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Mean-field description of ionic size effects with nonuniform ionic sizes: A numerical approach
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Ionic size effects are significant in many biological systems. Mean-field descriptions of such effects can
be efficient but also challenging. When ionic sizes are different, explicit formulas in such descriptions are
not available for the dependence of the ionic concentrations on the electrostatic potential, that is, there is
no explicit Boltzmann-type distributions. This work begins with a variational formulation of the continuum
electrostatics of an ionic solution with such nonuniform ionic sizes as well as multiple ionic valences. An
augmented Lagrange multiplier method is then developed and implemented to numerically solve the underlying
constrained optimization problem. The method is shown to be accurate and efficient, and is applied to ionic systems
with nonuniform ionic sizes such as the sodium chloride solution. Extensive numerical tests demonstrate that the
mean-field model and numerical method capture qualitatively some significant ionic size effects, particularly those
for multivalent ionic solutions, such as the stratification of multivalent counterions near a charged surface. The
ionic valence-to-volume ratio is found to be the key physical parameter in the stratification of concentrations. All
these are not well described by the classical Poisson–Boltzmann theory, or the generalized Poisson–Boltzmann
theory that treats uniform ionic sizes. Finally, various issues such as the close packing, limitation of the continuum
model, and generalization of this work to molecular solvation are discussed.
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I. INTRODUCTION

Electrostatic interactions between macromolecules and
mobile ions in the surrounding solvent play a key role in
many important biological processes such as protein folding
[1,2], membrane stabilization [3], gating in ion channels [4],
hydrophobic interactions [5], and protein association [6,7]. In
such interactions, ionic sizes or excluded volumes, particularly
nonuniform ionic sizes of multiple ions, can affect many of
the detailed chemical and physical properties of an underlying
biological system. For instance, the monovalence cation size
can influence the stability of RNA tertiary structures [8].
Differences in ionic sizes can also affect how mobile ions bind
to nucleic acids [9–11]. The ionic size effect is more profound
in the ion channel selectivity (see, e.g., [4,12]). Detailed Monte
Carlo simulations and integral equations calculations also
confirm some of these experimentally observed properties due
to the nonuniformity of ionic sizes [13–15].

The classical Poisson–Boltzmann (PB) equation is perhaps
the most widely used mean-field model of the electrostatics
of ionic solutions [16–21]. It has been successful in many
applications, particularly in the biomolecular modeling with
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an implicit solvent [22–26]. The PB equation is Poisson’s
equation for the electrostatic potential with the charge density
including that of mobile ions whose equilibrium concentra-
tions are given by the Boltzmann distributions via the potential.
In a variational setting such distributions are the conditions
for equilibrium concentrations that minimize a mean-field
electrostatic free-energy functional of ionic concentrations
where the potential is determined by Poisson’s equation
[27–31]. Despite its success in many applications, the classical
PB theory is known to fail in capturing well the ion-ion
correlations and ionic size effects [13–15,32,33].

Recently there has been a growing interest in incorporating
the ionic size effect in a PB-like, simple and efficient, mean-
field model [30,31,34–41]. The key idea has been to introduce
the local concentration c0 = c0(x) of solvent molecules, in
addition to those c1(x), . . . ,cM (x) of ions of multiple species
(M of them assumed), and their corresponding linear sizes
a0,a1, . . . ,aM in the electrostatic free energy

∫ [
1

2
ρψ + kBT

M∑
i=0

ci log
(
a3

i ci

)]
dV. (1)

Here

ρ = f +
M∑
i=1

zieci
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is the charge density with f a fixed charge density, zi the va-
lence of an ion of the ith species, and e the elementary charge,
ψ is the electrostatic potential determined by Poisson’s equa-
tion, kB is the Boltzmann constant, and T is the temperature.
Notice that the concentration of the solvent molecules is not an
independent variable in this functional, since it is defined by

a3
0c0(x) = 1 −

M∑
i=1

a3
i ci(x).

If all a0, a1, . . . , aM are the same, this mean-field approx-
imation of the free energy can then be derived from a lattice
gas model (cf. [34,40]). Moreover, there are explicit formulas,
the generalized Boltzmann distributions, relating equilibrium
concentrations and the corresponding electrostatic potential.
These distributions, together with Poisson’s equation, lead to
the generalized PB equation for the case of a uniform ionic size
[34,35,40]. See [38,39,41] for some applications of this equa-
tion. When the ionic sizes are not the same, the situation is quite
different. For a system of three ionic species with two different
ionic sizes, Chu et al. [37] derived a different size-modified
PB equation from a similar lattice gas model and applied this
equation to study the ionic size effect in the binding of ions to
DNA. For a general system, Tresset [40] derived an expression
of the free energy similar to (1) with an effective volume frac-
tion of free space, under the assumption that the ionic excluded
volumes are dispersed from each other to a reasonable extent.
For a general system of multiple ions with different sizes
modeled by (1), Li [31] derived the equilibrium conditions(

ai

a0

)3

log
(
a3

0c0
) − log

(
a3

i ci

) = 1

kBT
(zieψ − μi) ,

i = 1, . . . ,M, (2)

where μi is the chemical potential of the ith ionic species,
and proved that this system of algebraic equations has a
unique solution (c1, . . . ,cM ). However, an explicit formula
of this solution, and hence Boltzmann-like distributions for
the equilibrium concentrations, seem unavailable. Therefore,
there is no PB-like equation of the electrostatic potential in
the general case.

To obtain the equilibrium ionic concentrations and the
corresponding electrostatic potential, we propose in this
work to minimize numerically the free-energy functional (1),
using Poisson’s equation as a constraint. Following [42],
we reformulate the electrostatic free-energy functional using
both the potential ψ and concentrations c = (c1, . . . ,cM ), the
(ψ,c) formulation, or using both the electric field E and the
concentrations, the (E,c) formulation, coupled with Poisson’s
equation or Gauss’s law, respectively. To solve our constrained
optimization problems, we construct a Lagrange multiplier
method for the case without the size effect and an augmented
Lagrange multiplier method for the general case with the size
effect. In order to compare the efficiency of our approaches, we
also generalize the local constrained optimization method de-
veloped in [42,43] to the general case including the ionic sizes.
We perform extensive numerical tests to demonstrate the effi-
ciency and accuracy of our methods, and to study how surface
charges, ionic size differences, and ionic valences, affect the
ionic concentration profiles near a charged surface. We recover

many detailed properties of ionic concentrations, including the
stratification of concentrations, that have been predicted by
other refined models. We also find that the ionic valence-to-
volume ratio is the key parameter in the stratification.

The rest of the paper is organized as follows: In Sec. II
we describe in detail the general electrostatic free-energy
functional with or without the ionic size effect using the
(ψ,c) and (E,c) formulations. In Sec. III we develop various
kinds of global and local constrained optimization methods
for solving numerically our underlying variational problems.
In Sec. IV we report our numerical results to demonstrate the
accuracy and efficiency of our method, and to describe various
ionic size effects in an ionic solution. Finally, in Sec. V we
draw conclusions and discuss various issues such as the close
packing, limitation of the continuum model, and generalization
of this work to molecular solvation.

II. ELECTROSTATIC FREE ENERGY

We consider an ionic solution that occupies a bounded
region � in R3. We assume there are M ionic species in
the solution, and denote by zi and Ni the valence and the
total number, respectively, of ions of the ith species. Let ci(x)
denote the local ionic concentration at a spatial point x ∈ � of
the ith ionic species. Then∫

�

ci dV = Ni, i = 1, . . . ,M. (3)

Moreover, the local density at x ∈ � of charges of ions is∑M
i=1 zieci(x), where e is the elementary charge.
We assume that there are fixed volume charges and surface

charges distributed in the interior and on the boundary of the
solution region �, respectively. We denote by f (x) the local
density of the fixed volume charges at an interior point x ∈ �.
Similarly we denote by σ (x) the local density of the fixed
surface charges at a boundary point x ∈ �, where � = ∂�

denotes the boundary of �. The charge neutrality of the entire
solution is given by

M∑
i=1

Nizie +
∫

�

f dV +
∫

�

σ dS = 0. (4)

In equilibrium the electrostatic free energy of the solution
can be expressed in terms of the equilibrium ionic concentra-
tions c = (c1, . . . ,cM ) as

F [c] = Fpot[c] + Fent[c]. (5)

Here the potential energy Fpot[c] is given by

Fpot[c] =
∫

�

1

2

(
f +

M∑
i=1

zieci

)
ψ dV +

∫
�

1

2
σψ dS,

(6)

where ψ = ψ(x) is the electrostatic potential. It is determined
by Poisson’s equation and the boundary condition

∇ · εrε0∇ψ = −
(

f +
M∑
i=1

zieci

)
in �, (7)

εrε0
∂ψ

∂n
= σ on �, (8)
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where ε0 and εr are the vacuum permittivity and rel-
ative permittivity (dielectric coefficient), respectively, and
∂/∂n denotes the normal derivative along the unit exterior
normal n at �. Here and below we use the SI units.
Notice that by Eqs. (7) and (8) and an integration by
parts

Fpot[c] =
∫

�

εrε0

2
|∇ψ |2dV.

Here the dependence on the equilibrium concentrations
c = (c1, . . . ,cM ) is implicit through the potential ψ. Notice
also that Eqs. (7) and (8) determine the potential ψ uniquely
up to an additive constant but the potential energy Fpot[c] is
unique.

The entropic part Fent[c] is given in the form

Fent[c] = kBT

∫
�

Q(c) dV. (9)

The integrand Q(c) is commonly defined for the case without
the ionic size effect and that with the ionic size effect as
follows:

Q(c) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M∑
i=1

ci

[
log

(
	3ci

) − 1
]

without the size effect,

M∑
i=0

ci

[
log

(
a3

i ci

) − 1
]

with the size effect.

(10)

For the case without the size effect, the parameter 	 is the
de Broglie wavelength. For the case with the size effect,
the summation starts from i = 0 and c0(x) is the local
concentration of the solvent at the point x ∈ �. For each i

with 1 � i � M , the parameter ai > 0 is the linear size, or
more precisely, a3

i is the volume, of an ion of the ith species.
The parameter a0 > 0 is the linear size of a solvent molecule.
The local concentration of solvent c0 = c0(x) is defined by the
relation

a3
0c0(x) + a3

1c1(x) + · · · + a3
McM (x) = 1 for all x ∈ �.

Thus c0(x) is not an independent field. See [31,34,35,40,44].
All the properties described above are for the equilibrium

concentrations and the corresponding potential. To find ana-
lytically and numerically such equilibrium concentrations and
potential, and the minimum electrostatic free energy, we use
a variational approach. We define an electrostatic free-energy
functional

F [ψ,c] =
∫

�

[εrε0

2
|∇ψ |2 + kBT Q(c)

]
dV

for all possible concentrations c = (c1, . . . ,cM ) and the
electrostatic potential ψ that are not necessary in equi-
librium. We minimize this functional under the following
constraints:

(i) Eq. (3) of mass conservation;
(ii) Eq. (4) of charge neutrality;

(iii) Poisson’s equation (7); and
(iv) The boundary condition (8).

Notice that we do not need to assume that ci(x) � 0 since the
term Q(c) involves log ci(x).

Mathematically, one can prove by the direct method in
the calculus of variations that there exist a unique set of

concentrations c = (c1, . . . ,cM ) and a potential ψ , unique up
to an additive constant, that minimize the function F [ψ,c]
under all the constraints. See [30,31]. The minimum value of
the functional is exactly that given by (5), supplemented by
(6) and (9).

Often the electric field E = E(x) is a useful quantity. If the
potential ψ is known, then E = −∇φ. In general, we define
the electrostatic free-energy functional of all possible pairs of
concentrations c = (c1, . . . ,cM ) and electric field E

F [E,c] =
∫

�

[εrε0

2
|E|2 + kBT Q(c)

]
dV,

where we use the same letter F . Our underlying problem is
then equivalent to finding the minimizer of this functional
under the following constraints:

(i′) Eq. (3) of mass conservation;
(ii′) Eq. (4) of charge neutrality;
(iii′) Gauss’s law

∇ · εrε0E = f +
M∑
i=1

zieci in �;

(iv′) The boundary condition

−εrε0E · n = σ in �;

(v′) The compatibility condition

∇ × E = 0.

Introduce the Bjerrum length lB = e2/(4πεrε0kBT ).
Define c′

i = 4πlBci,N
′
i = 4πlBNi,	

′ = (4πlB)−1/3	,a′
i =

(4πlB)−1/3ai,f
′ = 4πlBf/e, and σ ′ = 4πlBσ/e. Define also

ψ ′ = eψ/(kBT ) and E′ = eE/(kBT ). Then for the (ψ,c)
formulation

F [ψ,c] = εrε0k
2
BT 2

e2
F ′[ψ ′,c′],

where

F ′[ψ ′,c′] =
∫

�

[
1

2
|∇ψ ′|2 + Q′(c′)

]
dV,

with Q′(c′) defined same as that in (10) except all quantities
ci , 	, and ai are replaced by their primed counterparts. The
constraints and side conditions on (ψ,c) are rescaled to∫

�

c′
i dV = N ′

i ,

N∑
i=1

N ′
i zi +

∫
�

f ′ dV +
∫

�

σ ′ dS = 0,

�ψ ′ = −
(

f ′ +
M∑
i=1

zic
′
i

)
in �,

∂ψ ′

∂n
= σ ′ on �.

Similarly, for the (E,c) formulation,

F [E,c] = εrε0k
2
BT 2

e2
F ′[E′,c′],
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where

F ′[E′,c′] =
∫

�

[
1

2
|E′|2 + Q′(c′)

]
dV. (11)

The constraints and side conditions on (E,c) are rescaled to∫
�

c′
i dV = N ′

i ,

N∑
i=1

N ′
i zi +

∫
�

f ′ dV +
∫

�

σ ′ dS = 0,

∇ · E′ = f ′ +
M∑
i=1

zic
′
i in �,

−E′ · n = σ ′ on �,

∇ × E′ = 0 in �.

Since the integral of each c′
i over � is a constant by the

mass conservation, we can replace Q′(c′) in the functionals
F ′[ψ ′,c′] and F ′[E′,c′] by a simpler one:

Q′(c′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M∑
i=1

c′
i(log c′

i − 1) without the size effect,

c′
0

[
log

(
a′3

0 c′
0

) − 1
] +

M∑
i=1

c′
i(log c′

i − 1) with the size effect,

where we keep a′3
0 for convenience in later calculations. Note

that the sizes a′
i (i = 1, . . . ,M) are hidden in c′

0. Now the
solutions to the free-energy minimization problems are the
same but the minimum values of the free-energy functional
are changed by a multiplicative and an additive constants that
depend only on the input data εr , T , 	, zi , ai , and Ni. For
simplicity, we will drop all the primes in the rest of this paper.

We remark that one can also use the Dirichlet boundary
condition ψ = ψ0 on the boundary � for some given function
ψ0. In this case, we can derive similarly our variational
formulation. Sometimes, the periodic boundary condition can
be also used as an approximation when the ionic solution
is considered in a confined domain. In addition, we can
approximate the surface charge density by a function that is
defined on the region so that only the volume charge density
appears in our formulation. These approximations can simplify
our numerical computations.

III. NUMERICAL METHODS

A. A Lagrange multiplier method for the case without
the size effect

We consider the problem of minimizing F (E,c) defined in
(11), with Q(c) corresponding to the case without the size
effect, under all the constraints listed below Eq. (11). The
Lagrange multiplier method converts this problem into the
following unconstrained optimization problem:

min
(E,c)

max
(ψ,λ)

L(E,c,ψ,λ),

where λ = (λ1, . . . ,λM ) and

L(E,c,ψ,λ) = F (E,c) −
∫

�

ψK(E,c)dV +
M∑
i=1

λiHi(ci),

K(E,c) = ∇ · E −
M∑
i=1

zici − f, (12)

Hi(ci) =
∫

�

zici dV − ziNi, i = 1, . . . ,M. (13)

Here ψ = ψ(x) is a function on � and −ψ is the Lagrange
multiplier for the (scaled) Gauss’s law. Each λi (1 � i � M)
is a real number and is the Lagrange multiplier for the mass
conservation constraint for the ith ionic species.

The necessary conditions for (E,c,ψ,λ) to be a saddle point
of L are

∂L

∂E
= E + ∇ψ = 0, (14)

∂L

∂ψ
= −K(E,c) = 0, (15)

∂L

∂ci

= log ci + ziψ + λizi = 0, (16)

∂L

∂λi

= Hi(ci) = 0, i = 1, . . . ,M, (17)

where the first three derivatives are the variational derivatives.
By Eq. (14), E = −∇ψ in �, that is, the Lagrange multiplier ψ

is an electrostatic potential. Moreover, the constraint ∇ × E =
0 is satisfied automatically. By Eq. (16),

ci = e−λizi e−ziψ in �.

By Eqs. (17) and (13),

Ni =
∫

�

ci dV = e−λizi

∫
�

e−ziψdV .

It then follows that

ci = Nie
−ziψ∫

�
eziψdV

in �, i = 1, . . . ,M.
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The ultimate unknown variable is ψ. By Eqs. (14) and (15),
ψ is determined by the following nonlocal PB equation:

−�ψ =
M∑
i=1

ziNie
−ziψ∫

�
e−ziψdV

+ f,

together with some boundary conditions. We choose to use
the periodic boundary conditions for efficiency. We solve this
boundary-value problem by the fixed-point iterations.

Algorithm
Step 0. Initialize ψ0. Set l = 0. Choose ω ∈ (0,1). Choose

an error tolerance tol > 0.

Step 1. Find the solution ψ∗ by solving

−�ψ∗ =
M∑
i=1

ziNie
−ziψl∫

�
e−ziψl dV

+ f

with the periodic boundary condition.
Step 2. If |ψ∗ − ψl| < tol in �, then stop. Otherwise, set

ψl+1 = ωψl+ (1 − ω)ψ∗ and l ← l + 1, and go to Step 1.

B. An augmented Lagrange multiplier method for the case
with the size effect

We again consider the problem of minimizing F (E,c)
defined in (11), with Q(c) now corresponding to the case with
the size effect, under all the constraints listed below Eq. (11).
Our augmented Lagrange multiplier method is to solve the
following unconstrained optimization problem [45,46]:

min
(E,c)

max
(ψ,λ)

L̂(E,c,ψ,λ,r),

where r = (r1, . . . ,rM ) and

L̂(E,c,ψ,λ,r) = F (E,c) −
∫

�

ψK(E,c)dV

+
M∑
i=1

λiHi(ci) +
M∑
i=1

ri

2
[Hi(ci)]

2 .

Here K and Hi are defined in (12) and (13), respectively,
and all ri � 0 in the last term of summation are the penalty
parameters. We add all the penalty terms (1/2)ri[Hi(ci)]2 to
stabilize and accelerate our numerical iterations.

The necessary conditions for (E,c,ψ,λ,r) to be a saddle
point of L̂ are

∂L̂

∂E
= E + ∇ψ = 0, (18)

∂L̂

∂ψ
= −K(E,c) = 0, (19)

∂L̂

∂ci

= −a3
i

a3
0

log

⎛
⎝1 −

M∑
j=1

a3
j cj

⎞
⎠ + log ci

+ (λi + ψ)zi + riziHi(ci) = 0,

i = 1, . . . ,M, (20)

∂L̂

∂λi

= Hi(ci) = 0, i = 1, . . . ,M. (21)

As in the previous case we have by (18) that E = −∇ψ and
∇ × E = 0. Also, Eqs. (18) and (19) imply that

−�ψ =
M∑
i=1

zici + f. (22)

Since the linear sizes a0, a1, . . . , aM can be all different, it
does not seem to be possible to solve (20) analytically to
get Boltzmann-like distributions for the dependence of all the
concentrations ci on the potential ψ and parameters λ [31,40].
Therefore we design an iteration algorithm to solve the coupled
system (20), (21), and (22), with, for example, the periodic
boundary condition.

Algorithm
Step 0. Initialize c(0), ψ (0), λ(0) = (λ(0)

1 , . . . ,λ
(0)
M ), and

r (0) = (r (0)
1 , . . . ,r

(0)
M ). Fix a parameter β > 1. Set l = 0.

Step 1. Solve by the fast Fourier transform Eq. (22) with
ci replaced by c

(l)
i , with the periodic boundary condition, to

obtain the solution ψ (l+1). Set

E(l+1) = −∇ψ (l+1).

Step 2. Use Newton’s method to solve Eq. (20) with ψ , λ,
and r replaced by ψ (l+1), λ(l), and r (l), respectively, to obtain
the solution c(l+1).

Step 3. Update the Lagrange multipliers

λ
(l+1)
i = λ

(l)
i + r

(l)
i Hi(c

(l+1)
i ), i = 1, . . . ,M.

Update the penalty parameters

r
(l+1)
i = βr

(l)
i , i = 1, . . . ,M.

Step 4. Test convergence. If not, set l ← l + 1 and go to
step 1.

We now detail Newton’s method in step 2 of our algorithm
for solving Eq. (20) with a fixed i (1 � i � M). Let us
discretize our computational box with a uniform grid of N grid
points. We denote by �V the volume of each grid cell. Let
us also denote by c1

i , . . . ,c
N
i and ψ1, . . . ,ψN the approximate

values at these grid points of the concentration ci and those of
the potential ψ , respectively. Denote

θm
i = −a3

i

a3
0

log

⎛
⎝1 −

M∑
j=1

a3
j c

m
j

⎞
⎠ + log cm

i

+(λi + ψm)zi + riz
2
i

(
�V

N∑
k=1

ck
i − Ni

)
,

m = 1, . . . ,N.

For each m, θm
i is an approximation at the mth grid point of

the left-hand side of Eq. (20). We need to solve the system of
N nonlinear equations

θm
i = 0, m = 1, . . . ,N (23)

to obtain c1
i , . . . ,c

N
i , provided that all a0, . . . ,aM , λi , ri , zi,

ψ1, . . . ,ψN , and �V are known. Denote the vectors � =
(θ1

i ,θ2
i , · · · ,θN

i )T and c = (c1
i ,c

2
i , · · · ,cN

i )T , where T denotes
the matrix transpose. In a vector form, the system of nonlinear
equations (23) is simply �(c) = 0.
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The gradient of � with respect to c, denoted ∂�/∂c,
is a matrix with its (m,n) entry given by ∂θm

i /∂cn
i . Simple

calculations lead to

∂�

∂c
= diag

(
1

ξ 1
, . . . ,

1

ξN

)
+ riz

2
i �Ve ⊗ e,

where e is the N -component column vector with all its
components equal to 1 and

ξm =
(

1

cm
i

+ a6
i

a3
0 − a3

0

∑M
j=1 a3

j c
m
j

)−1

, m = 1, . . . ,N.

Therefore

det
∂�

∂c
= 1 + riz

2
i �V

∑N
m=1 ξm∏N

m=1 ξm
> 0.

Hence the matrix ∂�/∂c is invertible. By the Sherman–
Morrison formula [47],(

∂�

∂c

)−1

=diag
(
ξ 1, . . . ,ξN

) − riz2
i �V

1 + riz2
i �V

∑N
m=1 ξm

ξ ⊗ ξ,

where ξ = (ξ 1, . . . ,ξN )T .
Our Newton’s iteration scheme is now

c ← c − γ

(
∂�

∂c

)−1

�(c),

where γ > 0 is a numerical parameter. Component wise, this
iteration is

cm
i ← cm

i − γ ξm

(
θm
i − riz

2
i �V

∑N
k=1 θk

i ξ k

1 + riz
2
i �V

∑N
k=1 ξk

)
,

m = 1, . . . ,N, i = 1, . . . ,M.

We choose γ by using a trial-and-error method to avoid
the concentrations cm

i going outside the range (0,a−3
i ) for

i = 1, . . . ,M . It should be noted that matrix-vector multipli-
cations are avoided in this Newton’s iteration scheme and the
complexity of each iteration is O(N ).

C. A local constrained optimization method

In this subsection we extend a local optimization method
developed in [42,43] to treat the case with the size effect. We
assume that our computational domain is a rectangular par-
allelepiped (0,L1) × (0,L2) × (0,L3) and discretize it using a
uniform grid with the grid spacing h1, h2, and h3 in the three
coordinate directions. We denote by �V = h1h2h3 the volume
of each grid cell. A typical grid associated with n = (n1,n2,n3)
is

r0(n) = (n1h1,n2h2,n3h3).

For such a grid we also denote

r1,±(n) = ((n1 ± 1/2)h1,n2h2,n3h3),

r2,±(n) = (n1h1,(n2 ± 1/2)h2,n3h3),

r3,±(n) = (n1h1,n2h2,(n3 ± 1/2)h3).

We discretize each of the concentrations ci on all the grid
points r0(n) and the three components E1, E2, and E3 of the

electric field E at rj,+(n) (j = 1,2,3). The functional F (E,c)
defined in (11) with the size effect is now approximated by

F

�V
= 1

2

∑
n

3∑
j=1

[Ej (rj,+(n))]2

+
∑

n

c0(r0(n))[log(a3
0c0(r0(n))) − 1]

+
∑

n

M∑
i=1

ci(r0(n))[log(ci(r0(n))) − 1]. (24)

Gauss’s law is approximated as
3∑

j=1

Ej (rj,+(n)) − Ej (rj,−(n))
hj

=
M∑
i=1

zici(r0(n)) + f (r0(n)).

The mass conservation is approximated by∑
n

ci(r0(n)) = Ni

�V
, i = 1, . . . ,M.

The local method developed in [42] (cf. also [43]) is based
on local moves or updates of the electric field and ionic
concentrations. Let us first consider the update of electric
field. Fix a grid cell and one of its two faces perpendicular
to the x3 axis. Let E′

1, E2, E1, and E′
2 be the four electric field

components on the face. We update these values by

E′
1 ← E′

1 + δE′
1,

E2 ← E2 + δE2,

E1 ← E1 + δE1,

E′
2 ← E′

2 + δE′
2.

Corresponding changes in fluxes are

δφ′
1 = h2h3δE

′
1,

δφ2 = h3h1δE2,

δφ1 = h2h3δE1,

δφ′
2 = h3h1δE

′
2.

In order for Gauss’s law to be satisfied, the flux changes should
be the same, that is,

δφ′
1 = δφ2 = δφ1 = δφ′

2 = δφ.

The resulting change in the functional is

δF�V = (δφ)2
(
h2

1 + h2
2

) + �V h1(E1 − E′
1)δφ

+�V h2(E2 − E′
2)δφ.

This change is minimized if

δφ = �V

2
(
h2

1 + h2
2

) [h1(E′
1 − E1) + h2(E′

2 − E2)].

We now consider the update of the concentrations. Let
rA

0 and rB
0 be two adjacent grid points linked by an edge of

length �l. We denote by cA
j and cB

j the approximations of the
concentration cj at these two grid points, respectively, for all
j = 1, . . . ,M. Fix i (1 � i � M). We update the values cA

i

and cB
i by

cA
i ← cA

i − δc and cB
i ← cB

i + δc.
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By Gauss’s law, the flux related to the link between two nodes
should be correspondingly changed with the amount δE =
−�lziδc. Hence the associated change in the functional is

�F

�V
= 1

2
(�lziδc)2 − E�lziδc + cA

i log

(
1 − δc

cA
i

)

+ cB
i log

(
1 + δc

cB
i

)
− δclog

cA
i − δc

cB
i + δc

+1 − ∑M
j=0 a3

j c
A
j

a3
0

log

(
1 + a3

i δc

1 − ∑M
j=0 a3

j c
A
j

)

+1 − ∑M
j=0 a3

j c
B
j

a3
0

log

(
1 − a3

i δc

1 − ∑M
j=0 a3

j c
B
j

)

+a3
i δc

a3
0

log

(
1 − ∑M

j=0 a3
j c

A
j + a3

i δc

1 − ∑M
j=0 a3

j c
B
j − a3

i δc

)
.

Notice that this change is different from that for the case with-
out the size effect [42]. The optimal value δc that minimizes
this expression is the solution to the following equation:

−E�lzi + (�l)2z2
i δc − log

(
cA
i − δc

cB
i + δc

)

+ a3
i

a3
0

log

(
1 − ∑M

j=0 a3
j c

A
j + a3

i δc

1 − ∑M
j=0 a3

j c
B
j − a3

i δc

)
= 0. (25)

Notice from the logarithmic terms in (24) that the perturbation
δc should be in the interval (Il,Ir ), where

Il = max

{
−1 − ∑M

j=0 a3
j c

A
j

a3
i

, − cB
i

}
and

Ir = min

{
1 − ∑M

j=0 a3
j c

B
j

a3
i

,cA
i

}
.

We solve Eq. (25) by Newton’s iteration with the initial guess
(Il + Ir )/2.

IV. NUMERICAL RESULTS

We now report results of our numerical calculations. We
set the Bjerrum length to be lB = 7 Å. We choose our compu-
tational domain to be a cube � = (0,L) × (0,L) × (0,L) for
some L > 0. We assume that this cube contains a spherical
colloidal particle, denoted by Bc, of radius R with its center
the same as that of the cube. We also assume that a total
Z e of fixed surface charges are uniformly distributed over
the spherical surface. As in [42], we interpolate the surface
charges into their nearest grids. Since the mobile ions cannot

penetrate the interface between the solution region and the
colloidal particle, all the ionic concentrations are assumed to
vanish inside the sphere. This means that the region of the
ionic solution is � \ Bc, the cube � minus the sphere Bc.

A. Example 1

In this example, we demonstrate that our method captures
qualitatively the essential features of ionic solution. Moreover
we show that our method is accurate and is more efficient than
some previously proposed local methods.

We consider an ionic solution of sodium chloride occupying
the region � \ Bc. The number of ionic species M , their
valences z1 and z2, their linear sizes a1 and a2, and the linear
size of the solvent molecule a0 are given by

M = 2, z1 = −1, z2 = +1, a1 = 3.34 Å,

a2 = 2.32 Å, a0 = 2.75 Å.

The total number of sodium ions N1, the total number of
chloride ions N2, the total amount of surface charges Ze,
the radius R of the sphere Bc, and the linear size of the
computational box L are

N1 = 120, N2 = 60, Z e = 60 e, R = 8 Å, L = 80 Å.

Our numerical grid consists of a total of 256 × 256 × 256 grid
points.

We use our augmented Lagrange multiplier method to
numerically minimize the electrostatic free-energy functional
(11) with the size effect, together with all the correspond-
ing constraints listed below (11). Figure 1 shows a two-
dimensional cross section of our computed equilibrium con-
centration of counterions (a) and that of coions (b) in the plane
z = 40 Å, which is in the middle of the computational box. Due
to the presence of surface charges, the counterions—chloride
ions—accumulate around the colloidal sphere. In contrast, the
coions—sodium ions—are repelled away from the colloidal
sphere. Note that the concentration of counterions reaches a
saturation value, rather than becoming too high and unphysical
as often predicted by the classical PB theory that does not
include the ionic size effect.

Figure 2 shows the convergence of our numerical iterations
of the total number of counterions (a), that of coions (b), and
the total charge in the system (c) to their respective values N1 =
120, N2 = 60, and 0. This demonstrates that our augmented
Lagrange multiplier method preserves very well the constraints
of mass conservation (3) and charge neutrality (4).

To compare the efficiency of various methods that we
described in Sec. III, we also performed the following
computations.

(a) Minimize numerically the free-energy functional (11)
without the size effect, together with the corresponding
constraints, using the local constrained optimization method
developed in [42]. This method will be abbreviated as
“PBmove.”

(b) Minimize numerically the free-energy functional (11)
without the size effect, together with the corresponding
constraints, using the Lagrange multiplier method described
in Sec. III A. This method will be abbreviated as “LagMulti.”
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FIG. 1. (Color online) Ionic concentrations in the midplane z = 40 Å.

(c) Minimize numerically the free-energy functional (11)
with the size effect, together with the corresponding con-
straints, using the local constrained optimization method
described in Sec. III C. This method will be abbreviated
as “SMPBmove.” (SMPB means size modified Poisson–
Boltzmann.)

We shall abbreviate our augmented Lagrange multiplier
method as “AugLagMulti.”

We run our PBmove and LagMulti codes and stop at a point
at which the two numerical solutions of the concentrations and
those of the electric field are close enough. Similarly, we run

our SMPBmove and AugLagMulti codes and stop when the
two numerical solutions of the concentrations and those of the
electric field are close enough. Table I shows the maximum and
relative maximum differences of these solutions with a grid of
size 128 × 128 × 128. With the same solution accuracy, we
compare the computational time of these methods in Table II.
It is clear that the Lagrange multiplier method and augmented
Lagrange multiplier method are much more efficient than the
corresponding local constrained optimization methods.

In Fig. 3 we plot in the log-log scale the CPU time in
seconds vs the total number of grids N for both SMPBmove
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(c) The total charge in iteration converges to 0 and
the system reaches the charge neutrality.

FIG. 2. (Color online) Convergence histories.
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TABLE I. Solution differences with the grid size 128×128×128.

Max. difference Relative max. difference

Algorithms c E c E

PBmove vs LagMulti 1.547 × 10−5 7.223 × 10−5 1.405 × 10−5 8.327 × 10−6

SMPBmove vs AugLagMulti 1.974 × 10−6 4.073 × 10−5 7.364 × 10−5 4.650 × 10−6

and AugLagMulti applied to the case with the size effect.
We see that the latter has the O(N log N ) complexity. This
is because we use the fast Fourier transform in solving our
equations. Clearly our augmented Lagrange multiplier method
is much faster than the local method.

B. Example 2

We now investigate the influence of ionic sizes and surface
charges on the concentration of counterions in the vicinity of
the charged spherical surface which carries uniformly a total
of Ze charges with Z > 0. We recall that the spherical colloid
of radius R is located in the center of our computational box
� = (0,L) × (0,L) × (0,L). We use the following parameters:

M = 2, z1 = −1, z2 = +1, N1 = 2Z, N2 = Z,

R = 14 Å, L = 160 Å.

We also use the numerical grid size 256 × 256 × 256. The
parameter Z and the linear sizes a0 of the solvent molecules,
a1 of the counterions, and a2 of the coions are given for two
different cases.

In the first case, we study how ionic sizes affect the
equilibrium counterion concentration profile. We fix Z = 60
and choose four sets of the values of linear sizes (a0,a1,a2):

(a0,a1,a2)I = (10 Å,10 Å,10 Å),

(a0,a1,a2)II = (10 Å,10 Å,2 Å),

(a0,a1,a2)III = (8 Å,10 Å,2 Å),

(a0,a1,a2)IV = (8 Å,8 Å,2 Å).

In Fig. 4 we plot the concentration profiles for counterions
with these choices of the linear sizes. For comparison, we also
plot the profile obtained by the classical PB theory. Clearly,
the counterion concentration when the size effect is included
deviates largely from that of the classical PB solution. The
identical profiles of group I and group II indicate that the
change of the coion size has very little influence on the
distribution of counterions close to the charged surface, since
almost all of the coions are distributed away from the surface.
A comparison between group II and group III demonstrates

clearly that the larger size of the solvent molecule results in
a wider saturation region, implying that the solvent molecules
present in the saturation region. This verifies the conclusion
made in [36] that entropy drives solvent molecules into the
saturated region. It should be noted that the saturation concen-
trations of group II and group III are the same. A comparison
between group IV and the other groups implies that the value
of the saturation concentration mainly depends on the size of
the counterions, rather than the size of solvent molecules or
coions. Furthermore, as expected, the counterions accumulate
to the close packing concentration 1/a3

1 , that is, 1.666 M for
a1 = 10 Å, and 3.254 M for a1 = 8 Å, in the saturation region.

In the second case, we study the relationship between
counterion concentrations and the surface charge density. We
fix the linear sizes

a0 = 8 Å, a1 = 10 Å, a2 = 2 Å.

We vary the total fixed surface charge Ze to be

Ze = 80 e, 60 e, 40 e, and 20 e,

which correspond to the surface charge density

σ = 0.0325 e/Å
2
, 0.0244 e/Å

2
, 0.0162 e/Å

2
, and

0.0081 e/Å
2
,

respectively. As depicted in Fig. 5, the surface charge densities
σ = 0.0081 e/Å

2
and σ = 0.0162 e/Å

2
are not high enough

to attract the counterions to form a saturation region. In
contrast, higher charged surfaces with charge densities σ =
0.0244 e/Å

2
and σ = 0.0325 e/Å

2
make the counterions come

to a saturation concentration, 1.666 M, which is determined
by the same linear size a1 = 10 Å of counterions. Also, it is
easy to see that a higher charged surface density yields a wider
saturation region.

C. Example 3

We now consider a system with the same geometrical
setting but with a highly negatively charged surface of the

TABLE II. Computational time (in seconds).

Without size effect With size effect

Grid PBmove LagMulti SMPBmove AugLagMulti

16 × 16 × 16 3.13 0.44 15.64 3.12
32 × 32 × 32 71.34 3.27 81.11 25.43
64 × 64 × 64 1884.11 51.02 2554.79 213.00
128 × 128 × 128 54347.59 534.67 72298.27 1738.23
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FIG. 3. (Color online) Log-log plot of the CPU time vs the
number of grids for both SMPBmove and AugLagMulti.

spherical colloidal particle and with multiple ionic species in
the solution occupying the region � \ Bc. We assume again
that the total surface charge is Z e. Our parameters are

M = 3, z1 = +3, z2 = +2, z3 = +1, Z = −200,

N1z1 = N2z2 = N3z3 = −Z/3, R = 10 Å, L = 80 Å.

Our numerical grid size is 128 × 128 × 128.
We first use our Lagrange multiplier method described in

Sec. III A to minimize the electrostatic free-energy functional
that does not include the ionic size effect under the respective
constraints to obtain the equilibrium concentrations and the
electric field. These are the classical PB solutions of our
underlying problems. The resulting concentrations of these
multivalent ions are plotted in Fig. 6(a), where +i with i = 1
or 2 or 3 means the concentration of the counterion with the
valence +i. We then use our augmented Lagrange multiplier
method described in Sec. III B to solve the same constrained
optimization problem that includes the ionic size effect. We
denote by a+i the linear size of the counterion with valence +i
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FIG. 4. (Color online) Counterion concentrations vs distance in
Ångstroms to the charged surface with different ionic sizes and with
no ionic sizes (the classical PB theory). The linear size of counterions
is a1. The counterion concentration at the charged surface is 1/a3

1 =
1.666 M when a1 = 10 Å and is 1/a3

1 = 3.254 M when a1 = 8 Å.
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FIG. 5. (Color online) Counterion concentration vs the distance
in Ångstroms to the charged surface with different values of the
surface charge density σ .

(i = 1,2,3) and consider the following three groups of linear
sizes of counterions:

Group I : a0 = 5 Å, a+1 = 5 Å, a+2 = 5 Å, a+3 = 5 Å;

Group II : a0 = 4 Å, a+1 = 5 Å, a+2 = 5 Å, a+3 = 5 Å;

Group III : a0 = 2 Å, a+1 = 5 Å, a+2 = 5 Å, a+3 = 5 Å.

We plot our computed concentrations of the three counterions
in Fig. 6(b) for group I, 6(c) for group II, and 6(d) for
group III.

From Fig. 6 we see that the concentration profiles for the
counterions predicted by the classical PB theory are mono-
tonically decreasing. They deviate significantly from those
predicted by size modified mean-field models. When the ionic
size effect is included, concentrations of the counterions are
quite moderate, and counterions of different species become
stratified [cf. Figs. 6(b)–6(d)]. Notice that the difference
between (b), (c), and (d) in Fig. 6 is only in the linear size
a0 of the solvent molecule. From Fig. 6(d), we see that, with
a smaller size a0 = 2 Å of the solvent molecule, a stronger
stratification occurs in the vicinity of the charged surface. It is
also very interesting to observe that, with the same linear size
of all the counterions, the counterions with higher valences
are easier to be attracted to the charged surface. For instance,
the trivalent counterions are attracted first to compensate the
surface charge, and then are divalent counterions, and then
are monovalent ions. This agrees with some initial predictions
in [40] with a Poisson–Fermi formalism.

To further investigate the role of the ionic valence and ionic
size on the distributions of multiple counterions, we perform
a series of more numerical computations with the following
different combinations of ionic valences and sizes:

(a0,a+3,a+2,a+1) = (2 Å,7 Å,6 Å,5 Å);

(a0,a+3,a+2,a+1) = (2 Å,7 Å,5 Å,6 Å);

(a0,a+3,a+2,a+1) = (2 Å,7 Å,6 Å,4 Å);

(a0,a+3,a+2,a+1) = (2 Å,8 Å,6 Å,4 Å).

For each set of linear sizes, we plot in Fig. 7 the concentration
profiles of all the three counterions. After analyzing the
differences among the plots, we realize that the stratification
behavior of the counterions in the vicinity of the charged
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(a) The PB theory: No size effect.
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(b) a0 = 5Å and a+1 = a+2 = a+3 = 5Å.
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(c) a0 = 4Å and a+1 = a+2 = a+3 = 5Å.
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(d) a0 = 2Å and a+1 = a+2 = a+3 = 5Å.

FIG. 6. (Color online) Concentra-
tions of multivalent counterions vs the
distance in Ångstroms to the charged
surface. In the symbols, +i means the
concentration of the counterion with
the valence +i (i = 1,2,3). (a) The
classical PB solution: without the size
effect. (b) The size effect included with
the linear sizes of group I. (c) The size
effect included with the linear sizes of
group II. (d) The size effect included
with the linear sizes of group III.

surface is determined by the ionic valence-to-volume ratios,
that is, by the parameters

αi = zi

a3
i

, i = 1, . . . ,M.

Figures 7(a) and 7(b) show that the divalent counterions are
distributed closest around the surface, and then are the trivalent
counterions, and then are the monovalent counterions, since in
this case

α+2 > α+3 > α+1.
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(a) a0 = 2 Å, a+3 = 7 Å, a+2 = 6 Å, a+1 = 5 Å.
α+2 : α+3 : α+1 = 1.163 : 1.088 : 1.
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(b) a0 = 2 Å, a+3 = 7 Å, a+2 = 5 Å, a+1 = 6 Å.
α+2 : α+3 : α+1 = 3.478 : 1.891 : 1.
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(c) a0 = 2 Å, a+3 = 7 Å, a+2 = 6 Å, a+1 = 4 Å.
α+1 : α+2 : α+3 = 1.793 : 1.069 : 1.
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(d) a0 = 2 Å, a+3 = 8 Å, a+2 = 6 Å, a+1 = 4 Å.
α+1 : α+2 : α+3 = 2.644 : 1.576 : 1.

FIG. 7. (Color online) Concentra-
tions of multivalent counterions vs the
distance in Ångstroms to the charged
surface. In (a) and (b), α+2 > α+3 > α+1.
In (c) and (d), α+1 > α+2 > α+3.
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Moreover, we observe that the larger differences of αi the
stronger stratification. For instance, the stratification phe-
nomenon in Fig. 7(b) is stronger than that in Fig. 7(a), since
the differences of the values of αi in Fig. 7(b) are larger
than those in Fig. 7(a). In Figs. 7(c) and 7(d) we see that the
monovalent counterions are distributed closer to the charged
surface than the other two counterions, as α+2 is greater than
the other two counterparts α+3 and α+1. With larger differences
among αi , Fig. 7(d) exhibits more pronounced stratification
layers than those in Fig. 7(c) in the vicinity of the charged
surface.

V. CONCLUSIONS

In this work we study numerically the mean-field elec-
trostatic free-energy functional (1) for an ionic solution
with multiple ions of possible different valences and ionic
sizes. We develop (ψ,c) formulation and (E,c) formulation
of the free energy and design an augmented Lagrange
multiplier method for our underlying constrained optimization
problem.

Our numerical tests demonstrate that our method is accurate
and efficient. In particular, our method improves largely the
efficiency of a local relaxation method that has been previously
proposed. It is worth to note that the complexity of our iteration
method is in fact similar to that of Newton’s iteration method
which is a robust method for treating the nonlinearity in the PB
equation. In both methods, a linear boundary-value problem
of Poisson type equation is solved in each iteration. Therefore,
our method is promising in future applications, for example,
the level-set variational implicit-solvent modeling of charged
biomolecules [48,49].

We apply the continuum model (1) and our numerical
method to study how the ionic sizes, the ionic valences, the size
of a solvent molecule, and the surface charge density affect the
counterion concentrations near a charged surface. We find the
following.

(1) The classical PB theory that does not include the
ionic size effect gives a poor prediction of the counterion
concentration near the charged surface.

(2) The counterion concentrations reach saturation values
in a region near the charged surface. As the size of the
counterion decreases, the saturation value increases and the
width of the saturation region decreases. This value is not
affected much by the size of coions and that of the solvent
molecule.

(3) The concentrations of multiple species of counterions
with different valences exhibit stratification layers, resulting
from the competition of counterions in binding to the charged
surface. The ionic valence-to-volume ratios

zi

a3
i

, i = 1, . . . ,M

are the key parameters in determining the structure of these
layers. For instance, the counterions with the highest valence-
to-volume ratio form the top layer in the region closest to
the charged surface and then becomes the second top layer in
the next region, and so on. Those counterions with the lowest
valence-to-volume ratio form the bottom layer in the region

closest to the charged surface but the top in the region further
away.

We note that several physical effects are neglected in
the continuum model used here. These include the Stern
layer of counterions surrounding a charged surface due to
the ionic steric hindrance, the image charge effect, and the
nonuniformity of the dielectric permittivity.

The current study is clearly in the direction of pushing
a continuum model to its maximum capacity in terms of
capturing microscopic details of ionic solutions. But how far
can we go in this direction? To answer this question, we address
a number of issues related to our studies.

The first issue is about the optimal packing of ions in a
fixed space. Our current model and method predict that a full,
100% packing: for the case of only one species of counterions
in the solution, the concentration of the counterions near the
charged surface is exactly the inverse of the ionic volume.
In real systems, however, only a fraction of a spatial region
of unit volume can be occupied by the ions. To capture this
partial packing, we can introduce some packing parameters
λi with 0 < λi < 1 (i = 0, . . . ,M) in the entropic part of our
free-energy functional (1) as

kBT

M∑
i=0

∫
�

ci log
(
λ−1

i a3
i ci

)
dV.

Effectively we are enlarging the volumes a3
i and our results

will then predict the correct packing of counterions near the
charged surface. One of course needs to adjust the parameters
λi to achieve quantitatively an optimal result.

Second, we have found that the ionic valence-to-volume
ratios play a key role in determining some of the important
properties of the concentration profiles for counterions near
the charged surface, particularly for systems with multiple
ionic species of multiple valences and different sizes. It is
then necessary to understand how such parameters affect
quantitatively the concentration profiles, the stratification
structure, and the free energy of an underlying system. It will
be also interesting to see how our findings with these important
parameters can be applied to the study of some important issues
of real biological systems, for example, the selectivity of ions
passing through ion channels.

Third, the differences between a uniform ionic size
and nonuniform ionic sizes are only explored numerically
in our current work. With the assumption on the charge
neutrality of ions in the solution, Li [31] obtained (2),
the implicit Boltzmann distributions that relate the equilib-
rium ionic concentrations c1, . . . ,cM and the electrostatic
potential ψ. If all the sizes are the same, then we have
explicit formulas for these concentrations depending on
the potential, the generalized Boltzmann distributions, cf.
[31]. Consequently, it is possible to study such differences
analytically.

Finally, we point out that a mean-field model like (1)
does not capture ion-ion correlations. In fact, Li [31] proved
rigorously that, under the assumption of charge neutrality of
ions in the solution and using the function (1), the negative
induced charge density −∑M

i=1 zieci, as an implicitly defined
function of the potential ψ, is the derivative of a strictly convex
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function. This important analytical property implies that the
classical PB-like mean-field model like (1), with or without
the size effect included, fails in predicting the ion mediated
like-charge attractions [31,44,50,51]. One way to circumvent
this problem is to introduce nonlocal or convolution terms
in the free-energy functional [52]. But it is unclear if such
an approach will be accurate and efficient for large charged
systems. It therefore remains still challenging to develop
systematically theories and methods that include the ion-
ion correlation, the ionic size effect, and other microscopic
properties of ions and that can be applied to efficient studies
of large biological systems.
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[34] V. Kralj Iglič and A. Iglič, J. Phys. II (France) 6, 477 (1996).
[35] I. Borukhov, D. Andelman, and H. Orland, Phys. Rev. Lett. 79,

435 (1997).
[36] I. Borukhov, D. Andelman, and H. Orland, Electrochim. Acta

46, 221 (2000).
[37] V. B. Chu, Y. Bai, J. Lipfert, D. Herschlag, and S. Doniach,

Biophys. J. 93, 3202 (2007).
[38] M. S. Kilic, M. Z. Bazant, and A. Ajdari, Phys. Rev. E 75,

021502 (2007).
[39] M. S. Kilic, M. Z. Bazant, and A. Ajdari, Phys. Rev. E 75,

021503 (2007).
[40] G. Tresset, Phys. Rev. E 78, 061506 (2008).
[41] A. R. J. Silalahi, A. H. Boschitsch, R. C. Harris, and M. O.

Fenley, J. Chem. Theory Comput. 6, 3631 (2010).
[42] M. Baptista, R. Schmitz, and B. Dünweg, Phys. Rev. E 80,

016705 (2009).
[43] A. C. Maggs and V. Rossetto, Phys. Rev. Lett. 88, 196402 (2002).
[44] E. Trizac and J.-L. Raimbault, Phys. Rev. E 60, 6530 (1999).
[45] D. P. Bertsekas, Constrained Optimization and Lagrange Mul-

tiplier Method (Academic, New York, 1982).
[46] J. Nocedal and S. Wright, Numerical Optimization (Springer,

New York, 1999).
[47] J. Sherman and W. J. Morrison, Annals Math. Stat. 21, 124

(1950).
[48] L.-T. Cheng, J. Dzubiella, J. A. McCammon, and B. Li, J. Chem.

Phys. 127, 084503 (2007).
[49] L.-T. Cheng, Y. Xie, J. Dzubiella, J. A. McCammon, J. Che, and

B. Li, J. Chem. Theory Comput. 5, 257 (2009).
[50] J. C. Neu, Phys. Rev. Lett. 82, 1072 (1999).
[51] J. E. Sader and D. Y. C. Chan, J. Colloid Interface Sci. 213, 268

(1999).
[52] Z. D. Li and J. Z. Wu, Phys. Rev. Lett. 96, 048302 (2006).

021901-13

http://dx.doi.org/10.1021/bi00483a001
http://dx.doi.org/10.1146/annurev.biophys.35.040405.102134
http://dx.doi.org/10.1146/annurev.biophys.35.040405.102134
http://dx.doi.org/10.1146/annurev.bb.18.060189.000553
http://dx.doi.org/10.1146/annurev.bb.18.060189.000553
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104445
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104445
http://dx.doi.org/10.1016/S0959-440X(00)00065-8
http://dx.doi.org/10.1016/S0959-440X(00)00065-8
http://dx.doi.org/10.1073/pnas.0902767106
http://dx.doi.org/10.1073/pnas.0902767106
http://dx.doi.org/10.1016/j.jmb.2009.04.083
http://dx.doi.org/10.1016/j.jmb.2009.04.083
http://dx.doi.org/10.1021/ja01085a012
http://dx.doi.org/10.1021/ja01085a012
http://dx.doi.org/10.1073/pnas.77.6.3085
http://dx.doi.org/10.1073/pnas.77.6.3085
http://dx.doi.org/10.1021/ja075020g
http://dx.doi.org/10.1371/journal.pbio.0050121
http://dx.doi.org/10.1371/journal.pbio.0050121
http://dx.doi.org/10.1063/1.1798932
http://dx.doi.org/10.1021/jp073726r
http://dx.doi.org/10.1021/jp073726r
http://dx.doi.org/10.1021/jp9108865
http://dx.doi.org/10.1021/jp9108865
http://dx.doi.org/10.1051/jphystap:019100090045700
http://dx.doi.org/10.1063/1.437340
http://dx.doi.org/10.1021/cr00101a005
http://dx.doi.org/10.1021/cr00101a005
http://dx.doi.org/10.1021/j100382a068
http://dx.doi.org/10.1146/annurev.bb.19.060190.001505
http://dx.doi.org/10.1146/annurev.bb.19.060190.001505
http://dx.doi.org/10.1002/jmr.577
http://dx.doi.org/10.1002/jmr.577
http://dx.doi.org/10.1002/bip.20877
http://dx.doi.org/10.1039/ft9908603901
http://dx.doi.org/10.1039/ft9908603901
http://dx.doi.org/10.1016/S0009-2614(97)01193-7
http://dx.doi.org/10.1021/jp7101012
http://dx.doi.org/10.1021/jp7101012
http://dx.doi.org/10.1137/080712350
http://dx.doi.org/10.1088/0951-7715/22/4/007
http://dx.doi.org/10.1146/annurev.physchem.50.1.145
http://dx.doi.org/10.1103/RevModPhys.74.329
http://dx.doi.org/10.1103/RevModPhys.74.329
http://dx.doi.org/10.1051/jp2:1996193
http://dx.doi.org/10.1103/PhysRevLett.79.435
http://dx.doi.org/10.1103/PhysRevLett.79.435
http://dx.doi.org/10.1016/S0013-4686(00)00576-4
http://dx.doi.org/10.1016/S0013-4686(00)00576-4
http://dx.doi.org/10.1529/biophysj.106.099168
http://dx.doi.org/10.1103/PhysRevE.75.021503
http://dx.doi.org/10.1103/PhysRevE.75.021503
http://dx.doi.org/10.1103/PhysRevE.75.021502
http://dx.doi.org/10.1103/PhysRevE.75.021502
http://dx.doi.org/10.1103/PhysRevE.78.061506
http://dx.doi.org/10.1021/ct1002785
http://dx.doi.org/10.1103/PhysRevE.80.016705
http://dx.doi.org/10.1103/PhysRevE.80.016705
http://dx.doi.org/10.1103/PhysRevLett.88.196402
http://dx.doi.org/10.1103/PhysRevE.60.6530
http://dx.doi.org/10.1214/aoms/1177729893
http://dx.doi.org/10.1214/aoms/1177729893
http://dx.doi.org/10.1063/1.2757169
http://dx.doi.org/10.1063/1.2757169
http://dx.doi.org/10.1021/ct800297d
http://dx.doi.org/10.1103/PhysRevLett.82.1072
http://dx.doi.org/10.1006/jcis.1999.6131
http://dx.doi.org/10.1006/jcis.1999.6131
http://dx.doi.org/10.1103/PhysRevLett.96.048302

