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Optical trapping induced by reorientational nonlocal effects in nematic liquid crystals
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We report a detailed analysis of optical trapping of low index particles in liquid crystals under experimental
conditions that prevent the effect of conventional trapping originated by optical gradient forces. The observation
of stable, long-range trapping shows that this phenomenon in liquid crystals is regulated by a completely different
mechanism than in isotropic media. In particular, the role of the nonlocality of optical reorientation is highlighted
by showing the dependence of the trapping force on the size of the reoriented area. A model based on the actual
form of the Gaussian focused beam impinging on the liquid-crystalline medium in the trapping experiment is
also reported, with good agreement with experimental data.
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I. INTRODUCTION

Recently there has been increased interest in optical
trapping and manipulation of micrometric colloids dispersed
in liquid crystals [1]. Because of the peculiar properties of
the hosting medium, colloids with refractive indices lower
than those of the liquid crystal can be efficiently trapped [2].
This effect is not possible in isotropic media in the case of
single Gaussian beam trap. This is because optical trapping
induced by gradient forces requires m > 1, where m is
the ratio of the refractive index of the colloidal sphere to
the one of the surronding medium. In the case of liquid
crystals, it is also remarkable the range of the interaction
(i.e., the distance from the focal spot where the trapping
force is still active) is much bigger than the colloid size. Two
different regimes have been considered for optical trapping
of low-index particles, depending on the intensity of the
trapping beam [3]. At light intensity lower than the threshold
necessary to induce the optical reorientation in the hosting
liquid crystal, trapping is ascribed to conventional gradient
forces acting on the colloid, whose refractive index is modified
from the liquid crystal distortion around it. In this way, it
appears as a dressed colloid whose effective refractive index
is higher than the one of the surrounding medium. Above
the threshold for optical reorientation, trapping is due to the
interaction between the colloid and the optically distorted
region in the trap area. This trapping effect is a consequence
of the elasticity and the long-range orientational order of the
nematic liquid crystal. It is similar to what happens between
two colloids in a liquid crystal: The orientational distortion
induced by the inclusion of colloids increases the free energy
of the medium, which consequently must reorient itself to
minimize the energy. This occurs when the colloids are closely
packed.

In a recent paper [4], we highlighted the strong re-
lationship between optical trapping of low-refractive-index
colloids and the light-induced optical reorientation in the
trap area. In particular, we demonstrated that the trapping
velocity is related to the optically induced phase shift due
to the director reorientation produced in the liquid crystal
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by the laser beam creating the trap. Such a relationship
confirms that the trapping mechanism in liquid crystals is
different from the “ordinary” one and suggests that it is
regulated by parameters not related to the traditional gradient
force. Moreover, the need to claim two regimes for trapping
is questionable because we expect a thresholdless optical
reorientation when acting with a strongly focused beam on
a liquid-crystalline cell. This has been observed recently
by Brasselet [5,6] and is confirmed by our calculations in
Sec. III.

In order to get away from the issue of two trapping regimes
in the investigation of optical trapping of low-index particles
in higher index nematics, we have chosen experimental
conditions that prevent the onset of conventional gradient
trapping. An objective with numerical aperture NA = 0.45
was used to create the optical trap. This value of NA is
usually below the minimum value required to get stable
optical trapping in isotropic media [7]. This point was actually
checked by calculating the conventional trapping efficiency
in the geometrical optics approximation (which describes
our experimental conditions well), showing that conventional
trapping is forbidden for all the values of the optical
power.

The possibility of obtaining long-range stable trapping with
this objective actually demonstrates that trapping in liquid
crystals is totally different from optical trapping in isotropic
media and is due to the elastic interaction between the optically
distorted trap area and the colloid with its surrounding elas-
tically distorted region, as pointed out by Skarabot et al. [3].
Our experimental results confirm their observation and point
out additional features of the trapping phenomenon. Moreover,
the long range of the interaction as compared to the size of the
focal spot underlines the important role of nonlocality of the
optical reorientation in this process.

The nonlinear optical distortion induced by the incident
laser beam on the liquid crystal was measured by means of
self-phase modulation during the trapping experiment, while
tracking of the trapped particle movement was performed.

Director distortion was also analyzed by means of a
model where the proper expression of the optical field of
a focused beam and its propagation in a nematic liquid
crystal were taken into account. Both the amount and the
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width of the induced director distortion have been derived by
computer simulations based on the model. The results of the
model have been successfully compared to the experimental
data.

II. RESULTS ON OPTICAL TRAPPING

Optical trapping experiments were carried out on 50-μm-
thick cells filled by a mixture of spherical silica particles with
average radius Rb = 2.5 μm and refractive index ns = 1.37,
dispersed in the nematic liquid crystal pentyl-cyanobiphenil
(5CB). The refractive indices of 5CB at λ = 532 nm are no =
1.54 and ne = 1.71. The particles’ surface was covered by N,N-
dimethyl-noctadecyl-3-aminopropyl-trimethoxysilyl chloride
(DMOAP) following the procedure described in [3], which
gives rise to strong homeotropic anchoring at the particle
surface. Cell substrates were also covered by DMOAP in
order to obtain samples with homeotropic alignment. The
refractive index of the particles is lower than both those of
5CB; nevertheless, optical trapping is possible, as described in
previous publications [2–4].

We used a frequency-doubled Nd:YVO4 laser (Coherent,
Verdi V2) at λ = 532 nm as the light source in a classic inverted
microscope configuration. The laser light was focused on the
cell by a 20× microscope air objective with NA = 0.45. The op-
tical power of the Gaussian linearly polarized beam impinging
on the sample varied in the range 8–180 mW. In order to work
in unfavorable conditions for conventional trapping, besides
using a numerical aperture less than 0.7, trapping experiments
were performed in underfilling conditions; that, is the laser
beam waist is lower than the radius of the back aperture of the
objective (see the discussion below).

Stable trapping of silica particles was observed for all the
values of the used incident optical power. We selected an
isolated particle approximately in the middle of the cell and
positioned the trap in the same plane at different distances
from the colloid, in the range of several tens of microns. Once
the laser was switched on, the particle was attracted toward
the focus and the movement was video recorded by means of a
Carge-coupled device (CCD) camera at a rate of 25 frames/s.
Different trajectories from several starting points around the
trap center were observed, similar to what was reported in [3],
clearly showing the anisotropic behavior of the trapping event.
The particle changed its trajectory depending on the starting
position and only for a particular direction (i.e., parallel to
the beam initial polarization), and the movement followed a
straight trajectory. Our experimental tracking results refer to
this latter situation.

In order to check the role of conventional optical trapping
in the stable trap observed in our geometry, we have evaluated
the trapping efficiency under the geometrical optical approx-
imation following the same approach described in [7]. The
ray optics regime is well justified in our experiment since
the dielectric particle is large compared to the wavelength
(2Rb � 10λ).

We calculated the scattering, gradient, and total forces
acting on the particle when both its center and the focus of
the trapping beam are located along the z axes. We first found
the scattering force dFs and the gradient force dFg due to a
single ray entering the input aperture of the objective at an

arbitrary radius r̃ from the beam axes and angle β from the
vertical zy plane:

dFs = nm

c

{
1 + R cos 2θi

−T 2[cos(2θi − 2θr ) + R cos 2θi]

1 + R2 + 2R cos 2θr

}
dP = �(r̃)dP,

(1a)

dFg = nm

c

{
R sin 2θi − T 2[sin(2θi − 2θr ) + R sin 2θi]

1 + R2 + 2R cos 2θr

}
dP

= �(r̃)dP, (1b)

where θi and θr are the incidence and refraction angles of the
ray on the particle surface, R and T are the Fresnel reflection
and transmission coefficients of the surface at angle θi , nm is
the average refractive index of the surrounding medium, and
dP = I (r̃)r̃ dr̃ dβ is the power of the single ray [see below for
the definition of the input beam intensity I (r̃)].

These formulas were integrated numerically over the distri-
bution of input rays, taking into account that, by symmetry con-
siderations, the total force is axial, so the contribution of each
ray is given by dFsz = dFs cos φ and dFgz = −dFg sin φ,
when the center of the particle is located below the focus
(z > 0). The angle φ, formed by the beam with the z axis, is
connected to the incidence angle on the surface of the particle
by the relation Rb sinθi = S sinφ, where S the distance between
the particle center and the focus location. The integration was
performed over the input aperture surface of the objective AAP

up to a maximum radius rmax, for which φ = φmax = 9◦ is the
maximum convergence angle for an objective with NA = 0.45
in 5CB with a filling factor b = 0.5:

FS =
∫∫
AAP

dFSZ =
∫ 2π

0
dβ

∫ rmax

0
�(r̃) cos φ(r̃)I (r̃)r̃dr̃,

(2a)

FG =
∫∫
AAP

dFgZ =
∫ 2π

0
dβ

∫ rmax

0
�(r̃) sin φ(r̃)I (r̃)r̃dr̃, (2b)

considering the fundamental trasversal electro-magnetic mode
intensity profile for the input beam (waist w0 and power P) of
the form

I (r̃) =
(

2P

πw2
0

)
exp

(−2r̃2

w2
0

)
. (3)

The total force was obtained by adding the two contribu-
tions.

The filling factor b is defined as the ratio between the
beam waist w0 and the radius of the back aperture of the
objective. The given value indicates that the incident beam
does not completely fill the aperture, resulting in a trapping
efficiency which is not optimized. The calculated forces as
functions of the position along z are reported in Fig. 1(a) for
our experimental conditions.

The value 1.11 for the ratio m between the refractive index
of the colloid and the one of the surrounding medium was
chosen in agreement with the hypothesis of the “dressed”
particle proposed in [2,3]. We assigned the extraordinary
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FIG. 1. (a) Scattering, gradient, and total forces acting on the
particle during optical trapping vs distance acting between particle
center and trap focus (origin along the z axis). The parameters used
in the calculus are m = 1.1, NA = 0.45, and P = 92 mW. Positive
(negative) forces correspond to repulsion (attraction). It is observed
that the total optical force is positive for each value of z; that is,
conventional trapping is not allowed. (b) Potential energy W vs
particle position.

refractive index of 5CB to the distorted area around the
colloid and the ordinary one to the region surrounding the
dressed particle having homeotropic alignment. The former
is the maximum index seen by the polarized laser beam
corresponding to the colloid with homeotropic alignment on
the surface, The total force is positive (repulsive) for every
value of z, which means that no stable conventional trapping
is allowed in our experimental conditions. This is also evident
by looking at the shape of the potential energy profile W in
Fig. 1(b), obtained by integration of the total force along the
z axis. No well is observed.

By varying the values of m and NA in the calculation, we
used the potential profile and the corresponding well depth
(trap depth) to obtain the minimum trapping power required
for longitudinal confinement of the particle. We defined the
minimum trapping power as the power that provides a trap
depth of 10kBT , a value generally accepted for particle
confinement, in the weakest (backward) direction of the trap
(i.e., below the focal point, z > 0 [8]).

FIG. 2. Contour lines showing the minimum trapping power
(mW) as function of m and NA. Dashed lines separate the trapping
region from the no-trapping one, represented as a grey area. The
check point indicates the working point in our experiment.

Figure 2 shows a contour plot of the calculated minimum
trapping power as function of m and NA, for a filling factor b =
0.5. As mentioned, this value of b corresponds to underfilling
the objective. The contour lines represent levels of constant
powers in milliwatts, whereas the grey area is the region where
conventional trapping is forbidden.

For the parameters leading to the results of Fig. 1, we get a
point falling in the grey area.

This calculation points out that conventional trapping does
not play any significant role in our case; therefore if a stable
optical trap along the z axis is obtained, it cannot be connected
to the conventional trapping conditions. Therefore, another
mechanism is responsible for the effect.

The typical dependence of the particle displacement r vs
time is reported in Fig. 3 for different values of the optical
power. Here the latest value of r is the equilibrium distance
(req) from the center of the trap. This value of r varies with the
optical power and is different from zero for every value of P.

The general trend is very similar to that usually reported
for optical trapping in liquid crystals with conventional high

FIG. 3. Position of the particle vs time during trapping. The final
value of r is the equilibrium particle distance req from the center of
the trap.

021702-3



LUCCHETTI, CRIANTE, BRACALENTE, AIETA, AND SIMONI PHYSICAL REVIEW E 84, 021702 (2011)

NA objectives [3,4]. An extensive analysis of several trapping
experiments on different samples showed that the range of
interaction between particle and laser beam can be as large as
45 μm.

Following the usual approach [3,9], the force between the
laser focus and the silica particle was calculated assuming
that it is nearly balanced by the drag force FD = 6πRη ∂r

∂t
.

In fact, the measured inertial force is much smaller than the
viscous drag due to the small value of the particle mass (M ≈
10−13 Kg), and thus in the motion equation it is always
negligible. Moreover, the particle motion is highly viscously
damped, allowing us to directly determine the attractive
force from the displacement data by differentiating them to
obtain the particle speed. For the viscosity, we used the
expression η = 1

2α4, where α4 is one of the Leslie coefficients,
holding when the flow is orthogonal to the director and
producing a significant tilt of the molecular orientation [10].
For homeotropically aligned 5CB, we obtain η = 0.028Pas.

Figure 4(a) shows the typical behavior of the trapping force
vs particle-trap distance from the trap center (the negative sign

FIG. 4. (a) Typical shape of the trapping force acting on the silica
particle vs the distance from the trap focus. The solid line is the best
fit using Eq. (4); see text for details. (b) Logarithmic plot with the
linear fit valid at long distance.

is again chosen for attractive forces). The reported curve
corresponds to the optical power P = 92 mW. The same
behavior of F(r) is obtained for all the optical power used in
the experiment. The only difference is the equilibrium position
that changes with power and is in this case req = 8.8 μm (see
discussion below).

The attractive force increases as it approaches the trap
until it reaches a maximum, decreases at a short distance
with decreasing r, and eventually vanishes. The logarithmic
plot shows a dependence on r−α at long distance with
α ≈ 2 [Fig. 4(b)]. From more than 50 measurements of trapping
events, the average exponent α was obtained as –2.11 ± 0.08.
At shorter distance, the dependence is different, and the overall
curve is well described by the function

F = − A

r2
+ B

r3
. (4)

The solid line in Fig. 4(a) is the fit using this latter
expression. A and B are constants whose value is given by the
fitting procedure and is related to the strength of the two terms.
The attractive Coulomb-like dependence is in agreement with
what already reported for the same system [3,11].

As already pointed out [11], the interaction between a laser-
induced reoriented nematic and a colloid cannot be considered
as the interaction between two colloids even if conceptual
similarities are possible. On the other hand, it is questionable
to treat light-induced reorientation as a dipolar or quadrupolar
symmetry defect, since symmetry, size, and amount of induced
distortion are supposed to vary with optical power. However,
by comparing the observed phenomenon to the interaction
between two colloids or droplets in a liquid-crystalline host,
it is quite interesting that in case of defects with dipolar
symmetry an attractive term scaling with r−4 and a repulsive
term scaling with r−6 have been obtained and experimentally
demonstrated [12,13]; in our case, these terms scale as the
square root of the ones of the former case, namely r−2 and r−3.

Lev et al. [11] were able to justify the Coulomb-like
attractive interaction in the case of a spherical particle of
dipolar symmetry trapped by a light-induced reoriented area.
Possibly similar arguments could justify the r−3 dependence of
the repulsive term. Even if a complete theory of this interaction
is not the aim of this work, some remarks can be done on the
A and B coefficients.

By following arguments similar to the ones used to treat the
interaction between colloids [9], we can write the attractive
part of the force as

FA = − A

r2
= −CKa2(P )

r2
, (5)

where a is the radius of the light-induced reoriented area that
is dependent on the light power, K is the elastic constant of
liquid crystal, and C is a dimensionless constant. From this,
we expect FA(r)/a2(P) to be independent on the size of the
distorted area, that is, independent of the optical power.

Measurements of a(P) have been performed by looking at
the distorted area between crossed polarizers (see the next
section). For each value of P, we have considered the curve of
the force F(r) for medium-long distance where the term 1/r2 is
the dominant one. In this way, we were able to plot F(r)/a2(P)
for different values of P, as reported in Fig. 5. Data fall on
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FIG. 5. Trapping force over the squared radius of the light-
induced reoriented area vs the distance from the trap focus, for three
different values of the power incident on the sample: P = 48 mW,
P = 92 mW, and P = 129 mW. The log-log plot shows that data fall
on a single curve. The solid line is the common linear fit.

a single curve, which confirms that the force scales as a2(P),
pointing out that the dependence of the force on the optical
power is due to the increasing width of the distorted area with
increasing power.

Following a similar approach for the repulsive term, in
agreement with the expression reported in [12] for colloid-
colloid interaction, we may write

FB = B

r3
= C ′a3(P )

r3
. (6)

We have already pointed out that the particle equilibrium
position changes by increasing power (as expected by the
increase of the distorted area). According to our fitting curve

FIG. 6. Particle equilibrium distance from the trap focus vs
trapping beam power.

FIG. 7. Particle equilibrium distance from the trap focus vs the
experimentally determined radius of the reoriented area. The solid
line is the linear fit.

for the trapping force, the equilibrium position F(req) = 0 is
given by

req = B

A
, (7)

that is, according to the expressions of FA e FB Eqs. (5) and (6),

req = C ′′a(P ). (8)

This means that we should expect a linear increase of the
equilibrium distance vs the radius of the reoriented area. This
is actually the case since the experimental values of req vs P
follow the linear dependence of a vs P before the occurrence
of a saturation, as described in the next section.

In Fig. 6 the equilibrium distance req from the center of
the trap is reported as a function of the incident power P. For
each power, the size 2a of the light-induced distortion was
measured (see next section), and then we plotted the measured
req vs the measured a(P) (see Fig. 7).

A clear linear dependence is evident in agreement with
the above expression of B/A, confirming by independent
measurements the consistency of this description for the
trapping force. It is also interesting that at low incident
power the equilibrium distance is req

∼= 2.5 Rb (where Rb

is the particle radius), which is the same equilibrium distance
observed between two colloids interacting in liquid crystals
[13]. This might be a clue to the similarity between a real
colloid and the light-induced distortion in the trap region at low
optical power, before the size of this region becomes bigger
than the one of the trapped colloid. However, further study is
needed to address this point.

Finally, it is worth underlining that in our case a single
trapping mechanism should work since the used fitting
function is valid at all the used powers.

III. OPTICAL REORIENTATION UNDER STRONG
FOCUSING CONDITIONS

We have shown in the previous section that while the focal
waist of the laser beam is constant (about 0.6 μm in our
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case) the effective area of director reorientation increases with
power, reaching a radius close to 30 μm at the highest power
used in the experiments. We have also shown the role of this
strong nonlocality in the trapping mechanism. A further step
in the analysis of this process can be done by evaluating the
actual reorientation induced by the laser beam.

Light-induced reorientation in liquid crystals has been
usually considered in the plane-wave approximation, which
is generally fulfilled when the confocal beam parameter is
much bigger than the sample thickness [14]. On the other
hand, the effect of tighter focusing has been investigated by
different authors [15–19], who have pointed out the strong
nonlocality of the reorientation and the peculiar effects arising
in the beam wave front. In all these previous works, the
Gaussian distribution of the light intensity was taken into
account, but the depolarization effect due to the wave-front
curvature was neglected. In an optical tweezers apparatus,
the strong focusing due to the objective makes such an
approximation very weak. In fact, in this case the confocal
beam parameter is much shorter than the sample thickness and
actually several k vectors of the impinging wave are involved
in the reorientation process together with the corresponding
different polarizations. Recently Brasselet considered the
effect of strong focusing of a circularly polarized beam on
a liquid-crystalline film, pointing out the occurrence of no
threshold reorientation and orientational defect in the center
of the beam [5]. Here we describe the interaction of the optical
field with the molecular director by using the field components
calculated for a focused Gaussian beam. The aim is to evaluate
the optical distortion induced in the medium in the region of
the beam focus.

Let us consider a focused laser beam impinging on a
homeotropic liquid-crystalline cell of thickness d, according
to the geometry depicted in Fig. 8.

As usual, the free energy density of the system includes
contributions due to the elastic and the optical torques [14]:

Ftot = K1

2
( �∇ · n̂)2 + K2

2
(n̂ · �∇ · n̂)2 + K3

2
(n̂ × �∇ × n̂)2

−ε⊥
|E|2

4
− ε

4
(n̂ · �E)(�n · �E∗), (9)

where Ki are the elastic constants, n is the director, ε⊥ is the
ordinary dielectric constant, �E is the optical field, and ε is
the dielectric anisotropy at optical frequencies.

FIG. 8. Sketch of the geometry used in the model, corresponding
to that used in the trapping experiments.

The total free energy of the system is obtained by integrating
Ftot in the cell volume:

F =
∫ ∞

0
rdr

∫ d

0
dz

∫ 2π

0
dφ (Ftot). (10)

The induced liquid crystal reorientation can be obtained
by minimizing the total free energy using the Euler-Lagrange
equation. As mentioned, the optical field �E to be used in the
last term of Eq. (9) is the field associated with a focused
beam. When a linearly x-polarized plane wave is focused by
an aplanatic lens with numerical aperture NA = n sinθmax =
nRL/f the field in the focal region in cylindrical coordinates
reads [20]

E(ρ,ϕ,z) = ikf

2

√
n1

neff
E0e

−ikf

⎡
⎣ I00 + I02 cos 2ϕ

I02 sin 2ϕ

−2iI01 cos ϕ

⎤
⎦ , (11)

where k is wave-vector modulus, RL is the aperture radius
of the lens, f is the focal length, n1 is the refractive index of
the medium before the lens (air in our case), and neff is the
effective refractive index of medium after the lens where the
refracted beams travel.

The light focused by the objective travels in air, in glass,
and in the liquid-crystalline medium before reaching the focal
region. In order to assign a value to neff we performed an
average over the optical paths in the three different media,
obtaining neff = 1.23.

It is clear from Eq. (11) that the optical field is depolarized
and has nonvanishing components along the three spatial
directions. The functions I00, I01, and I02 are defined as follows:

I00 =
∫ θmax

0
fw(θ )

√
cos θ sin θ (1 + cos θ )J0

× (kρ sin θ )e(ikz cos θ)dθ,

I01 =
∫ θmax

0
fw(θ )

√
cos θ sin2 θJ1(kρ sin θ )e(ikz cos θ)dθ, (12)

I02 =
∫ θmax

0
fw(θ )

√
cos θ sin θ (1 − cos θ )J2

× (kρ sin θ )e(ikz cos θ)dθ,

where Jn is the nth-order Bessel function and fw(θ ) =
exp(−f 2sin2 θ/w2

0).
Now we can include Eq. (11) into Eq. (9), and we perform

minimization of the total free energy by applying the Euler-
Lagrange equation in the one elastic constant approximation.
In this way, we get the following differential equation for the
tilt angle θ :

K(θr + rθrr + rθzz) + ε

16
k2f 2 n1

neff
rE2

0[(D − H ) sin 2θ

+ 2F cos2 θ ] = ε

16
k2f 2 n1

neff
rE2

0F. (13)

Here K is the average elastic constant of the liquid crystal,
θr and θz are the derivatives of θ with respect to r and z, and
D, H, and F are constant parameters coming from the integral
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FIG. 9. Square modulus of the focused field E on the xz and yz
longitudinal plane calculated from Eq. (11) for NA = 0.45. The shape
of the fields justifies the radial symmetry approximation.

functions (12) to be numerically evaluated for each value of r
and z. Their expressions are

D = |I00|2 + |I02|2 + (I00I
∗
02 + I02I

∗
00),

H = 4|I01|2, (14)

F = 2i(I02I
∗
01 − I ∗

02I01 + I00I
∗
01 − I ∗

00I01).

Before going on, it is worth noting that the integration over
the azimuthal angle is fair as long as the radial symmetry is
conserved. On the other hand, it is known that with increasing
field confinement at the focus the focal spot becomes more
and more elongated in the direction of polarization [20]; that
is, the radial symmetry gets lost. However, if the objective NA
is not too high, the departure from radial symmetry is small
and the approximation can be maintained. This is shown in
Fig. 9, where a computer simulation of the square modulus of
the focused field �E on the xz and yz planes, calculated from
Eq. (11), are reported in the case of NA = 0.45, which is the
value used in the experiments. The xz longitudinal section of
the field appears only slightly broader with the respect to the
yz longitudinal section, and thus the choice of radial symmetry
is reasonable in this case.

Equation (13) has to be solved numerically. The finite
difference method was used to calculate the tilt angle θ (r,z) as
a function of the power incident on the liquid crystal. Computer
simulations were carried on by using the same values for the
parameters as those used in the experiment.

In Fig. 10, the tilt angle θ (r,z) is reported in a three-
dimensional plot for an optical power P = 30 mW, in our
experimental conditions. First of all, we should notice the
peculiar behavior around the focal spot: The tilt angle changes

FIG. 10. Three-dimensional plot of the liquid-crystalline director
distortion θ (r,z) induced by a focused Gaussian beam in case of NA =
0.45 and P = 30 mW. The vertical scale on the right represents values
of the reorientation angle in radians.

the sign crossing zf , that is, the location of the minimum cross
section of the beam.

However, the important feature we analyze here is the
nonlocality of the optical reorientation. In Fig. 11, the
experimentally evaluated distorted area diameter is reported
together with the values calculated from θ (r,zf ) at each optical
power. We get a very satisfactory numerical model (dotted
line) considering that the theoretical width between points
was θ (r,zf ) > 0.1 rad, which is the limit of detection of the
microscopic observation of director reorientation.

The large values of the range of the reoriented region
extension reported in Fig. 11 show that, despite the micron
size of the beam waist, the incident light induces a much larger
optical director distortion, up to 65 μm and more for power

FIG. 11. Experimental values of the diameter of the distorted area
(dots); simulated curve for a focused beam by an objective with NA =
0.45 (dashed line) and simulated curve for a weakly focused Gaussian
beam (solid line).
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FIG. 12. Experimental (dotted line) and calculated (solid line)
values of the light-induced phase shift vs the trapping beam power.

higher than 200 mW. We have shown how such nonlocality
affects the trapping force (through A and B parameters)
responsible for the long-range interaction between trap and
colloid.

Performing the same calculation without taking into ac-
count the depolarization effect in the focal waist, we get the
solid line, which is not able to fit the experimental data. It is
quite interesting to see from this figure that the depolarization
effect leads to a slower rise with power of the reoriented area.

From the calculated θ (r,z) we can also obtain the optically
induced phase shift as ϕ = 2π

λ

∫
δn(r = 0,z)dz, where δn =

n(θ ) − no. This quantity is shown in Fig. 12 as a solid line
where it is compared to the same quantity evaluated by self-
phase-modulation (SPM) experiments.

SPM measurements [14] allow monitoring of the nonlinear
optical reorientation induced by the trapping beam in the trap
area. They have been performed by recording the typical SPM
ring pattern originated in the transmitted beam after focusing.

FIG. 13. SPM ring pattern for different values of the trapping
beam power.

Typical ring patterns are shown in Fig. 13 for different values
of the incident power.

The maximum induced phase shift can be easily eval-
uated by the number of rings, through the relation ϕ =
2πN [14].

It is worth emphasizing the absence of the thershold for
optical reorientation shown in the theoretical curve. This
behavior is not surprising, since when a focused beam is used a
wide spectrum of incident wave vectors should be considered
and a nonthreshold behavior can be expected for nonlinear
optical reorientation. In fact no threshold effect occurs when
an extraordinary wave is present, even at low incident power, as
happens due to the depolarization effect of a strongly focused
beam. Of course, this effect cannot be detected by simple
SPM measurements able to monitor a minimum phase shift of
2π and a more sophisticated pump probe technique would be
necessary to investigate the low-power reorientation leading to
phase shift ϕ < 2π . We should mention that the evaluation
of the induced phase shift during optical trapping through
the pump-probe tecnhique was recently proposed [4,21].
Although trapping was performed with a higher NA objective
(NA = 1.2) [4], samples were similar to those used here and a
nonvanishing phase shift was measured also for low values of
the incident intensity.

Also in this case the comparison of the experimental
results with data obtained by computer simulation is very
satisfactory, which means that the model is suitable to represent
the interaction of a focused beam with the liquid-crystalline
medium.

The value used here for the numerical aperture of the
objective is the experimental value NA = 0.45. However,
the model is of general validity, and the numerical aperture
can be increased in order to consider the interaction when
a high NA objective is used, typical of conventional optical
trapping. A more detailed presentation of the model and its
application to several different situations will be reported
elsewhere.

An additional view of the dependence of the trapping force
on the optical reorientation of liquid crystals can be given by
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FIG. 14. Coefficient A [first term of Eq. (4)] vs the experimental
light-induced phase shift.
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the dependence of the parameter A affecting the r−2 term of the
trapping force on the measured nonlinear phase shift, shown
in Fig. 14. The increase of A with increasing ϕ points out the
strong relation between the observed trapping phenomenon
and the light-induced director reorientation.

IV. CONCLUSIONS

We have investigated optical trapping of silica particles
that have a refractive index lower than the ones of the sur-
rounding nematic liquid crystal under experimental conditions
(NA = 0.45 and b = 0.5) that prevent the effect of conventional
trapping originated by optical gradient forces. The observation
of stable, long-range trapping shows that this phenomenon in
liquid crystals is regulated by completely different mechanism
with respect to those working in isotropic media. The trapping
force is of longer range (several tenths of micron) than the
conventional one, and it includes an attractive term scaling as
r−2 (already discussed in [9]) and a repulsive term scaling

as r−3. This behavior shows a stronger interaction than
the one observed in the case of colloids or droplets with
associated dipolar defects (scaling respectively with r−4 and
r−6). However, this comparison suggests an analysis of the
power dependence of the parameters driving the attractive
and the repulsive terms that demonstrates that the size a
of the optically reoriented area affects the trapping force.
Experimental data show a2 dependence for the attractive term
and a3 dependence for the repulsive term. In other words, the
strength of the interaction is regulated by the nonlocality of
optical reorientation, since the width of the reoriented area a is
more than one order of magnitude bigger than the focal waist.

In order to evaluate this parameter, we have also developed
a model for light-induced reorientation in nematics by taking
into account the depolarization effect of a strongly focused
Gaussian beam. In this way, we could get good agreement with
experimental data for both the width of optically distorted area
and the nonlinear phase shift that can be measured on the laser
trapping beam.
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