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Blueprinting nematic glass: Systematically constructing and combining active points of curvature
for emergent morphology
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Much recent progress has been made in the study of nematic solids, both glassy and elastomeric, particularly
in the realm of stress-free, defect-driven deformation in thin sheets of material. In this paper we consider a
subset of texture domains in nematic glasses that are simple to synthesize, and explore the ways that these simple
domains may be compatibly combined to yield analogs of the traditional smooth disclination defect textures seen
in standard liquid crystals. We calculate the deformation properties of these constructed textures, and show that,
subject to the compatibility constraints of the construction, these textures may be further combined to achieve
shape blueprinting of three-dimensional structures from flat sheets.
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I. INTRODUCTION

The prospect of preprogramming a desired shape trans-
formation in a material that may be remotely activated at
a later time has understandably been the source of much
recent interest, from engineering sheets with activated folds [1]
to attempts at understanding how nature accomplishes its
vast spectrum of morphologies [2,3]. The primary difficulty
with such programming on an initially flat sheet lies in
moving to target shapes beyond simple folding or crumpling,
characterized by d-cones and developable geometry [4]. By
requiring nondevelopable results one must be prepared to
deal either with a high stretch or compressional cost, or
find a way to preprogram a change in the material’s local
metric geometry. This latter option may be attempted, as
it often occurs in nature, through differential growth rates
inside the material itself [5], however, such a system is
irreversible, difficult to program in advance, difficult to activate
controllably, and hence not amenable to device applications.
Other approaches to the problem include the use of gels [6]
or fluid membranes [7] but similar issues appear in these
cases, coupled with the disadvantage of fluid membranes
and gels being less robust materials than desirable for use in
shape-programmable devices. This paper will propose a new
avenue to blueprinting for the purpose of broad morphology
control in a thin solid sheet that circumvents these difficulties
and results in stress-free final states by taking advantage of
materials with local orientational order.

Liquid crystalline solids undergo macroscopic elongations
and contractions in response to heat, light, pH, and other
stimuli that change the molecular order. Most studied are
nematic glasses [8] and elastomers [9]. Both have spontaneous
deformation gradients, λij = ∂xi/∂x0

j transforming reference
space points x0 to target points x that are of the form,

λ = (λ − λ−ν)n n + λ−νδ, (1)

that is an extension/contraction λ along the director n and a
contraction/extension λ−ν perpendicular to n for λ > 1/ < 1,
respectively. By analogy to the elastic case, ν is what we call
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an opto-thermal Poisson ratio that relates the perpendicular to
the parallel response. Thus λ is a uniaxial distortion when it is
spontaneous and not associated with any subsequent stresses
that distort the body away from the new natural state. For
glasses ν ∈ ( 1

2 ,2) [8] while elastomers (rubbers) have ν = 1/2.
Rubbers have spectacular stimuli responses λ ∈ (0.5,4), that
is, up to 400% opto-thermal strains. Their directors are mobile
in a fluidlike way—in fact the rotation of n, in placing the
longer dimension of the solid along the direction of imposed
elongation allows shape change without energy cost [10,11].
Glasses, on the other hand, have shear moduli comparable
to their compressional resistance (∼109 Pa) and their opto-
thermal elongations/contractions are up to ±4%, that is, λ ∈
(0.96,1.04). The loss in dramatic elastic sensitivity to stimuli
is compensated by the fact that their directors are anchored to
the polymer matrix, at most convecting with the matrix as it is
distorted. This allows for a feasible patterning of the director
field at the initial time of cross-linking and the subsequent
guarantee that the chosen pattern will not be modified by the
soft elasticity present in the nematic rubber.

It is in the spirit of this “written-in” patterning that we
have previously addressed the many routes to a cantilever-
style actuator [12] along with an indepth treatment of such
actuators whose properties are facilitated by the patterning
of splay-bend or twist textures through the thickness of the
material [13]. Widening the net to allow for nematic director
spatial variation across the surface of a thin, flat sheet opens
the door to emergent Gaussian curvature that manifests in a
controllable way, growing conical shapes from +1 disclination
defects [14,15]. In this paper we will continue the approach
to a realizable blueprint for actively switching a flat sheet of
nematic glass from its nascent, developable state to a curved or
faceted and potentially complex, nondevelopable shape. These
shapes will be achieved without incurring stretch energy. To
the extent we ignore the much smaller cost of bend, we achieve
surfaces of minimal energy. We discuss bend energy only when
it is the ultimate determinant between shapes of vanishingly
small stretch energy.

Due to the extreme smallness of the only inherent length
scales in the problem (those governed by the Frank energies,
of order tens of nanometers) and the relative smallness of the
practical length scales—such as how thin a sheet may feasibly
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be manufactured, of order microns—any such blueprinted
sheet could be envisaged as useful in applications from
remotely operable peristaltic pumps in microfluidic circuits
to macroscopic shape adaptation.

Sheets of nematic glass patterned by director fields varying
in-plane have been made by Broer and Sanchez [16]. A
reactive nematic fluid fills the space between two sheets, the
surface of each having the desired pattern. The fluid’s director
field is anchored to the directions in the patterning of the
bounding surfaces. The pattern is thus transferred to the bulk
and then made permanent by cross-linking the fluid to form
a glass where the director is no longer mobile. On removal
of the bounding surfaces, the now solid nematic sheet has a
permanent memory of the induced director field. The Frank
energetics of the director field is not a consideration thereafter
since the glass’s pinning of n(r) is strong. It is possible that
in regions of extent comparable to the thickness, the Frank
energy while still in the liquid state will have dominated
over the surface anchoring,– for instance, driving escape
into the third dimension close to the core of m = 1 defects
in the patterning field. These highly localized deviations from
the planar patterning field will be recorded in the solid, too,
but they simply have a moderating influence in the energy cost
of distorting the very small, potentially singular regions that
we can ignore [15].

In lieu of considering the full realm of all possible two-
dimensional nematic director fields, we choose to concentrate
instead on those textures that are locally simplest to pattern
and hence most amenable to application. Circular, radial, or
spiral +1 defects are simple to establish, but smoothly varying
realizations of m �= 1 defects that minimize the Frank energy
are highly nontrivial to manifest in a controllable way for
patterning, particularly in groups of more than one. The forms
of m �= 1 textures we will allow, therefore, are either those
with a locally constant director field or those with a locally
circular field; the use of masking in the preparation stages
allows for regions of these types of textures to be joined with
themselves, and with one another, to the desired effect. We
will find from such textures emergent surfaces with Gaussian
curvature localized to points (or at most to lines in some
multidefect cases). This response to light or heat is in common
with that of defects with topological charge +1 in the director
field. They generate localized (conical) curvature.

By contrast, Frank minimizing, m �= 1 defects cannot pro-
duce localized, simple pointlike sources of Gaussian curvature
as a simple symmetry argument shows. Consider such a
Frank-minimizing defect field of disclination charge m. In the
one-constant approximation this field may be defined simply
by [17]

φ = mθ + δ, (2)

where φ is the director direction, θ is the polar angle, and δ

is an arbitrary phase. If we now locally rotate the director at
each point by an amount �φ the texture becomes φ + �φ =
mθ + δ. So long as m �= 1 this form may be recast as a global,
solid-body rotation:

φ − �φ

m − 1
= m

(
θ − �φ

m − 1

)
+ δ, (3)

implying that local and global rotations for these defected
textures are equivalent. In particular, a local rotation of
π/2 is also equivalent to interchanging the roles of heating
and cooling, as the director and perpendicular directions are
swapped [see remarks following Eq. (1)]. Thus any shapes
emergent from these textures must be the same up to solid-
body rotations upon either heating or cooling from the flat
state. As a consequence, simple point charges of Gaussian
curvature—which produce rotationally distinct results upon
heating and cooling—are disallowed, and more complicated
morphologies must result from smooth Frank-minimizing
defects with m �= 1. Indeed, by considering the metric tensor
for the distorted space, g = λT λ, one may show that the

Gaussian curvature is indeed distributed. In the coordinates
of the reference space, it is

κ = m(m − 1)(λ2(1+ν) − 1)

r2λ2
cos[2(m − 1)θ ] (4)

for a Frank-minimizing defect of charge m �= 1 [18] in the
1-constant approximation. Outside this approximation one still
has scale-free fields as in Eq. (2), and the resulting Gaussian
curvature will be in an analogous form to Eq. (4).

In their stead, we will construct “piecewise constant” stand-
ins that play the same role, and in so doing demonstrate that
our restricted set of director patterns is enough to allow for the
kind of active material blueprinting we seek.

We will take a constructionist view to the understanding
of this class of textures and the way they can be combined
with one another, first exploring possible component pieces
and then synthesizing simple textures, and finally complicated
combinations from them. Hence, the basic building blocks
of the larger, complete textures will be addressed in Sec. II,
and an examination of the point-defected textures that can be
constructed from them follows in Sec. III. Section IV presents a
guide to the intuition for the purposes of designing a switchable
shape blueprint from multiple such constructed defects and
then considers some examples of practically and theoretically
relevant nematic glass textures that can be constructed through
the combination of these point defects. We conclude and
discuss in Sec. V.

II. ELEMENTAL BUILDING BLOCKS FOR
POINT DEFECTS

Following this constructionist philosophy, we begin by con-
sidering the constituent pieces from which we will compose
more interesting textures. Since we expect to be able to fit
these pieces together, initially, around a point to create a
point-defected structure, we consider wedges of material with
wedge angle, θ . Under spontaneous strain, the wedges we
consider will deform in a self-similar way with respect to their
director pattern, possibly allowing for a change in θ .

A. Slices of cone/anti-cone textures

The first such wedge we consider is simply a slice
taken from a pattern of concentric circles (Fig. 1, left). The
deformation and strain response of a complete 2π texture
of such a “wedge” is well characterized by the adoption
of conical or anticonical shapes [14], where in the conical
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FIG. 1. Three representative textured wedges whose angular
extent varies with imposed spontaneous strain. The nematic director
lies along the lines shown. On the left, the nematic director lies along
concentric circles and the texture is simply cut from one considered
in previous work. In the middle, the wedge contains a line of rank-1
connection of the nematic director and on the right the director is
trivially aligned normal to the line bisecting the wedge angle. All
three cases may also occur with a director field perpendicular to that
shown: radial director lines on the left, rank-1 connected with the
cusp pointing away from the wedge tip and the director normal to the
wedge boundaries in the middle, and with the director aligned along
the wedge angle’s bisector on the right.

case the Gaussian curvature is related to the resulting cone’s
opening angle by K = 2π (1 − sin φc). Since a point charge of
Gaussian curvature can be thought of as an angular deficit or
surplus around that point, we may expect that a partial wedge
of this texture must exhibit a change in its wedge angle upon
spontaneous strain. Indeed, consider an arc of the material a
distance r from the wedge tip such that the director always lies
along a tangent. Initially, the length of this arc is simply rθ .
Because this arc always coincides with the director, after strain
its new natural state will have a length of s ′ = λrθ . Meanwhile,
the radii to this arc from the tip of the wedge coincide with
the perpendicular to the director, and hence, the new distance
from wedge tip to arc is r ′ = λ−νr . The new wedge angle is,
thus,

θ ′ = s ′/r ′ = λ1+νθ. (5)

This is consistent with the conclusions drawn about a
full texture of concentric circles [14] as taking θ = 2π here
leads to an angular deficit, and hence Gaussian curvature, of
2π (1 − λ1+ν) as required. Note also that this wedge texture
may be replaced by one in which the director lies everywhere
along radii emanating from the wedge tip and the director
perpendiculars lie along concentric circles with no change in
the conclusions other than a reversal of the effect of the strain
(i.e., θ ′ = λ−1−νθ ).

B. Rank-1 connected wedges

Next, we consider a wedge adorned with the director pattern
shown in Fig. 1 (middle). This “rank-1 connected” wedge is
characterized by two regions of simple parallel director fields
joined across the wedge-bisecting line (dashed line in Fig. 1).
Note that, in order for the resultant strains to be compatible,
the angle at which each of the two separate regions meet the
bisecting line must be the same [19]. This condition is known
as rank-1 connectedness [Fig. 2(a)]. Note, also, that if the
wedge angle is θ , then by rank-1 connectedness the angle
between the director and the bisecting line is θ/2. How does
spontaneous strain affect such an object? Consider a right
triangle formed with the nematic director lying along one

0

1
n0

n
m0

m

(a) (b)

FIG. 2. (Color online) Rank-1 connection. A disk of material is
adorned with a rank-1 connected director pattern in (a), with the
director field meeting the boundary of rank-1 connection with angle
α0. Upon the application of spontaneous strain (b) the angle across
this boundary must change to α1, and the disk deforms to a stylized
heart shape.

side, the director perpendicular lying along another, and the
hypotenuse lying along the wedge-bisecting line. The angle
between the hypotenuse and the director side is, as just stated,
θ/2. Prior to the imposition of spontaneous strain, let the length
of the director side be p, and that of the director-perpendicular
side, q. After strain, these sides will deform simply to lengths
of λp and λ−νq, respectively. Therefore the new half-wedge
angle is related to the original by

tan(θ ′/2) = λ−1−ν tan(θ/2), (6)

θ ′ = 2 tan−1 (λ−1−ν tan(θ/2)). (7)

As in the case of the wedge textured with concentric circles,
the spontaneous strain gives rise to a change in the angular
extent of the wedge [Fig. 2(b)]. An initial flat state composed
of 2π radians worth of such wedges would hence develop an
angular deficit or surplus after spontaneous strain and exhibit
the conical (or anticonical, respectively) behavior associated
with a point charge of Gaussian curvature. Note that a rank-1
connected wedge patterned with a director field perpendicular
to that considered, such that the director is normal to the wedge
boundaries, will distort its wedge angle in the opposite sense
with respect to λ:

θ ′ = 2 tan−1 (λ1+ν tan(θ/2)). (8)

C. Triangle wedges

Finally, consider the trivial, or “triangle” wedge pictured on
the right of Fig. 1, adorned entirely with one region of a simply
parallel director field. In this case, it is easy to see intuitively
the wedge angle must change under spontaneous strain, as, for
example, the director lines shorten and the perpendicular lines
elongate. In order to quantify this intuition, consider again a
right triangle, analogously to the middle case, but this time with
vertex at the wedge tip, one side along the wedge-bisecting
line (which coincides with the director perpendicular), one
side along the director, and the hypotenuse along the edge of
the wedge. The angle between the director-perpendicular side
and the hypotenuse is now θ/2 and the argument goes through
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as in the case of the rank-1 connected wedges with λ and λν

swapped. Hence, we have

tan(θ ′/2) = λ1+ν tan(θ/2), (9)

θ ′ = 2 tan−1 (λ1+ν tan(θ/2)). (10)

Note that another trivial wedge exists as a perpendicular
version of the triangle wedge, where the wedge-bisecting line
coincides with the director. In this case, the roles of λ and λ−ν

are swapped again and the relation between θ and θ ′ becomes
identical to that given by Eq. (7).

III. CONSTRUCTING POINT DEFECTS FROM
MATERIAL WEDGES

With these wedge-shaped building blocks in hand and an
understanding of how they deform under the imposition of
spontaneous strain it is a relatively straightforward matter
to put together enough wedges to reach an angular extent
of exactly 2π at the shared tip in the unstrained state and
hence construct a complete texture which exhibits a geometric
(curvature) point defect under spontaneous strain. There are,
however, constraints—namely, two wedges may only be
stitched together if the nematic director field is the same on
both sides of the boundary, or, if the boundary lies along a line
of rank-1 connectedness in the director field. Hence, a wedge
adorned with concentric circles may not be joined directly
to a radial wedge, nor a triangle wedge with angular extent
π/2 to a triangle wedge with angular extent π/4, but a rank-1
connected wedge may be joined to another or a triangle wedge
to one decorated with concentric circles.

We proceed by categorizing these constructed textures
according to their corresponding disclination defect charge.
Note that, because many of the final textures will include at
least one rank-1 connected border, the concept of a disclination
defect is somewhat ambiguous: When the angle of the director
field changes discontinuously by an (apparent) amount α, it
may instead be considered to have changed by an amount
α − π , or indeed, α + nπ for any integer n. In order to sidestep
this ambiguity we will always consider the angle change across
such a discontinuous boundary to be either the smallest positive
or largest negative value available. We will consider each
of these two cases separately. We assume that the particular
choice of angle change is made consistently for textures with
more than one such discontinuous boundary.

A. m < 0 and polygonal m = 1 defects

As noted above, stitching rank-1 connected wedges to one
another is permitted by our constraints, and so one of the
most straightforward available 2π constructions is to simply
take n congruent rank-1 connected wedges, each of angular
extent 2π/n, and stitch them together. The resulting complete
texture qualitatively resembles a disclination defect of charge
1 − n/2 for n � 3 and indeed, by consistently choosing to
assign the negative-valued angle change across the rank-1
connected boundaries, this is precisely the disclination charge
of the texture (see Fig. 3 for a m = −1/2 example). The
spontaneous strain induced deformations of such a texture
may be directly calculated from the behavior of the constituent
wedges. Conveniently, all these wedges are congruent for this

FIG. 3. Nematic glass texture corresponding to a disclination
defect of charge −1/2, up to jump angle ambiguities. The texture
is composed of three rank-1 connected wedges each with an internal
connection angle π/3. Lines of rank-1 connection are illustrated as
dashed, and thick gray lines mark wedge boundaries.

texture and we immediately arrive at a total angular deficit,
and hence Gaussian curvature, of

�θtot = Kn = 2π − 2n tan−1 (λ−1−ν tan(π/n)), (11)

concentrated at the point in the middle of the texture where all
of the wedge tips meet.

Notice, on the other hand, that had we chosen to assign
the positive-valued angle change at all the discontinuous
boundaries, we could have concluded that all these textures,
regardless of n, have disclination charge +1. This is intuitive as
well, as consideration of the perpendicular field to the director
field described above give a texture of concentric regular
polygons, qualitatively very reminiscent of the concentric
circles of a traditional +1 disclination defect. From our
constructivist point of view, this new texture could have been
composed from scratch by stitching together n triangle wedges
of angular extent 2π/n. Unsurprisingly, the total angular
deficit produced by this structure—as can be consistently seen
by either combining n triangle wedges or swapping the roles
of the director and perpendicular in the texture considered
above—is given by

�θtot = Kn = 2π − 2n tan−1 (λ1+ν tan(π/n)). (12)

Furthermore, as n tends to ∞ we identically recover a +1
disclination defect texture from our concentric polygons. As
required, lim

n→∞ Kn = 2π (1 − λ1+ν) [14]. Likewise, the same

limit taken for the texture composed of congruent rank-1
connected wedges recovers a radial +1 disclination defect
texture, and the limiting value of the Gaussian curvature also
matches as appropriate.

A concrete example, n = 4, the square representation of an
m = 1 defect [Fig. 4(a)], serves to show that all such polygonal
+1 defects must give three-dimensional (3D) structures that
relax into circular cones because the bend energy is convex.
Ignoring the cost of bend, we expect the n = 4 sided defect to
rise into a square pyramidal cone [Fig. 4(b)]. The Gaussian cur-
vature localized at the vertex is K4 = 2π (1 − 4

π
tan−1(λ1+ν))

from Eq. (12). On heating there is a contraction along lines
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FIG. 4. (Color online) (a) A square representation of a m = 1
defect. (b) Ignoring bend energy, on cooling the defect rises to being
a pyramidal cone. (c) Relieving the bend energy of the creased edges
of the pyramid yields a circular cone, where the integral lines of n are
the cusped trajectories shown.

such as AC = L → A′C′ = λL and elongation along OB =
L → O′B′ = λ−νL. Considering the triangle O′OB′ (where
OB′ = A′C′) then φp = sin−1(OB′/O′B′) = sin−1(λ1+ν) is the
pyramidal opening angle. We note the line length O′C′ =

1√
2
(λ2 + λ−2ν)

1
2 OC = (λ2 + λ−2ν)

1
2 L since the line OC is at

an angle π/4 with respect to n (rotate λ by π/4). Note that the
n = ∞ (i.e., circular) form of the m = 1 defect gives circular
cones of the same opening angle, φ∞ = sin−1(λ1+ν).

However the pyramidal cone has its bend localized into
four creases emanating from the vertex O′. Since the bend
energy density is a quadratic function of the curvature, this
convexity dictates that the energy be reduced by delocalizing
the curvature over the whole surface of the cone, that is, by
forming a circular cone [Fig. 4(c)]. The integral lines of the
director are not concentric circles centered on the tip, but
are cusped lines. Lengths from the tip to the integral curves
include L(λ2 + λ−2ν)

1
2 to cusps at points like C′, and Lλ−ν

to points A′, B′, etc. Comparing the Gaussian curvature K4

(which does not change on relaxation from the pyramid) with
that of a circular cone of opening angle φc [i.e., with Kc =
2π (1 − sin φc)], we have for the opening angle of the relaxed
circular cone φc = sin−1[ 4

π
tan−1(λ1+ν)] which is indeed flat,

φc = π/2, when λ = 1.

B. m = +1/2 defects

By making use of wedges textured with concentric circle
director patterns, we may also construct a version of a +1/2
charged disclination, reminiscent of a half stadium, with the
available constituent wedges (Fig. 5, left). Here the region of
the texture adorned with the constant director field aligned
perpendicular to the joining boundary, subtending π radians,
does not change its angular extent upon being strained. The
other half of the texture, composed of concentric half circles,
undergoes an angular change of π (1 − λ1+ν), and hence this is
the total curvature generated at the defect point of the texture:

�θtot = K = π (1 − λ1+ν), (13)

leading to a cone opening angle in the final, deformed state for
this texture of sin φc = 1

2 (1 + λ1+ν).
More discrete, piecewise constant versions of this texture

may be constructed as well, in much the same way as the

FIG. 5. Nematic glass textures corresponding to a disclination
defect of charge +1/2, up to jump angle ambiguities. The texture
on the left, a hemi-stadium, is composed of a cone-textured “wedge”
subtending an angle π and a trivial “triangle” wedge subtending
the remaining π . The texture on the right is composed of two
rank-1 connected wedges subtending π/2 each, and a trivial wedge
subtending the remaining π radians. In both cases lines of rank-1
connection are denoted by a dashed line and wedge boundaries by
thick gray lines.

concentric regular polygon analogs of a smooth +1 texture
discussed previously (Fig. 5, right). In this case, we again
start with a π -radian region of a constant director field
aligned normal to the joining boundary. Instead of joining
across the boundary with a semicircular pattern, we join to
a semipolygonal pattern, obtained by slicing an even-sided
polygonal +1 in half through its defect, normal to a pair
of its polygonal sides. An even-sided polygon is required
to ensure that opposite component wedges may have their
director field aligned parallel, and hence join smoothly with
the other, constant field region. Since, by construction, we may
cut such a texture into pieces we have already dealt with, the
curvature is simply half that of a full concentric-polygonal
texture:

�θtot = Kn = π − n tan−1 (λ1+ν tan(π/n)), (14)

where n is the number of sides of a complete polygon, not just
the number present on the polygonal side of the texture. As
pointed out above, n must be even as well.

C. m > 1 defects

We have demonstrated that our simple basis set of wedges
allows for the construction of many of the possible disclination
point defects, all such with charge �1. The rest of the
possible disclinated director fields, with charge �3/2, may
not be realized with our piecewise constant components. In
order to understand why this is so, consider the feasibility
of promoting our two-dimensional (2D) nematic textures to
a 2D smectic-A state. It is now a necessary condition for
the smectic-A phase that develops to be in a local minimum
of the free energy that the smectic layers must be allowed
to adopt a constant interlayer spacing [17]. Because all of
our component wedges either have a locally constant director
field, or are decorated with regions of concentric circles,
they are compatible with these requirements and are thus, in
principle, compatible with smectic layers. On the other hand,
smectic textures are incompatible with disclination charges
greater than one [20], which necessarily lead to a divergent
layer-compression energy. Hence, construction of these higher
disclination defects with these simple wedge components is
disallowed.
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D. Charge-free bending defects

Thus far, we have constructed complete textures from our
simple constituent wedges designed to generate an angular
surplus or deficit, and hence Gaussian curvature, by creating
disclination defects. As it happens, point sources of curvature
may result in other ways. These new point sources arise
from a stepwise smoothing of the discontinuous director-field
bending associated with a line of rank-1 connection. We have
chosen to name these textures “charge-free bending defects”
(Fig. 6), where here “charge” refers to disclination charge
and “defect” to a curvature defect. By calculating the angular
change that results from each of the five wedges, we arrive at
a formula for the curvature. For an initial rank-1 line whose
director lines meet the boundary at an angle θ ,

�θtot = K = π − 2

(
tan−1[λ−1−ν tan θ ]

+ 2 tan−1

[
λ1+ν tan

(
π

4
− θ

2

)])
. (15)

Note that, despite the complicated form taken, the limiting
value for λ = 1 remains appropriately K = 0. Furthermore,
the overall strength of the curvature generated by one of these
charge-free bending defects is somewhat less than that seen
in the disclinated director fields treated earlier, as there are
counterbalancing terms in the strain present. Finally, it is worth
pointing out that the limit θ → 0 recovers a discrete +1/2
disclination defect, as the bend becomes so strong that the
initial rank-1 boundary disappears altogether. Accordingly,
a different choice of angle-change accounting across that
boundary for the “charge-free” case leads to a disclination
charge of +1/2.

θ

π
4 −θ

2

FIG. 6. Nematic glass texture corresponding to a geometric point
defect without associated topological disclination charge, resulting
from a stepwise “smoothing” of a discontinuous bend in the
nematic director direction. The texture is composed of three rank-1
connected wedges, one with connection angle θ and two each with
connection angle π

4 − θ

2 . The remaining π radians are accounted
for a pair of π/2 trivial regions. Lines of rank-1 connection are
denoted by a dashed line and wedge boundaries by thick gray
lines.

FIG. 7. Nematic glass textures corresponding to more exotic
combinations of the fundamental wedges, each leading to a geometric
curvature defect after spontaneous strain is imposed. First, radially
textured wedges join rank-1 connected zones; second, a variant
of the “half-stadium” representation of a +1/2 charge disclination
with closed director lines; third, a variant of the −1/2 disclination
with unequal wedge angles. In all cases, lines of rank-1 connection
are denoted by a dashed line and wedge boundaries by thick gray
lines.

E. Generalizations and exotica

Beyond simple reconstruction of topological charges or
bend smoothing, there is a plethora of variants supported
by the available building-block wedges. One might use the
heretofore unused radial version of the concentric circular arc
texture to bridge the gap between smaller rank-1 connected
wedges (Fig. 7, left). One can distort a +1/2 by increasing
or reducing the region covered by concentric arcs and plug
up the difference with rank-1 connected wedges instead of
a trivial constant piece as in the hemistadium +1/2 (Fig. 7,
middle). Alternatively, one might consider playing with the
relative sizes of the regions in one of the piecewise constant,
negatively charged disclination textures (Fig. 7, right). This
last one turns out to be of particular use in the blueprinting
scheme that follows in the next section.

IV. BLUEPRINTING WITH COMBINATIONS OF POINT
DEFECTS: TEXTURE AND SHAPE

Having demonstrated all the ways in which our piecewise-
constant building-block wedges may be combined to produced
curvature effects, we are now in a position to consider
higher level combinations, that is, combining multiple such
points of curvature to achieve a desired shape. In order to
match multiple point defects together in a single texture
using the building blocks at hand is simply a matter of
allowing finite polygonal patches in the texture in addition
to the infinite wedges discussed earlier. These finite polygons
are again restricted to be adorned by piecewise constant
director fields, and again must be linked to one another,
and to any wedges, by rank-1 connected boundaries. In this
case, the grouping of polygonal vertices plays the same
role as wedge tips in generating curvature. As such, there
is an enormous range of possible morphologies that can
emerge from the union of several such points of curva-
ture, corresponding to the myriad ways of tiling the plane
with (potentially irregular) polygons and infinitely extended
regions.

In order to guide the potential design of blueprints for
these nematic glass sheets, it is worth noting that, due
to the restriction of the allowed director patterns on the
constituent pieces, treating the integral lines of the director
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field as the contour lines of a topographic map of the target
shape is always a stress-free solution. This is because the
simple piecewise textures chosen may always conform to any
imposed spontaneous strain by adding a z component to the
distance between director field integral lines. More abstractly,
this is a manifestation of the fact that, by construction,
our textures are allowable 2D smectics, and 2D smectics
may be represented as multiply leaved height functions
through their phase field [21]. As discussed in Sec. III on
comparing pyrmidal or conelike outcomes for the concentric
polygon texture, the primary reason a texture may not adopt
this contour-line-like solution is the desire to minimize the
bending energy once the metric is satisfied and stress is
eliminated. In a texture with many defect points, however,
it becomes impossible to simply freely choose a bending
minimum relative to one defect without imposing costly stretch
at another. In this case, the final shape will more closely
resemble the topographic map as the overall minimum energy
will require balancing (relatively cheap) bend costs against
(relatively expensive) stretch. The more defects present, the
more closely the final shape will hew to the topographic
realization, as there is even more of a potential stretch price to
bear.

A simple example of this principle is a texture in which the
plane is simply tiled by regular squares, each one containing
a concentric-square pattern and polygonal +1 defect at the
center. The vertices of this tiling correspond to −1 defects.
If each of the individual +1 defects became smooth cones,
as is the case if they were isolated, then stretch penalties
proliferate all along their boundaries. Instead, they retain a
pyramid shape, and the overall texture becomes an array of
pyramids. Interestingly, the bend energy still has a role to play
here: These pyramids may grow up out of the plane or down
from it, and the minimization of the bend energy leads to an
antiferromagnetic Ising model interaction on the up/downess
of the pyramids. The final shape is thus a pyramidal square
egg crate. Of course, if we had chosen to tile the plane
with hexagons instead, then the antiferromagnetic Ising model
interaction is frustrated and a multitude of degenerate ground
states ensue.

A. True blueprinting: An emergent pyramid

In the spirit of the egg-crate morphology discussed above,
we wish to present a simple example of the manner in which
the director field may be used to blueprint a sheet of nematic
glass in order to realize a desired shape. In addition, we
wish to demonstrate that a nontrivial blueprinted object is
achievable with only a small number of simple masking steps
in the preparation stage. Consider a texture of concentric
squares with a piecewise constant ±1/2 pair situated some
distance from the central defect along one of the lines of
rank-1 connection (Fig. 8, left and enlargement detail). Such
a texture is easy to prepare, requiring only four steps and
masking boundaries that are simple straight lines or one with
a small zig-zag that seeds the ±1/2 pair. Ignoring the effect
of bend energy minimization in the thin sheet, this texture will
produce a classic pyramid rising above a flat plane that has

FIG. 8. (Color online) A simple example of a blueprinted shape,
a pyramid flanked by a square crumple pattern. The director field
blueprint is shown on the left. It is distinguished from the simple
cone-producing concentric square texture by a ±1/2 disclination pair
(seen in enlargement). The presence of these extra defects manifests
as a terminated trough on one corner of the pyramid that subsequently
spirals around repeatedly (contour enlargement, right-hand side);
darker shading corresponds to lower elevation.

been weakly crumpled into a shallow spiraling moat (Fig 8,
right). As can be seen in close-up detail (Fig. 8, right
enlargement), the half charge disclination dipole produces the
interior terminus of the spiraling moat. Accounting for the
effect of the bend energy will lead to some smoothing of
the creases near the pyramid tip, and a gradual fading of the
moat into a conical skirt far from the defect dipole. Both of
these effects can be dampened by the inclusion of more defect
dipoles, for example, at the other three corners of the pyramid,
which in this case does not increase the complication of the
preparation, in fact, it is simpler, as only one mask boundary
need be used.

V. DISCUSSION

We have shown how a thin sheet of nematic glass may be
prepared with simple to understand and produce constituent
regions of texture that work together to create an actively
switchable, preprogrammable shape change, including the de-
velopment of multiple points of Gaussian curvature in concert.
Such an actively transformable sheet is theoretically realizable
with features at any length scale above that dominated by the
Frank energies—tens of nanometers—and already possible at
the micron scale, leading to a host of possible applications. It is
our fervent hope that this new tool inspires clever new device
design that fulfills the strong potential of nematic glasses.

ACKNOWLEDGMENTS

The authors thank Dick Broer and Carlos Sanchez for stim-
ulating discussions. C.D.M. and M.W. acknowledge support
from the Engineering and Physical Sciences Research Council,
United Kingdom.

021711-7



C. D. MODES AND M. WARNER PHYSICAL REVIEW E 84, 021711 (2011)

[1] E. Hawkes, B. An, N. M. Benbernou et al., Proc. Natl. Acad.
Sci. 107, 12441 (2010).

[2] J. Dervaux and M. Ben Amar, Phys. Rev. Lett. 101, 068101
(2008).

[3] H. Y. Liang and L. Mahadevan, Proc. Natl. Acad. Sci. 106, 22049
(2009).

[4] T. Witten, Rev. Mod. Phys. 79, 643 (2007).
[5] M. M. Müller, M. B. Amar, and J. Guven, Phys. Rev. Lett. 101,

156104 (2008).
[6] Y. Klein, E. Efrati, and E. Sharon, Science 315, 1116 (2007).
[7] N. Uchida, Phys. Rev. E 66, 040902 (2002).
[8] C. L. van Oosten, K. D. Harris, C. W. M. Bastiaansen, and D. J.

Broer, Eur. Phys. J. E 23, 329 (2007).
[9] M. Warner and E. M. Terentjev, Liquid Crystal Elastomers

(Oxford University Press, Oxford, 2007).
[10] H. Finkelmann, I. Kundler, E. M. Terentjev, and M. Warner, J.

Phys. II 7, 1059 (1997).
[11] A. DeSimone, Ferroelectrics 222, 275 (1999).

[12] M. Warner, C. D. Modes, and D. Corbett, Proc. R. Soc. A 466,
2975 (2010).

[13] C. D. Modes, M. Warner, C. L. van Oosten, and D. Corbett,
Phys. Rev. E 82, 041111 (2010).

[14] C. D. Modes, K. Bhattacharya, and M. Warner, Phys. Rev. E 81,
060701(R) (2010).

[15] C. D. Modes, K. Bhattacharya, and M. Warner, Proc. R. Soc. A
467, 1121 (2011).

[16] C. S. Sanchez and D. Broer (private communication,
2011).

[17] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals,
2nd ed. (Clarendon Press, Oxford, 1993).

[18] C. D. Modes, B. Guilfoyle, and M. Warner (in preparation).
[19] K. Bhattacharya, Microstructure of Martensite (Oxford Univer-

sity Press, Oxford, 2007).
[20] N. D. Mermin, Rev. Mod. Phys. 51, 591 (1979).
[21] B. G. Chen, G. P. Alexander, and R. D. Kamien, Proc. Natl.

Acad. Sci. U.S.A. 106, 15577 (2009).

021711-8

http://dx.doi.org/10.1073/pnas.0914069107
http://dx.doi.org/10.1073/pnas.0914069107
http://dx.doi.org/10.1103/PhysRevLett.101.068101
http://dx.doi.org/10.1103/PhysRevLett.101.068101
http://dx.doi.org/10.1073/pnas.0911954106
http://dx.doi.org/10.1073/pnas.0911954106
http://dx.doi.org/10.1103/RevModPhys.79.643
http://dx.doi.org/10.1103/PhysRevLett.101.156104
http://dx.doi.org/10.1103/PhysRevLett.101.156104
http://dx.doi.org/10.1126/science.1135994
http://dx.doi.org/10.1103/PhysRevE.66.040902
http://dx.doi.org/10.1140/epje/i2007-10196-1
http://dx.doi.org/10.1051/jp2:1997171
http://dx.doi.org/10.1051/jp2:1997171
http://dx.doi.org/10.1080/00150199908014827
http://dx.doi.org/10.1098/rspa.2010.0135
http://dx.doi.org/10.1098/rspa.2010.0135
http://dx.doi.org/10.1103/PhysRevE.82.041111
http://dx.doi.org/10.1103/PhysRevE.81.060701
http://dx.doi.org/10.1103/PhysRevE.81.060701
http://dx.doi.org/10.1098/rspa.2010.0352
http://dx.doi.org/10.1098/rspa.2010.0352
http://dx.doi.org/10.1103/RevModPhys.51.591
http://dx.doi.org/10.1073/pnas.0905242106
http://dx.doi.org/10.1073/pnas.0905242106

