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Narrow escape through a funnel and effective diffusion on a crowded membrane
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Particles diffusing on a membrane crowded with obstacles have to squeeze between them through funnel-shaped
narrow straits. The computation of the mean passage time through the straits is a new narrow escape problem that
gives rise to new, hitherto unknown, behavior that we communicate here. The motion through the straits on the
coarse scale of the narrow escape time is an effective diffusion with coefficient that varies nonlinearly with the
density of obstacles. We calculate the coarse-grained diffusion coefficient on a planar lattice of circular obstacles
and use it to estimate the density of obstacles on a neuronal membrane and in a model of a cytoplasm crowded
by identical parallel circular rods.
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I. INTRODUCTION

We consider free Brownian motion in a planar domain
crowded with obstacles, which can be viewed as a simplified
model of tracer motion on a neuronal membrane. Our purpose
is to determine the relation between the variation in the
obstacle density and in the effective diffusion coefficient in
the high-crowding limit and to examine the quality of the
asymptotic approximation by Brownian dynamics simulations.
In our simplified model the obstacles are arranged in a square
lattice of identical circles so at high crowding the separations
between the obstacles become funnel-shaped narrow straits.
The effective diffusion coefficient is inversely proportional to
the mean passage time through the straits, which is the narrow
escape time (NET). The computation of the mean passage
time through the straits is a variant of the NET problem,
previously considered in Refs. [1–8]. The new element in
this computation is the geometry of the funnel-shaped narrow
straits. This geometrical feature changes the dependence of
the NET on the size of the opening relative to all cases
considered previously. A numerical study of related problems
was undertaken in Ref. [9] for the same planar geometry.
As the straits become narrower the time scale of effective
diffusion grows indefinitely and the numerical exploration
of the parameter space becomes harder. A similar effect
was observed in Ref. [10], where a numerical study of
three-dimensional Brownian particles of finite size that have
to squeeze through narrow openings between obstacles. An
attempt at the analytical derivation of the effective diffusion
coefficient in an array of spheres was considered in Ref. [11],
where the NET through a circular window was used instead
of the NET through a funnel. This article presents a new
analytical expression for the effective diffusion coefficient and
reveals an unexpected power-law decay as crowding increases.
This purely geometrical effect is generic, because it is
determined only by the immediate neighborhood of the narrow
straits.

We apply this result to the calculation of the effective
diffusion coefficient as a function of the obstacle density on
the neuronal membrane. A reverse application can reconstruct
the density of obstacles from the measured effective diffusion
coefficient.

II. FORMULATION AND MAIN RESULTS

The random motion of receptors on the surface of a neuron
is usually restricted by many impenetrable obstacles. These
often consist of noninteracting molecules, or fences, that are
assemblies of several molecules, or corrals, that are collections
of fences with small holes; microtubules and the cytoskeleton
network can also form obstacles. The effect of obstacles on the
diffusion coefficient has been studied in the biological context
for the past two decades [12–19] and more recently it was
demonstrated, using single-particle imaging [20–23], that the
effective diffusion coefficient can span a large spectrum of
values from 0.001 to 0.2 μm2/s [23].

We consider, for definiteness, a Brownian particle with
diffusion coefficient D in a planar domain � with a narrow
neck [Fig. 1(a)] such that the opening for the passage of the
particle is much smaller than the radius of curvature at the
narrow neck and of the radius of the confining domain between
the obstacles. The local geometry of the narrow passage can be
described as the opening created from a cusp formed by two
tangent circles that are moved slightly apart. The boundary of
the domain �, away from the cusp, whose diameter is assumed
to be much larger than the width ε = AB of the neck, can be
assumed, without loss of generality as shown below, to be
enclosed by an arc of a circle of radius R = O(1) � ε and
two circular arcs of radius 1 in dimensionless units [Fig. 1(a)].
Our purpose is to calculate the mean first passage time (MFPT)
from any point in �, away from the immediate neighborhood
of the funnel, to the segment AB.

The first new result of this paper is a new asymptotic
approximation of the MFPT, given by

τ̄ = π |�|
D

√
ε

[1 + O(
√

ε)] for ε � 1.

The second result is the uniform expansion (13) of the NET
from one lattice square with reflecting circles centered at the
corners.

III. NET IN A CUSPED NARROW NECK

Our aim is to construct a leading-order asymptotic
approximation in the limit ε � 1 to the MFPT τ̄ (x,y) =
E[τ | (x(0),y(0)) = (x,y)] of a Brownian trajectory (x(t),y(t))
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FIG. 1. (Color online) (a) Narrow straits formed by a cusp
between two reflecting circles. The domain delimited by the big
reflecting circle and the cusped neck is �. A Brownian particle can
escape � only through the segment AB. (b) The image �w = w(�)
under the conformal mapping (2). The narrow neck leading to AB in
� is mapped into the semi-ring-shaped domain in �w . The remaining
part of � is mapped into the red domain. The segment AB (of length
ε) in the left panel is mapped into the thick black segment AB in the
right panel [of length

√
ε + O(ε)].

from points (x,y) ∈ �, outside the immediate neighborhood
of the narrow neck, to the segment AB = ∂�a [Fig. 1(a)].
We assume that the diffusion coefficient is D. The func-
tion u(x,y) = τ̄ (x,y) is the solution of the boundary value
problem [24]

D�u(x,y) = −1 for (x,y) ∈ �,

∂u(x,y)

∂n
= 0 for (x,y) ∈ ∂� − ∂�a, (1)

u(x,y) = 0 for (x,y) ∈ ∂�a.

We put the origin of the complex plane z = x + iy in the center
of the right upper circle and map the domain � in Fig. 1(a)
conformally by setting

w(z) = z − α

1 − αz
, (2)

where α = −1 ± √
ε + O(ε). The image of � in the w plane is

the domain �w = w(�) in Fig. 1(b). The straits in Fig. 1(a) are
mapped onto the semiring enclosed between the red circular
arcs and the large disk is mapped onto the small red disk.
The radius of the small red disk and the elevation of its center
above the real axis are O(

√
ε). The segment AB (of length ε)

is mapped onto the thick black segment AB in the w plane [of
length

√
ε + O(ε)].

Setting u(z) = v(w), system (1) is converted to

�wv(w) = − 1

D|w′(z)|2

= − 4ε + O(ε)3/2

D|w(1 − √
ε) − 1 + O(wε)|4 for w ∈ �w,

(3)

∂v(w)

∂n
= 0 for w ∈ ∂�w − ∂�w,a,

v(w) = 0 for w ∈ ∂�w,a. (4)

The MFPT from � to the segment AB equals that from
the inverse image of a ring at an intermediate angle
θ = c

√
ε (black line around the circle). The solution of

the boundary value problem [Eqs. (3) and (4)] is to
leading order independent of the radial variable in polar
coordinates w = reiθ . Fixing r = 1, we impose the reflecting
boundary condition at θ = c

√
ε, where c = O(1) is a constant

independent of ε to leading order and the absorbing condition
at θ = π . Thus, we obtain the leading-order approximation

v(eiθ ) = 4ε

D

∫ π

θ

(π − η) dη

|eiη − 1 − eiη
√

ε|4 [1 + O(
√

ε)]. (5)

After evaluating asymptotically each integral, we get

v(eic
√

ε) = 4πC

D
√

ε
[1 + O(

√
ε)], (6)

where C = O(1) is a constant. To determine the value of
the constant C, we use the flux condition and compute the
derivative

∂v(eiθ )

∂n

∣∣∣∣
∂�w,a

= ∂v

∂θ

∣∣∣∣
θ=π

= −4ε

D

∫ π

c
√

ε

dη

|eiη − 1 − eiη
√

ε|4

= − 4C

D
√

ε
[1 + O(

√
ε)] (7)

and integration of (1) over �w gives

√
ε
∂v(eiθ )

∂n

∣∣∣∣
∂�w,a

= −| �|
D

. (8)

Now (7) and (8) imply that 4C = |�| so the NET τ̄ to AB from
(x,y) ∈ �, outside the straits, is to leading order independent
of (x,y) and is given by

τ̄ = π |�|
D

√
ε

(1 + O(
√

ε)) for ε � |∂�|. (9)

The graphs of the solution v(eiθ ) of (4) for ε =
10−1,10−2,10−3 and of τ̄ versus ε are given in Fig. 2. The
boundary layer, which stretches up to about θ = 1.5, is the
inverse image of this part of the ring and occupies small part
of the straits leading to the absorbing boundary at AB. In
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FIG. 2. (a) The solution v(eiθ ) for ε = 10−1,10−2,10−3. (b) The
NET v(eic

√
ε) for c = 0.5.
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FIG. 3. (Color online) NET from the domain (a) with D = 1,
L = 1. Statistics were obtained from 1000 exit times of simulated
Brownian trajectories (dashed line). (b) NET vs. obstacle scaled ra-
dius r = a/L = 1

2 (1 − ε). The analytical approximation is [Eq. (13),
continuous curve] with 0 < r = r1 = 0.2, r1 < r < r2 = 0.45, and
0.45 < r < 0.5.

dimensional variables, the NET (9) is given by

τ̄ = π |�|
D

√
ε/R

[
1 + O

(√
ε

R

)]
, (10)

where R is the radius of curvature at the cusp.

IV. NET FROM A LATTICE SQUARE
BOUNDED BY OBSTACLES

Next, we consider the NET from a square of side L

with reflecting circles of radius a centered at the corners
[Fig. 3(a)] over the entire range of possible straits. First, we
note that if there are n well-separated identical escape routes

through narrow straits, then, according to Refs. [7,25], the
NET is independent of (x,y) to leading order and can be
approximated by

τ̄n = τ̄

n
, (11)

where τ̄ is the MFPT to a single escape window in a neck with
the other windows closed (reflecting instead of absorbing).

For small a � L, the NET is independent of a, though
dependent on (x,y), so the circles can be ignored to leading
order [Eq. (14)], but it increases with a. When the width of the
straits L − 2a is about 2a, that is, when a ≈ L/4, the opening
between the circles can be considered small, so according to
Refs. [7,25] and (11) it can be approximated by

τ̄ = |�|
4Dπ

[
log

1

ε
+ O(1)

]
with ε = (L − 2a)/L ≈ 0.5,

(12)

because there are four well-separated straits for escape.
For L − 2a � a/2 (i.e., for ε � 1), the analysis of the
previous paragraph applies and we have (11). Thus a uniform
approximation to the NET from the center can be obtained by
patching the three regimes numerically, which gives

τ̄ ≈

⎧⎪⎨
⎪⎩

c1 for 0.8 < ε < 1,

c2|�| log 1
ε

+ d1 for 0.55 < ε < 0.8,

c3
|�|√

ε
+ d2 for ε < 0.55,

(13)

with d1,d2 = O(1). The MFPT c1 from the center to the
boundary of an unrestricted square is the value of the solution
of (1), given by

u(x,y) = 4L2

π3D

∞∑
0

[
cosh

(
k + 1

2

)
π − cosh

(
k + 1

2

)
π (2y/L − 1)

]
sin(2k + 1)πx/L

(2k + 1)3 cosh(2k + 1)π
, (14)

so c1 = u(L/2,L/2) ≈ [4L2/π3D][cosh(π/2 − 1)/ cosh π ].
For L = 1,D = 1, we find c1 ≈ 0.076 , in agreement with
Brownian dynamics simulations [Fig. 3(b)]. The coefficient c2

is obtained from (12) as c2 = 1/2πD ≈ 0.16. Similarly, the
coefficient c3 is obtained from (10), (11) as c3 ≈ π/4

√
2 D ≈

0.56. The coefficients di are chosen by patching τ̄ continuously
between the different regimes. We get

d1 = c1 + c2|�(r1)| log(1 − 2r1) (15)

and

d2 = c1 − c2[|�(r1)| log(1 − 2r1) + |�(r2)| log(1 − 2r2)]

− c3|�(r2)|(1 − 2r2)−1/2.

Simulations with D = 1 in a square of radius L = 1 with four
reflecting circles of radius r , centered at the corners, show that
the uniform approximation by the patched formula (13) is in
good agreement with Brownian results [Fig. 3(b)], where the
statistics were collected from 1000 escape times of Brownian
trajectories per graph point. The trajectories start at the square
center.

V. DIFFUSION OF RECEPTORS ON THE NEURONAL
MEMBRANE

To calculate the effective diffusion coefficient of the
Brownian motion on an isotropic square lattice with crowded
obstacles in a domain � with a reflecting boundary, we first
coarse-grain it into a random walk between the centers of
adjacent squares. Then we approximate the master equation
for the transition probability density function of the random
walk by the two-dimensional diffusion equation [26]. Because
the mean exit time from a single lattice square is long, the
first eigenvalue of the mixed Dirichlet-Neumann problem in a
single cell is well separated from the higher ones. It follows
that the waiting time in the cell is exponentially distributed [24]
with rate

λ = 1

2τ̄
, (16)

where τ̄ is given in Eq. (13). This is due to the fact that a
Brownian trajectory at the center of the straits is equally likely
to return or move to the next lattice square, much like in atomic
migration in crystals [26]. The diffusion approximation to the
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master equation for the transition probability density function
of an isotropic random walk that jumps at exponentially
distributed waiting times with rate λ on a square lattice with
step size L is given by [26]

∂p

∂t
= D̄

(
∂2p

∂x2
+ ∂2p

∂y2

)
, D̄ = λL2

4
. (17)

Next, we apply the above results to the estimation of
the density of obstacles on the membrane of a neuronal
dendrite. Using the experimentally measured single receptor
trajectory on the surface of a neuron by single-particle tracking
methods, we use that the receptor effective diffusion coefficient
varies from 0.01 to 0.2 μm2/s [20,22,23]. In our simplified
model of crowding, the circular obstacles are as in Fig. 4(a).
We simulated Brownian trajectories and recorded the escape
NET from one square to the other [Fig. 4(a)] with fixed L

and variable a. According to Eqs. (13), (16), and (17), as
a increases the effective diffusion coefficient D̄ decreases.
Using the mean-square displacement (MSD), we computed
the effective diffusion coefficient 〈MSD(t)

4t
〉 [Fig. 2(b)] from

our Brownian simulations and found that it is linear, thus
confirming that in such geometry, crowding does not affect the
nature of the Brownian motion for sufficiently large time (for
a diffusion coefficient of D = 0.2 μm2/s, we are considering
a time larger than 10 s). In addition, Fig. 4(c) shows the
diffusion coefficient ratio Da/D0, where Da was computed
from the MSD of the Brownian simulations on the square
lattice described above with obstacles of radius a. For a = 0.3,
we find that Da/D0 ≈ 0.7, whereas a direct computation using
of the mean exit time formula (13) gives

τ0/τa = c1

c2|�| log 1
ε

+ d1
≈ 0.69, (18)

where ε = L−2a
L

= 0.4. We conclude from our simulations
that the coarse-grained diffusion is classical and the effective
diffusion coefficient Da/D0 = τ0/τa decreases nonlinearly as
a function of the radius a, as given by the uniform formula
(13). We recover the three regimes of Eq. (13) [Fig. 4(c)]:
a noncrowded regime for a < 0.2L, where the effective
diffusion coefficient does not show any significant decrease, a
region 0.2L < a < 0.4L, where the leading order term of the
effective diffusion coefficient is logarithmic, and for a > 0.4L

the effective diffusion coefficient decays as
√

(L − 2a)/L, in
agreement with Eq. (13).

Finally, to estimate the density of obstacles in a neuron
from Eqs. (13), (16), and (17), a reference density has to be
chosen. We choose that the reference diffusion coefficient of
AMPA receptors moving on a free membrane (with removed
cholesterol), estimated to be 0.17 � D � 0.2 μm2/s [27],
while with removing actin, is 0.19 μm2/s. We used this
D = 0.2 μm2/s to estimate the crowding effect based on the
measured diffusion coefficient [Fig. 2(d)]: We found that a
reduction of the diffusion coefficient from D = 0.2 μm2/s
to D = 0.04 μm2/s is achieved when 70% of the membrane
surface is occupied by obstacles. We conclude that obstacles
impair the diffusion of receptors and are thus responsible for
the large decrease of the measured diffusion coefficient (up to
5 times).

(a) (b)

(c) (d)

FIG. 4. (Color online) Organization of the neuronal membrane.
(a) Schematic representation of a Brownian particle diffusing in a
crowded microdomain. (b) Mean-square displacement (MSD) of the
particle in a domain paved with microdomains. The MSD is linear,
showing that crowding does not affect the nature of diffusion. The ef-
fective diffusion coefficient is computed from 〈MSD(t)/4t〉 (D = 1).
(c) Effective diffusion coefficient computed from the MSD for
different radiuses of the obstacles. Brownian simulations (continuous
curve): there are three regions (separated by the dashed lines).
While there is no crowding for a < 0.2, the decreasing of the effective
diffusion coefficient for 0.2 < a < 0.4 is logarithmic and like the
square root for a > 0.4. (d) Effective diffusion coefficient of a particle
diffusing in a domain as a function of the fraction of the occupied
surface. An α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPAR) receptor has a diffusion coefficient of 0.2 μm2/s in a free
membrane [27].

VI. SUMMARY

The local geometry of the exit route of a Brownian particle
through a small portion of the boundary of a planar domain
has profound influence on the mean escape time. We have
found here that the NET through a funnel, a problem hitherto
unsolved, increases as the power law ε−1/2 that was not
observed in any of the planar geometries studied so far. This
indicates that the singularity of Green’s function for the mixed
Neumann-Dirichlet boundary value problem for the Laplace
equation depends strongly on the narrow opening on the
geometric properties of the boundary there. A similar behavior
is observed in three dimensions as well.

The application of the new law to the coarse-graining
of Brownian motion in a domain crowded by a lattice of
circular obstacles, first, by a random walk on the lattice
and then by an effective diffusion, shows that the effective
diffusion coefficient varies nonlinearly with obstacle density.
A small increase in the concentration of obstacles at very
large crowding leads to a sharp decrease of the effective
diffusion coefficient. We note that the coarse-graining is valid
on a time scale much longer than the NET, so no anomalous
effects are observed on this scale. The present approach can
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be applied to the three-dimensional cytoplasm crowded by
parallel cylindrical obstacles. The case of other geometries is
yet to be done.

The present study of coarse-grained diffusion arises in a
model of receptor diffusion on a synaptic membrane of a
neuron. The route of a receptor inserted into the membrane to
its destination in the postsynaptic density (PSD) is obstructed
with many impenetrable structures. A biological interpretation

of our results may be that the large change in arrival time, and
thus in the population of the PSD, may indicate a possible
mechanism of permanent physiological modulation by adding
a small number of obstacles to the crowded membrane.
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