
between the bead and motor. At zero optical force, the bound
neck domain is on average tilted forwards; a bead attached
with no tether is therefore constrained by steric interactions
to be on average forward of the neck juncture (see Fig. S2 in
Ref. [31]). Due to its own steric interactions with the bead, this
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FIG. 5. (Color online) Average time for myosin V to complete a
step, from detachment of trailing head until rebinding at next binding
site, as a function of optical force. Marker colors and shapes are
as listed in Table I. Stepping times were calculated by the method
of Craig and Linke [30], where it is called “diffusion time.” The
calculation only considers the mechanical aspects of a step, not any
chemical transitions such as ATP hydrolysis required to complete a
step. The intersections of the curves with the black dashed line (the
average ADP release time for the remaining bound head [30], assumed
force independent) give approximate stall forces. The stepping time
for a motor with no bead (and no optical force) is also shown
(circle).

obstructs the unbound head’s search for the next binding site
(see blue diamonds in Fig. 5).

A substrate, in contrast, keeps the bead attached with no
tether on average further away from the binding site, and Fig. 5
(purple asterisks) shows the stepping time returns to near that
for no bead. Therefore the presence of a substrate could allow
one to obtain the benefits of a bead attached with no tether
described elsewhere in this article, while maintaining a motor
with good processivity.

An optical force of 0.1 pN is already sufficiently strong to
have a bead attached by no tether located on average behind
the neck juncture. Steric interactions with the backward-tilted
bead cause the unbound head to preferentially search the space
forward of the neck juncture. In the case of no substrate,
the stepping time may be slightly faster than at zero optical
force (see blue diamonds in Fig. 5). With this experimental
configuration, then, there may exist an optimal nonzero optical
force for high processivity.

The backward tilted bead with no tether will inevitably
contact the bound neck domain. At large optical force, this
distorts the bound neck domain so the neck juncture is
4–5 nm further back than without steric effects. The bound
neck domain is forced to curve around the bead. This extra
distance is sufficient to significantly decrease the likelihood
of the unbound head finding the next binding site (compare
blue diamonds and purple asterisks with red crosses and green
triangles in Fig. 5).

VII. DISCUSSION

For detecting shifts in the mean position of a motor, such as
a substep, small bead noise is important. A fast response time
is important for detecting dynamic behavior, such as motor
stepping behavior or the presence of short-lived substeps or
other intermediate states.

Both small bead noise and fast response time can be
achieved with an optical force above 0.5 pN (Fig. 3), which
pushes the bead-motor connection into a stiff regime for the
bead attachments considered here. For the parameters used
here, at such large optical forces the bead noise for the bead
attached with no tether [dark blue diamonds/dotted lines, light
blue squares/dashed lines, and purple asterisks/solid lines in
Fig. 3(a)] is about half that for the nonlinear tether (red and
green), but still reaches 30 nm. This is comparable to myosin
V’s step size [43] and significantly larger than the step size
of kinesin [22] and the substeps of myosin V and kinesin of
recent interest [7,10,16]. The latter features may be difficult
to detect with these parameters, or require sophisticated data
processing. At optical forces above 0.5 pN, the characteristic
response time of a 200 nm bead is around 20–100 μs, except
for a bead attached with no tether and with no steric effects
[dark blue diamonds in Fig. 3(c), though not observable at
the scale shown]. This response time is on the time scale of
motor-dynamical features proposed for myosin V [10] and
kinesin [4,5], indicating these features are just detectable at
these parameters. (If a larger model bead damping coefficient is
appropriate due to surface effects, as discussed in Sec. II B, the
longer response time means these motor-dynamical features
may no longer be detectable.)
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The trade-off to improved resolution from larger optical
forces is their effect on the motor, for example changing the
motor’s stepping behavior (Fig. 5). Optical force could be
increased by increasing the strength of the trapping laser [44],
which could hinder detection of bead position by optical
methods, or by centering the optical trap farther from the motor.
Force clamps [45,46] can also control the tweezer force.

Small bead noise and fast response time can also be
achieved by shrinking the bead below about 100 nm diameter;
most current bead assays such as that of Cappello et al. [10]
use a 200 nm bead. Most bead assays detect bead motion
through displacement of the bead’s image on a quadrant
photodetector [8,11], which such very small bead diameters
may render impractical [7]. Alternative detection methods not
affected by small bead size [36] may be an effective method
of improving assay performance.

In addition to a bead attached by an elastic tether, we
investigated an attachment of small or zero length. This gave
rise to steric effects that may be useful to exploit in assays
to probe the structure and dynamics of molecular motors.
First, steric interactions between this bead and both bound
and unbound neck domains of the myosin V motor affected, in
a complicated way, the motor’s stepping dynamics and average
stepping time (see blue diamonds and purple asterisks in Fig. 5
and discussion in the previous section). The bead could also
have chemical steric effects, which were not modeled here,
by obstructing the binding of ATP to the motor or the release
of hydrolysis products from the binding site. Third, the steric
interaction of the bead with the trailing neck when under an
optical force can serve to amplify, like a lever, conformational
changes in the motor. In simulations of the transition into the
telemark state (illustrated in Fig. S4 of [31]), the neck juncture
moves only 3 nm while the bead center moves 10 nm. The
trade-off is necessarily that a bead attached with no tether
interferes more with the operation of the motor than a bead on
the end of a long tether.

These results also demonstrate that the motion of the bead
may not have a one-to-one correspondence with the motion of
the point on the motor to which it is attached, which analyses
of bead assays often assume. This disparity is because the bead
is not fixed relative to the motor, due to rotation of the bead
about its attachment point, on average, or, in the case of the
nonlinear tether attachment, changes in the length of the tether.
In parametrizing their mechanochemical model of myosin
V from experimental data, Craig and Linke [30] assumed
that the bead moved the same distance as the neck juncture
during mechanochemical transitions in those experiments. The

addition of the bead in this work permits evaluation of this
assumption. For the nonlinear tether attachment at high force,
the assumption is valid: the average positions of the bead
and neck juncture in equilibrium move the same distances in
transitions between the model’s three mechanical states. For
a bead attached with no tether and under some optical force,
however, steric interactions introduced significant differences.
For example, in the transition between the telemark state and
the diffusional search state the average bead position moved
slightly backward while the neck juncture moved forward
15–20 nm. The correspondence is also not exact for the
nonlinear tether attachment under small optical force on the
bead, where the tether is sufficiently unstretched that the bead
may interact sterically with the motor.

Figure 5 implies that the velocity and processivity of motors
with and without attached beads (at zero optical force) also
are similar, provided the bead is attached by a nonlinear tether
(green triangles and red crosses), or no tether with substrate
(purple asterisks). More broadly, these observations support
myosin V’s ability in these cases to robustly transport cargo,
with negligible impact on its bead- or cargo-less behavior.

Interpretation of experimental results, we have shown, must
consider possible artifacts introduced by the bead, such as the
step subphases shown in Fig. 4. Coarse-grained numerical
models such as those used here may help identify whether a
subphase is due to the motor or the bead. A bead attached with
no tether may again be beneficial, due to the fast response phase
of this configuration when responding to large perturbations
in attachment position.

We showed evidence supporting at least two distinct
“waiting” conformations of the bead-motor complex, which
do not correspond to the pre-phosphate-release and telemark
states as modeled here. This observation was made with
the (short-time) bead diffusion coefficients from models and
experimental time series. As well as its application here, drift
and diffusion analysis (or Kramers-Moyal analysis) could
give further insight into results of assays such as those of
Dunn and Spudich [18] for myosin V, or for assays of other
molecular motors. Although we would not expect our specific
conclusions about myosin V to generalize to other motors, we
expect that the method could be applied to other systems in
the same way to draw independent conclusions about those
systems.

As shown in Eq. (11) of Ref. [31], the drift coefficient
under a nonlinear tether attachment is approximately equal
to the nonlinear stiffness of the tether. Therefore the tether
stiffness could be obtained directly from the measured drift

TABLE II. Effects of changing the properties of the bead in a bead assay.

Bead performance Increased optical force Increased bead size Shorter tethera

Response time Improve Worsen Worsen
Bead noise Improve No effectb Improve
Impact on motor Worsen Worsen Worsen
Bead position detection Worsen or no effect Improve or no effect No effect

aFor a bead attached with no tether compared with the nonlinear tether, for the parameters used in this study. A bead attached with no tether
has other, possibly beneficial consequences noted in the main text.
bExcept for increases from very small bead size, where the bead noise will worsen (increase) as bead size increases.
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coefficients. Alternatively, if the tether stiffness is known this
could be a test of our model and the type of bead attachment.
Figure 2(a) shows that the stiffness we used is consistent
with the experimental results, within experimental error. In
terms of the performance characteristics we have defined, one
would expect an increased stiffness to decrease bead noise and
response time (as shown in Sec. 5 of Ref. [31]) and increase
the effect of the bead on the motor.

In summary, a number of compromises are involved in
the design of bead assays. This article considered the effects
of experimental parameters including the size of the bead,
the optical trapping force, and the attachment between bead
and motor; we summarize the results in Table II. Decisions
between these compromises ultimately depend on the objective
of the assay, for example, whether to investigate the size of
substeps, or their duration, or the stepping dynamics of the
motor. We also made several important comparisons between
our models and experimental data. Based on experimental

results, we found evidence for new motor conformations
during waiting periods. From numerical results, we showed
that experimental observations such as multiple phases within
steps and large bead excursions that were previously attributed
to motor behavior may, in some cases, have been artifacts of
the bead assay. Further experimental and analytical study is
needed to resolve whether these observations are features of
the motor or artifacts of the bead assay.
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