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Cholesteric-nematic transition induced by a magnetic field in the strong-anchoring model
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We investigate the cholesteric-nematic transition induced by an external bulk field in a sample of finite thickness
�. The analysis is performed by considering a tilted magnetic field with respect to the easy direction imposed by
rigid boundary conditions inducing planar orientation. In the case of parallel orientation between the magnetic
field and of the easy direction, in the limit of � → ∞ we reobtain the results of de Gennes where the effective
pitch of the cholesteric is a continuous function of the magnetic field diverging at the critical field related to the
cholesteric-nematic transition. For finite � we obtain a cascade of transitions, where the bulk expels a half-pitch
at a time to avoid divergences in the elastic energy, in a similar manner as solids expel defects in the presence of
strong deformation. In the case of oblique orientation between the magnetic field and the easy direction, only the
completely untwisted state depends on the tilt angle. Therefore, only the cholesteric-nematic transition depends
on the tilt angle while all the other magnetic transition values are unchanged.
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I. INTRODUCTION

The spontaneous twisted arrangement of the molecules in
cholesteric liquid crystals (CLCs) is at the origin of their
unique electro-optical and photonic properties [1–3] such as
selective reflection, flexoelectricity, photonic band edge lasing,
etc., that are widely used in many device applications (displays,
thermometers, optical storage, laser, etc.). These properties
may be tuned by modifying reversibly the pitch of the helix
with an electric or magnetic field, the temperature, and light
irradiation.

The effect of an external bulk (magnetic or electric) field
on helix unwinding of cholesteric liquid crystals has been
described theoretically by de Gennes [4] and independently
by Meyer [5] in the case of an infinite (unbounded) sample
(free boundary conditions). The untwist of the cholesteric
under magnetic field perpendicular to the helical axis has been
observed by using the NMR technique [6] and by a dc electric
field [7]. The variation of the cholesteric pitch on the bulk field
strength and the critical field for the helix unwinding have been
measured by direct optical observations using a magnetic field
[8,9] and an electric field [10]. Other aspects of the model such
as the critical field dependence on the undisturbed cholesteric
pitch [11] and the dielectric anisotropy [12] have been also
experimentally verified. In the case of a bounded sample
with rigid anchoring conditions Dreher [13] predicted that
the pitch of the CLC can change only stepwise by a magnetic
field. The step unwinding of a CLC by a nonuniform electric
field has been optically observed using the Grandjean-Cano
texture [14]. The cholesteric π walls dynamics is analyzed
in Ref. [15], while a stability analysis of the pitch transition
has been developed in Ref. [16]. The more complex case of
a surface field-induced unwinding has also been analyzed
[17,18]. The problem of the helix unwinding in CLCs by a
bulk field has been further reconsidered theoretically [19–24]
and experimentally [25–33]. Nevertheless it has not been
elucidated in all of its aspects. Note that the same problem

appears also in smectic ferroelectric liquid crystals [34]. In
fact, the helix distortion or complete unwinding is a common
problem in a variety of domains in condensed matter physics
and biophysics [35–37].

Previous studies on CLCs unwinding in a bounded sample
have focused on an external bulk field perpendicular to the
helical axis and to the easy direction imposed by the anchoring
conditions [13,19,20]. The axis of the helix is either parallel
to the substrate or perpendicular to it. The present article
focuses on the cholesteric helix deformation and unwinding of
a bounded sample by a magnetic field in the general case where
the external field is orthogonal to the helix axes but it makes
an arbitrary angle with the easy orientation imposed by rigid
planar anchoring on the cell plates (tilted configuration). In our
analysis we consider a one-dimensional deformation of pure
twist induced by the field in the cell of CLCs with Grandjean
texture and isothermal conditions. First, we analyze the case
of an external bulk field parallel to the easy direction, and we
calculate (1) the deformation of the initially harmonic helix
by the field that takes place at constant pitch and its stepwise
unwinding, (2) the relative free-energy variation that depends
on the half-pitch number as a function of the field strength, (3)
the nematic director profile in the cell that becomes asymmetric
for the tilted configuration, and (4) the cholesteric-nematic
(Ch-N) transition diagram. Further we demonstrate that the
critical field for pitch transitions does not depend on the tilt
between the easy anchoring direction and the magnetic field,
but the complete helix unwinding does depend on it. Finally,
a supercritical bifurcation is revealed in the case of a field
perpendicular to the easy direction of the nematic director.

The layout of the article is as follows. In Sec. II we
reconsider the problem for a magnetic field parallel to the
alignment direction. In Sec. III we present the generalization of
the model for a tilted magnetic field in respect to the anchoring
easy direction. Finally, Sec. IV is devoted to discussion and
conclusions.
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II. MAGNETIC FIELD PARALLEL TO THE IMPOSED
EASY DIRECTIONS

Let us consider a sample in the shape of a slab of thickness
� = N�, where � is the cholesteric half-pitch, under the
influence of a magnetic field parallel to the easy direction
imposed by the surface treatment. The Cartesian reference
frame used in the description has the z axis perpendicular to
the surfaces limiting the sample, located at z = 0 and z = �.
The surface easy directions are parallel to the y axis, such that
n(0) = n(�) = j , where n is the nematic director and j is the
unit vector along the y axis. The magnetic field is assumed in
the j direction so that H = H j .

It is useful to rescale the z coordinate as ζ = z/� in such
a manner that 0 � ζ � 1. We denote by λ = �/� = 1/N the
density of π twist in the sample, representing the number of π

twists per unit length in the absence of magnetic field.
In the ground state, where H = 0, the cholesteric liquid

crystal presents only a twist deformation defined by a twist
angle φN (z) = (π/�) z ≡ (π/λ) ζ , where φN is the angle
formed by n with the y axis. On the other hand, in the presence
of H �= 0, φN is modified in φn, with n = N,N − 1, . . . , 0,
according to the intensity of H .

The actual φn profile is the one minimizing the total energy
per unit surface of the cholesteric liquid crystal, given by

Gn = K

2

∫ �

0

[(
dφn

dz
− π

�

)2

− 1

�2
cos2(φn)

]
dz, (2.1)

with the boundary conditions n(0) = n(�) = j . In Eq. (2.1), K
is the twist elastic constant, � =

√
K/χa H 2 is the magnetic

coherence length, and χa = χ‖ − χ⊥, where ‖ and ⊥ refer to
n, is the diamagnetic anisotropy.

After rescaling the free energy (2.1), we can consider equiv-
alently the dimensionless function Gn = (2 �/K) Gn given by

Gn =
∫ 1

0

[(
ϕ′

n − π

λ

)2

− 1

ξ 2
cos2(ϕn)

]
dζ, (2.2)

where ϕn(ζ ) ≡ φn(z), ϕ′
n = dϕn/dζ, and ξ = �/�.

The function ϕn minimizing Gn is solution of the following
differential equation:

ϕ′′
n − 1

ξ 2
sin(ϕn) cos(ϕn) = 0 (2.3)

and can be rewritten as

ϕ′2
n − 1

ξ 2
sin2(ϕn) = kn

ξ 2
, (2.4)

where kn ≡ kn(ξ ) has to determined by means of the boundary
conditions related to the strong anchoring hypothesis on the
limiting surfaces.

In the limit H → 0, i.e., when ξ → ∞, ϕn → ϕN , and
ϕ′

N → π/λ. In the same limit, from Eq. (2.4), we get

lim
ξ→∞

kn

ξ 2
=

(
π

λ

)2

. (2.5)

By means of Eq. (2.4) we obtain

ϕ′
n = ±1

ξ

√
kn + sin2(ϕn), (2.6)

where signs refer to the two possible elicit states of molecule.
Hereinafter we assume the levogyre direction (+). The general
solution of Eq. (2.6) is

ζ

ξ
= F(ϕn, kn), (2.7)

where

F(ϕ, k) =
∫ ϕ

0

dα√
k + sin2(α)

. (2.8)

The functionF(ϕ, k) is related to the elliptic integral of the first
kind according to F (φ, κ) = √

kF(ϕ, k), with κ2 = −1/k.
Accounting for the boundary conditions ϕn(0) = 0 and

ϕn(1) = nπ , we get kn by means of the implicit equation

F(nπ, kn) = 1

ξ
. (2.9)

Furthermore, recalling the periodicity of F (ϕ, κ) we have
F(nπ, kn) = nF(π, kn), so that Eq. (2.9) becomes

F(π, kn) = 1

n ξ
. (2.10)

In Fig. 1 we show ξ versus kn for several values of the twist
numbers n. We note that ξ vanishes for kn → 0 according to

ξ = 1

n (4 ln 2 − ln kn)
+ O(kn)

ln kn

, (2.11)

although limξ→0 kn/ξ → 0. In the opposite direction, for
ξ → ∞, Eq. (2.5) is verified.

When kn is known, we can derive implicitly the twist angle
profile ϕn as

F(ϕn, kn)

F(π, kn)
= n ζ. (2.12)

The total energy (2.2) can be rewritten as

Gn =
∫ n π

0

[(
ϕ′

n − π

λ

)2

− 1

ξ 2
cos2(ϕn)

]
dϕn

ϕ′
n

= 2 n

ξ
E(π, kn) − 2

nπ2

λ
+

(
π

λ

)2

− 1

ξ 2
(1 + kn),

(2.13)

FIG. 1. Plot of ξ vs kn for several values of the half-twist numbers
n. We note that ξ vanishes for kn → 0 although limξ→0 kn/ξ = 0.
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where the function

E(ϕ, k) =
∫ ϕ

0

√
k + sin2(α) dα (2.14)

is related to the elliptic integral of the second kind.
Let us consider first the natural state occurring for H quite

small, where n = N . In this situation kN is given by

F(π, kN ) = λ

ξ
, (2.15)

and the tilt angle profile can be derived from the relation

F(ϕN, kN )

F(π, kN )
= ζ

λ
. (2.16)

The total energy per unit surface is

GN = N

[
2

ξ
E(π, kN ) − 2

π2

λ

]
+

(
π

λ

)2

− 1

ξ 2
(1 + kN ).

(2.17)

Increasing the magnitude of the magnetic field H , i.e.,
decreasing ξ , the twist angle profile ϕn changes according
to Eq. (2.16). This is shown in Fig. 2, where we plot, for the
case of n = 2, the projection of the nematic direction n(ζ )
along j : ny(ζ ) = n · j [cf. Fig. 2(a)], and the tilt angle ϕ2(ζ )
[cf. Fig. 2(b)] for several values of ξ . We observe that the
present situation differs from the one considered in Ref. [1]
for the following reason: In Ref. [1] the case of a unbounded
sample is considered, and the cholesteric pitch increases
continuously as the magnetic field grows. In that case no
boundary conditions are imposed on the twist angle profile.
In contrast, in the present case this cannot occur due to
the constraints on the boundaries. As shown in Fig. 2(b),
increasing the magnetic field the twist angle profile goes
toward a step function. In the same limit, as shown in Fig. 2(c),
near the points ζ ∗ where ϕn = π/2, the slope of ϕn(ζ ), given
by

ϕ′
n(ζ ∗) = 1

ξ

√
kn + 1, (2.18)

diverges. Consequently, the elastic energy density, propor-
tional to [ϕ′

n − (π/λ)]2, diverges too, and the state related to
ϕn(ζ ) becomes unstable.

The system, to avoid the divergence of the elastic energy,
expels a π twist by relaxing in a configuration with lower
energy density, containing n − 1 twists. The situation is
similar, in some manner, to the expulsion of a defect in solid
material when the elastic deformation increases. In fact, in the
state with n − 1 twists, we have

F(π, kn−1) = 1

(n − 1) ξ
, (2.19)

so that
F(ϕn−1, kn−1)

F(π, kn−1)
= (n − 1) ζ, (2.20)

from which one obtains the new shape for the tilt angle ϕn−1.
From Eqs. (2.10), we can obtain

nF(π, kn) = (n − 1)F(π, kn−1), (2.21)

which relates kn with kn−1.

FIG. 2. y component of the nematic direction ny(ζ ) = n(ζ ) · j
vs ζ (a); twist angle ϕ2(ζ ) vs ζ (b); and gradient of the twist angle
ϕ′

2(ζ ) vs ζ (c); for n = 2 half-twists and the values of the magnetic
field reported in Fig. 1.

As a consequence of transition from n to n − 1 twists, the
energy density relaxes to

Gn−1 = (n − 1)

[
2

ξ
E(π, kn−1) − 2

π2

λ

]
+

(
π

λ

)2

− 1

ξ 2
(1 + kn−1). (2.22)

In particular, the transition from the state with n twists to
the one with n − 1 twists takes place when

Gn = Gn−1, (2.23)

and, by taking into account Eqs. (2.17) and (2.22) it can be
rewritten as

2

ξ
[n En(π, kn) − (n − 1) En−1(π, kn−1)]

= 2
π2

λ
+ kn − kn−1

ξ 2
. (2.24)
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FIG. 3. Dependence of the reduced energy of the cholesteric
sample vs 1/ξ ∝ |H|, for n = 3 and 4 in the case N = 4. The
transition 4 → 3 takes place at the intersection point between G4

and G3.

Its solution gives the critical magnetic field where the
transition n → n − 1 occurs. This is depicted in Fig. 3, where
we show the G4 and G3 versus 1/ξ ∝ |H|, for the case
N = 4.

This process occurs recursively as the magnetic field
increases so that, whenever it reaches the critical values
obtained from the above equation, after replacing N with
N − 1, N − 2, . . . ,1, the system evolves to a more stable
configuration by reducing its number of π twists.

Let us examine in detail the last transition that takes place
when the number of twists passes from n = 1 to n = 0,
i.e., the cholesteric-nematic transition. In the state where the
cholesteric sample presents just one twist, the twist angle
profile ϕ1 is given by

F(π, k1) = 1

ξ
, (2.25)

F(ϕ1, k1)

F(π, k1)
= ζ, (2.26)

and the energy density becomes

G1 = 2

ξ
E(π, k1) − 2

π2

λ
+

(
π

λ

)2

− 1

ξ 2
(1 + k1). (2.27)

On the contrary, in the state with n = 0, ϕ0(1) = 0 according
to the boundary conditions, and the sample does not present
any twist deformation. In this case, the stable configuration
is given by ϕ0(ζ ) = 0, and the relevant total energy per unit
surface is

G0 =
(

π

λ

)2

− 1

ξ 2
. (2.28)

The last transition occurs when G1 = G0; that means

2

ξ
E(π, k1) − 2

π2

λ
− k1

ξ 2
= 0. (2.29)

We note that, in the � → ∞ limit, the density of twists goes to
zero, so that this last equation can be approximated in

�

�
= π2

E(π, k1)
, (2.30)

FIG. 4. Cascade of the twist transitions vs 1/ξ ∝ H in a
cholesteric slab of finite thickness for a sample with N = 10 twists.
Note that the finite thickness of the sample is responsible for a discrete
variation of the cholesteric periodicity induced by the magnetic field.

where �/� = λ/ξ .
On the other hand, since k1 tends to zero more rapidly

than ξ , as shown in Fig. 1, from the definition (2.14) we have
lim�→∞ E(π, k1) ∼ 2, and Eq. (2.30) gives the critical field

1

�
= π2

2 �
, (2.31)

in accordance with the results derived in Ref. [1] for the
cholesteric-nematic transition in a unbounded sample [4].

In Fig. 4 we show the sequence of transitions versus 1/ξ ∝
|H| in a sample with N = 10 twists. In this figure we report
on the ordinate the relative energy variation �G/G0 = (G0 −
Gn)/G0 whereG0 is the energy density of the final state. Figure 5
shows the diagram of the N-Ch transition in the plane of the
critical field 1/ξc ∝ |Hc| for complete unwinding of the helix
versus 1/λ that is proportional to the confinement ratio usually
defined as �/2 � [23]. For large values of 1/λ the critical
field goes asymptotically to the de Gennes prediction (dashed
line). When the confinement ratio reduces, the surface field

FIG. 5. Diagram of the N-Ch transition in the plane 1/ξc ∝ |Hc|
vs 1/λ. The solid line corresponds to the N-Ch transition in confined
geometry and rigid boundary conditions. The dashed line is the
asymptote of the transition line for large values of the confinement
ratio.
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due to the rigid boundary condition adds to the external bulk
field, and the contribution of the latter in the transition reduces
continuously toward zero at a critical value of the confinement
ratio 1/λc, where λc denotes the value of λ at the crossing
point of the transition line with the axis 1/ξc = 0. For values
of 1/λ � 1/λc the cholesteric is reduced to the nematic phase
from the action of the surface field alone. In fact, the action of a
surface field combined with an external bulk field at transitions
in liquid crystals is well known [38]. In cholesteric LCs, it has
been studied particularly in homeotropic geometry [32]. We
have fitted the numerically calculated transition line with the
following scaling-law expression:

1

ξc

∼
(

1

λ
− 1

λc

)x

. (2.32)

Here λc = 2 is calculated analytically from (2.29). The value
of the exponent x tends to 0.5 as λ goes toward λc, while
for large values of the confinement ratio the exponent goes
to the value x = 1, in agreement with de Gennes’s prediction
(see (2.31)). These values can be calculated analytically from
an asymptotic analysis of (2.29).

Asymptotic expansion of the elliptic integrals E(π, k1) and
F(π, k1) about k1 = ∞ gives

E(π, k1)/π = k
1/2
1 + 1

4 k
−1/2
1 − 3

64 k
−3/2
1 +O

(
k

−5/2
1

)
, (2.33)

F(π, k1)/π = k
−1/2
1 − 1

4 k
−3/2
1 + O

(
k

−5/2
1

)
. (2.34)

Thus upon combining the latter expansions and (2.29) we
obtain

1

λ
− 1

λc

= 1

4
k−1

1 + O
(
k−2

1

)
. (2.35)

Finally, introducing ξ from (2.25), we obtain the scaling law
for the magnetic field dependence on the confinement ratio

1

ξc

= 2π

(
1

λ
− 1

λc

)1/2

. (2.36)

The numerical value of the exponent x is in good agreement
with its analytic value. Equation (2.36) can also be obtained
by expanding the free energy (2.2) in power series of the wave
number and can make a Landau expansion to determine the
shift in the critical field due to the finite dimension of the
sample.

III. GENERALIZATION OF THE PROBLEM
TO THE TILTED SITUATION

We generalize the above problem by considering the tilted
configuration, where the magnetic field is tilted with respect
to the easy direction imposed by the surfaces treatment. To
be explicit, let us consider a sample made by a sample in the
slab of thickness � = N � whose surface easy directions are
still parallel to the y axis, like n(0) = n(�) = j , but now the
magnetic field H = H [i sin(ϕH ) + j cos(ϕH )], where ϕH is
the angle that the magnetic field makes with the orientation

FIG. 6. y direction of the nematic direction ny(ζ ) for several
values of ϕH and of ξ , for the case n = 2.

imposed by the surface treatment. The total energy per unit
surface becomes

Gn =
∫ 1

0

[(
ϕ′

n − π

λ

)2

− 1

ξ 2
cos2(ϕn − ϕH )

]
dζ, (3.1)

and the boundary conditions on the twist angle are ϕn(0) = 0
and ϕn(1) = nπ where n = N,N − 1, . . . , 0.
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FIG. 7. Twist angle for the values of ξ and ϕH corresponding to the cases depicted in Fig. 6.

Following step by step the analysis presented in the previous
section we obtain

ϕ′
n = 1

ξ

√
kn + sin2(ϕn − ϕH ), (3.2)

where we kept the levogyre direction (+) as previously. For
n > 0, kn is still defined as

F(π, kn) = 1

n ξ
. (3.3)

This equation shows that kn is independent of ϕH . In the same
way, the tilt angle profile is given by

F(ϕn, kn)

F(π, kn)
= n ζ, (3.4)

which coincides with Eq. (2.12) since, according with
Eq. (3.3), the energy density does not depend on ϕH whenever
n > 0.

In Fig. 6 we plot, for the case n = 2, the director component
ny(ζ ) = n · j for several values of ϕH and ξ . We notice that the
presence of a different orientation of H induces a sustaining
in the shape of n that is emphasized by the growth of the
intensity of H . We also highlight the symmetry of the shape
of n(ζ ) as a consequence of the invariance of the system under
the angle translation ϕn(ζ ) → ϕn(ζ ) + π . This is clear from
Fig. 7, where we plotted the twist angle for the same cases
depicted in Fig. 6.

We note that, in spite of the different boundary conditions,
Eqs. (2.13) and (3.1) give the same numerical value since
both integrals are evaluated over n complete periods. As a
consequence Eq. (2.23) is satisfied at the same critical field
value. This means that the critical value of the magnetic field
corresponding, respectively, to the transitions N → N − 1 →
· · · → 1 is not affected by the angle ϕH .

In order to investigate the final transition 1 → 0, let us
consider now the state n = 0 where there is not complete twist.
From the boundary condition ϕ0(0) = ϕ0(1) = 0 it follows that
there exists a point ζ ∗ where ϕ′(ζ ∗) = 0. For the symmetry of
the problem this point must be located at ζ ∗ = 1/2. We can
account for this condition by imposing

ϕ′
0(1/2) = 1

ξ

√
k0 + sin2(ϕM − ϕH ) = 0, (3.5)

where ϕM = ϕ0(1/2) corresponds to the maximal deformation
of the twist angle with respect to the anchoring directions.
From the above equation we get

k0 = − sin2(ϕM − ϕH ), (3.6)

and the quantity ϕM can be determined through the relation∫ ϕM

0

dϕ√
sin2(ϕ − ϕH ) − sin2(ϕM − ϕH )

= 1

2 ξ
. (3.7)

The dependence of ϕM versus ξ for several values of ϕH is
depicted in Fig. 8. We observe as increasing the strength of
the magnetic field that the twist angle continuously saturates
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FIG. 8. Dependence of ϕM vs ξ for several values of ϕH . The thin
solid curve is drawn for λ = 0.1.

to ϕH . In particular, the curve ϕH = π/2 shows an abrupt but
continuous variation of the twist angle above a critical field
typical of a second-order phase transition. Since the nematic
director is apolar the twist angle departure at the critical
field can take both signs; i.e., the system is described by a
supercritical bifurcation.

The profile of ϕ0(ζ ) can be obtained from the relation

ζ = 1

2

∫ ϕ0

0
dϕ√

sin2(ϕ−ϕH )−sin2(ϕM−ϕH )∫ ϕM

0
dϕ√

sin2(ϕ−ϕH )−sin2(ϕM−ϕH )

, (3.8)

FIG. 10. Total energy per unit surface G0 for the same values of
ϕH reported in the Fig. 8 and for λ = 0.1.

and it is shown in Fig. 9 for several values of magnetic angle
ϕH and strength ξ .

Note that as 1/ξ increases, in the bulk ϕ0 tends to ϕH . The
deformation is localized close to the boundaries, over a surface
layer whose thickness is of the order of ξ .

The total energy per unit surface G0 is then given by

G0 = 4

ξ

∫ ϕM

0

√
sin2(ϕ − ϕH ) − sin2(ϕM − ϕH ) dϕ

− 4
π

λ
ϕM +

(
π

λ

)2

− 1

ξ 2
cos2(ϕM − ϕH ), (3.9)

FIG. 9. Shape of ϕ0(ζ ) for several values of magnetic angle ϕH and strength ξ.
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FIG. 11. Dependence of transitions G1 → G0 and G2 → G0 vs the
magnetic angle ϕH , in the case λ = 0.1. The dashed horizontal line
represents the critical coherent length for the case corresponding to a
magnetic field parallel to the surface easy direction.

and is shown in Fig. 10 for the same values of ϕH reported in
Fig. 9.

Again we remark on the presence of the anomaly in the
curve for ϕH = π/2.

As cited above, the transition from the state presenting n

twist to the one having n − 1 twist takes place when Gn →
Gn−1, as discussed in Sec. II. Since kn does not depend on ϕH ,
the transitions occur at the same critical fields shown in Fig. 4.
However, the “final” transition between the state presenting
1 twist on the state 0 takes place when G1 → G0. Since G0

depends on ϕH , the critical magnetic field at the inset of the
last transition depends on ϕH too.

This is shown in the final Fig. 11, where we depict the
dependence of transitions G1 → G0 and G2 → G1 versus the
magnetic angle ϕH . As is shown, the former takes place at
a energy value higher than the latter, a fact that ensures that
the cascade 2 → 1 → 0 always occurs. In the same figure,
we report also the critical coherent length relevant to the case
ϕH = 0. In Fig. 12 the relative variation of the critical field
for the unwinding the cholesteric liquid crystal versus ϕH is
plotted for two different values of half-twists (i.e., for different
thickness of the sample). We note that the influence of ϕH on
the critical field is less and less important as the thickness
of the sample increases. In the particular case for � → ∞, the
critical field will be independent of ϕH since in this case all the
directions of the magnetic field, perpendicular to the helical
axes, are equivalents.

IV. CONCLUSION

We investigated in a unified way the cholesteric pitch
transitions of a finite size sample that are induced by an external

FIG. 12. Relative variation of the critical field for the unwinding
the cholesteric liquid chrismal vs ϕH for two different values of the
sample thickness.

bulk field perpendicular to the axis of the helix. We treated
the general problem of oblique configuration, i.e., the case of
a field tilted in respect to the easy axis direction imposed
by the limiting surfaces with strong anchoring conditions.
The predicted unwinding of the helix by the field is step-
wise and takes place at constant pitch between successive
transitions in accord with experimental results [33]. The
obtained nematic-cholesteric transition phase diagram reveals
the role of the surface field on the transition. The unwinding
process leads to the formation of untwisted zones in which the
nematic director is practically parallel to the field. The latter
zones are separated by π walls where the twist concentrates
[Fig. 2(c)]. The accumulation of elastic energy at the π

walls should induce a mechanism for the expulsion of the
deformation such as continuous unwinding of the helix [39],
defect-mediated expulsion, or even a local melting to the
isotropic phase. The investigation of creation and propagation
of solitary waves should also shed light on the pitch unwinding
mechanism. Further, the study of the oblique configuration
revealed that the critical fields for all the transitions but
the last one do not depend on the tilt angle. In contrast
the critical field of the last transition depends on the tilt
angle and on the thickness of the sample (Fig. 11), and its
value is higher in the parallel configuration. Finally, in the
perpendicular configuration a normal bifurcation is evidenced
that corresponds to the Fredericks instability of a nematic
cell.

In the present paper we assumed that the thickness of
the sample is equal to an integer number of the cholesteric
half-pitch period. The case of a sample thickness that is in-
commensurate with the cholesteric half-pitch and the extension
toward finite anchoring conditions is the natural extension of
the present model.
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[17] P. E. Cladis and M. Kléman, Mol. Cryst. Liq. Cryst. 16, 1 (1972).
[18] M. Luban, D. Mukamel, and S. Shtrikman, Phys. Rev. A 10, 360

(1974).
[19] P. J. Kedney and I. W. Stewart, Lett. Math. Phys. 31, 261 (1994).
[20] P. J. Kedney and I. W. Stewart, Continuum Mech. Thermodyn.

6, 141 (1994).
[21] V. A. Belyakov and E. I. Kats, JETP 91, 488 (2000).
[22] V. A. Belyakov, JETP Lett. 76, 88 (2002).
[23] P. Oswald, J. Baudry, and S. Pirkl, Phys. Rep. 337, 67 (2000).
[24] R. Seidin, D. Mukamel, and D. W. Allender, Phys. Rev. E 56,

1773 (1997).

[25] B. Regaya, J. Prost, and H. Gasparoux, Rev. de Phys. Appl. 7,
83 (1972).

[26] J. S. Patel and R. B. Meyer, Phys. Rev. Lett. 58, 1538 (1987).
[27] Sin-Doo Lee, J. S. Patel, and R. B. Meyer, J. Appl. Phys. 67,

1293 (1990).
[28] H. A. van Sprang and J. L. M. van de Venne, J. Appl. Phys. 57,

175 (1985).
[29] E. Niggemann and H. Stegemeyer, Liq. Cryst. 5, 739 (1989).
[30] L. J. M. Schlangen, A. Pashai, and H. J. Cornelissen, J. Appl.

Phys. 87, 3723 (2000).
[31] W. C. Yip and H. S. Kwok, Appl. Phys. Lett. 78, 425 (2001).
[32] I. I. Smalyukh, B. I. Senyuk, P. Palffy-Muhoray, O. D.

Lavrentovich, H. Huang, E. C. Garland, V. H. Bodnar, T. Kosa,
and B. Taheri, Phys. Rev. E 72, 061707 (2005).

[33] H. G. Yoon, N. W. Roberts, and H. F. Gleeson, Liq. Cryst. 33,
503 (2006).

[34] S. T. Lagerwall, Ferroelectric and Antiferroelectric Liquid
Crystals (Wiley-VCH, New York, 1999).
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