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Wetting on a spherical wall: Influence of liquid-gas interfacial properties
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We study the equilibrium of a liquid film on an attractive spherical substrate for an intermolecular interaction
model exhibiting both fluid-fluid and fluid-wall long-range forces. We first reexamine the wetting properties of
the model in the zero-curvature limit, i.e., for a planar wall, using an effective interfacial Hamiltonian approach
in the framework of the well known sharp-kink approximation (SKA). We obtain very good agreement with
a mean-field density functional theory (DFT), fully justifying the use of SKA in this limit. We then turn our
attention to substrates of finite curvature and appropriately modify the so-called soft-interface approximation
(SIA) originally formulated by Napiórkowski and Dietrich [Phys. Rev. B 34, 6469 (1986)] for critical wetting
on a planar wall. A detailed asymptotic analysis of SIA confirms the SKA functional form for the film growth.
However, it turns out that the agreement between SKA and our DFT is only qualitative. We then show that the
quantitative discrepancy between the two is due to the overestimation of the liquid-gas surface tension within
SKA. On the other hand, by relaxing the assumption of a sharp interface, with, e.g., a simple “smoothing” of
the density profile there, markedly improves the predictive capability of the theory, making it quantitative and
showing that the liquid-gas surface tension plays a crucial role when describing wetting on a curved substrate.
In addition, we show that in contrast to SKA, SIA predicts the expected mean-field critical exponent of the
liquid-gas surface tension.
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I. INTRODUCTION

The behavior of fluids in confined geometries, in particular,
in the vicinity of solid substrates, and associated wetting
phenomena are of paramount significance in numerous tech-
nological applications and natural phenomena. Wetting is
also central in several fields, from engineering and materials
science to chemistry and biology. As a consequence, it
has received considerable attention, both experimentally and
theoretically, for several decades. Detailed and comprehensive
reviews are given in Refs. [1–4].

Once a substrate (e.g., a solid wall) is brought into contact
with a gas, the substrate-fluid attractive forces cause adsorption
of some of the fluid molecules on the substrate surface,
such that at least a microscopically thin liquid film forms on
the surface. The interplay between the fluid-fluid interaction
(cohesion) and the fluid-wall interaction (adhesion) then
determines a particular wetting state of the system. This state
can be quantified by the contact angle at which the liquid-gas
interface meets the substrate. If the contact angle is nonzero,
i.e., a spherical cap of the liquid is formed on the substrate,
the surface is called partially wet. In the regime of partial
wetting, the cap is surrounded by a thin layer of adsorbed
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fluid which is of molecular dimension. Upon approaching the
critical temperature, the contact angle continuously decreases
and eventually vanishes. Beyond this wetting temperature one
speaks of complete wetting and the film thickness becomes
of macroscopic dimension. The transition between the two
regimes can be qualitatively distinguished by the rate of
disappearance of the contact angle, which is discontinuous
in the case of a first-order transition or continuous for critical
wetting.

From a theoretical point of view, it is much more convenient
to take the adsorbed film thickness �, rather than the contact
angle, as an order parameter for wetting transitions and related
phenomena. An interfacial Hamiltonian is then minimized
with respect to � as is typically the case with the (mesoscopic)
Landau-type field theories and (microscopic) density func-
tional theory (DFT)—where � can be easily determined from
the Gibbs adsorption, a direct output of DFT.

In this study, we examine the wetting properties of a
simple fluid in contact with a spherical attractive wall by
using an intermolecular interaction model with fluid-fluid
and fluid-wall long-range forces. The curved geometry of the
system prohibits a macroscopic growth of the adsorbed layer
(and thus complete wetting), since the free-energy contribution
due to the liquid-gas interface increases with the film thickness
�, and thus for a given radius of a spherical substrate there must
be a maximum finite value of � [1,5,6]. For the mesoscopic
approaches, the radius of the wall R is a new field variable that
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introduces one additional �-dependent term to the effective
interface Hamiltonian of the system, compared to the planar
geometry, where the only �-dependent term is the binding
potential between the wall-liquid and liquid-gas interfaces.
Furthermore, for a fluid model exhibiting a gas-liquid phase
transition, such as ours, it has been found that two regimes of
the interfacial behavior should be distinguished: R > Rc, in
which case the surface tension can be expanded in integer pow-
ers of R−1 and R < Rc, where the interfacial quantities exhibit
a nonanalytic behavior [7]. Moreover, for an intermolecular
interaction model with fluid-fluid long-range interactions,
there is an additional R−2 ln R contribution to the surface
tension in the R > Rc regime [8]. These striking observations
actually challenge all curvature expansion approaches. In
addition, a certain equivalence between a system of a saturated
fluid on a spherical wall and a system of an unsaturated fluid
on a planar wall above the wetting temperature has been
found [5,8]. Somewhat surprisingly, DFT computations con-
firmed this correspondence at the level of the density profiles
down to unexpectedly small radii of the wall [8].

Most of these conjectures follow from the so-called sharp-
kink approximation (SKA) [1], based on a simple piecewise
constant approximation of a one-body density distribution of
the fluid, i.e., a coarse-grained approach providing a link
between mesoscopic Hamiltonian theories and microscopic
DFT. The simple mathematical form of SKA has motivated
many theoretical investigations of wetting phenomena, as it
makes them analytically tractable. At the same time, SKA
appears to capture much of the underlying fundamental physics
for planar substrates (often in conjugation with exact statistical
mechanical sum rules [9]).

However, as we show in this work, SKA is only qualitative
for spherical substrates, even though the functional form of the
film growth can still be successfully inferred from the theory
[8]. We attribute this to the particular approximation of the
liquid-gas interface adapted by SKA. In particular, since the �-
dependent contribution to the interface Hamiltonian due to the
curvature is proportional to the liquid-gas surface tension, the
latter plays an important role compared to the planar geometry.

More specifically, the curved geometry induces a Laplace
pressure whose value depends on both film thickness and
surface tension, and so the two quantities are now coupled,
in contrast with the planar geometry where a parallel shift of
the liquid-gas dividing surface does not influence the surface
contribution to the free energy of the system. We further
employ an alternative coarse-grained approach, a modification
of the one originally proposed by Napiórkowski and Dietrich
[10] for the planar geometry, which replaces the jump in
the density profile at the liquid-gas interface of SKA by
a continuous function restricted by several reasonable con-
straints. We show that in this “soft-interface approximation”
(SIA) the leading curvature correction to the liquid-gas surface
tension is O(R−1), rather than O(R−2 ln R), in line with
the Tolman theory. Once a particular approximation for the
liquid-gas interface is taken, the corresponding Tolman length
can be easily determined. Apart from this, we find that the
finite width of the liquid-gas interface significantly improves
the prediction of the corresponding surface tension when
compared with the microscopic DFT computations, which

consequently markedly improves the estimation of the film
thickness in a spherical geometry.

In Sec. II we describe our microscopic model and the
corresponding DFT formalism. In Sec. III we present results
of wetting phenomena on a planar wall obtained from our
DFT based on a continuation scheme that allows us to trace
metastable and unstable solutions. The results are compared
with the analytical prediction as given by a minimization of
the interface Hamiltonian based on SKA. We also make a
connection between the two approaches by introducing the
microscopic model into the interfacial Hamiltonian. In Sec. IV
we turn our attention to the main part of our study, a thin
liquid film on a spherical wall. We show that SKA does
not account for a quantitative description of the liquid-gas
surface tension which plays a significant role when the
substrate geometry is curved. We then introduce SIA and
present an asymptotic analysis with our approach. Comparison
with DFT computations reveals a substantial improvement
of the resulting interface Hamiltonian, even for very simple
approximations of the density distribution at the liquid-vapor
interface, indicating the significance of a nonzero width of
the interface. We conclude in Sec. V with a summary of our
results and discussion. Appendix A describes the continuation
method we developed for the numerical solution of DFT. In
Appendix B we show derivations of the surface tension and the
binding potential for both a planar and a spherical geometry
within SKA. Finally, Appendix C shows derivations of the
above quantities, including Tolman’s length, using SIA.

II. DFT

A. General formalism

DFT is based on Mermin’s proof [11] that the free energy of
an inhomogeneous system at equilibrium can be expressed as
a functional of an ensemble averaged one-body density, ρ(r)
(see, e.g., Ref. [12] for more details). Thus, the free-energy
functional F[ρ] contains all the equilibrium physics of the
system under consideration. Clearly, for a three-dimensional
fluid model one has to resort to an approximative functional.
Here we adopt a simple but rather well established local density
approximation,

F[ρ] =
∫

fHS[ρ(r)]ρ(r) dr

+ 1

2

∫∫
ρ(r)ρ(r′)φ(|r − r′|) dr′ dr, (1)

where fHS[ρ (r)] is the free energy per particle of the hard-
sphere fluid (accurately described by the Carnahan-Starling
equation of state), including the ideal gas contribution. The
contribution due to the long-range van der Waals forces is
included in the mean-field manner. To be specific, we consider
a full Lennard-Jones (LJ) 12-6 potential to model the fluid-fluid
attraction according to the Barker-Henderson perturbative
scheme

φ(r) =
{

0, r < σ

4ε
[(

σ
r

)12 − (
σ
r

)6]
, r � σ,

(2)

where for the sake of simplicity the LJ parameter σ is taken
equal to the hard-sphere diameter.
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The free-energy functional F[ρ] describes the intrinsic
properties of a given fluid. The total free energy, including
also a contribution of the external field, is related to the grand
potential functional through the Legendre transform

�[ρ] = F[ρ] +
∫

ρ (r) [V (r) − μ] dr, (3)

where μ is the chemical potential and V (r) is the external field
due to the presence of a wall W ⊂ R3,

V (r) =
{∞, r ∈ W

ρw

∫
W

φw(|r − r′|) dr′ elsewhere,
(4)

consisting of the atoms interacting with the fluid particles via
the LJ potential φw (r), with the parameters σw and εw, and
uniformly distributed throughout the wall with a density ρw:

φw (r) = 4εw

[(
σw

r

)12

−
(

σw

r

)6]
. (5)

Applying the variational principle to the grand potential
functional, Eq. (3), we attain the Euler-Lagrange equation:

δFHS[ρ]

δρ(r)
+

∫
ρ(r′)φ(|r − r′|) dr′ + V (r) − μ = 0, (6)

where FHS[ρ] denotes the first term in the right-hand side
of Eq. (1). In general, the solution to Eq. (6) comprises
all extremes of the grand potential �[ρ] as given by
Eq. (3) and not just the global minimum corresponding
to the equilibrium state. Here we develop a pseudo arc-
length continuation scheme for the numerical computation
of Eq. (6) that enables us to capture both locally stable and
unstable solutions and thus to construct the entire bifurcation
diagrams for the isotherms (details of the scheme are given in
Appendix A).

The excess part of the grand potential functional (3) over
the bulk may be expressed in the form

�ex[ρ(r)] = −
∫

{p[ρ(r)] − p(ρb)} dr

+ 1

2

∫∫
ρ(r)[ρ(r′) − ρ(r)]φ(|r′ − r|)dr′ dr

+
∫

ρ(r)V (r) dr, (7)

where ρb is the density of the bulk phase and

−p(ρ) = ρfHS(ρ) + αρ2 − μρ (8)

is the negative pressure, or grand potential per unit volume,
of a system with uniform density ρ and α ≡ 1

2

∫
φ(|r|)dr =

− 16
9 πεσ 3. In particular, the equilibrium value of the excess

grand potential (7) per unit area of a two-phase system of liquid
and vapor in the absence of an external field, yields the surface
tension between the coexisting phases, γlg . The prediction of
γlg as given by the minimization of Eq. (7) agrees fairly well
with both computations and experimental data, as shown in
Fig. 1.

B. Translational symmetry: Planar wall

If the general formalism outlined above is applied on a
particular external field attaining a certain symmetry, it will
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FIG. 1. Plots of surface tension as a function of dimensionless
temperature, T/Tc. Solid line: numerical DFT results of our model
scaled with ε/kB = 119.8 K and σ = 3.4 Å; triangles: computa-
tional results by Toxvaerd for a 12-6 LJ fluid using the Barker-
Henderson perturbation theory [13] with the Percus-Yevick solution
[14] for the hard-sphere reference fluid and using the exact hard-
sphere diameter [15]; circles: Monte Carlo simulations by Lee and
Barker [16]; squares: experimental results for argon by Guggenheim
[17]; dashed line: fit of experimental results to equation γ (T ) =
γ0(1 − T/Tc)1+r by Guggenheim [17]. The resulting coefficients are
γ0 = 36.31 dyn/cm and r = 2

9 .

adopt a significantly simpler form. In the next section we will
formulate the basic equations resulting from the equilibrium
conditions obtained from the minimization of Eq. (7), for
a spherical model of the external field, i.e., a system with
rotational symmetry. But prior to that, it is instructive to discuss
the zero-curvature limit of the above model, corresponding
to an adsorbed LJ fluid on a planar wall, a system with
translational symmetry.

For a planar substrate W = R2 × R− in Cartesian coordi-
nates, the density profile is only a function of z, so that the
Euler-Lagrange equation reads

μHS [ρ(z)] +
∫ ∞

0
ρ(z′)�Pla(|z − z′|) dz′

+V∞(z) − μ = 0 (∀z ∈ R+), (9)

where μHS[ρ] = ∂[fHS(ρ)ρ]
∂ρ

is the chemical potential of the hard-
sphere system. A fluid particle at a distance z from the wall
experiences the wall potential:

V∞(z) = ρw

∫
W

φw

(√
x ′2 + y ′2 + (z − z′)2

)
dx ′ dy ′ dz′

=
{∞, z � 0

4πρwεwσ 3
w

[
1

45

(
σw

z

)9 − 1
6

(
σw

z

)3]
, z > 0.

(10)

�Pla(z) in Eq. (9) is the surface potential exerted by the fluid
particles uniformly distributed (with a unit density) over the
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x-y plane at distance z:

�Pla(z) =
∫∫

φ(
√

x2 + y2 + z2) dy dx

= 2π

∫ ∞

0
φ(

√
z2 + r2) r dr

= −6

5
πεσ 2 ×

{
1, z < σ
5
3

(
σ
z

)4 − 2
3

(
σ
z

)10
, z � σ.

(11)

In the framework of DFT, the natural order parameter for
wetting transitions is the Gibbs adsorption per unit area:

�∞[ρ (z)] =
∫ ∞

0
[ρ(z) − ρb] dz. (12)

C. Rotational symmetry: Spherical wall

If the external field is induced by a spherical wall, W =
{r ∈ R3 : r ≡ |r| < R}, the variational principle yields

μHS[ρ(r)] +
∫ ∞

R

ρ(r ′)�Sph(r,r ′)dr ′

+VR(r) − μ = 0 (∀r > R), (13)

where �Sph(r,r ′) is the surface interaction potential per unit
density generated by fluid particles uniformly distributed on
the surface of the sphere Br ′ centered at the origin at distance r ,

�Sph(r,r ′) =
∫

∂Br′
φ(|r − r̃|) d r̃

= r ′

r
[�Pla(|r − r ′|) − �Pla(|r + r ′|)] (14)

(see also Appendix B 1). The wall potential in Eq. (4) for the
spherical wall, W = {r ∈ R3 : r ≡ |r| < R}, is

VR(r) = ρwεwσ 4
wπ

3r

{
σ 8

w

30

[
r + 9R

(r + R)9
− r − 9R

(r − R)9

]

+ σ 2
w

[
r − 3R

(r − R)3
− r + 3R

(r + R)3

] }
. (15)

Replacing the distance from the origin r by the radial distance
from the wall r̃ = r − R, one can easily see that the external
potential (15) reduces to the planar wall potential (10), for
R → ∞. Analogously to the planar case, we define the
adsorption �R as the excess number of particles of the system
with respect to the surface of the wall:

�R[ρ(r)] =
∫ ∞

R

(
r

R

)2

[ρ(r) − ρb] dr. (16)

III. WETTING ON A PLANAR SUBSTRATE

In this section we make a comparison between the nu-
merical solution of DFT and the prediction given by the
effective interfacial Hamiltonian according to SKA for the
first-order wetting transition on a planar substrate. More
specifically, we consider a planar semi-infinite wall interacting
with the fluid according to Eq. (10) with the typical parameters
ρwεw = 0.8ε/σ 3 and σw = 1.25σ that correspond to the class
of intermediate-substrate systems [18] for which prewetting
phase transitions can be observed. We note that wetting on

planar and spherical walls is a multiparametric problem, and
hence a full parametric study of the global phase diagram is a
difficult task, beyond the scope of this paper.

A. Numerical DFT results of wetting on a planar wall

Figure 2 depicts the surface-phase diagram of the consid-
ered model in the (�μ,T ) plane, where �μ = μ − μsat is the
departure of the chemical potential from its saturation value.
The first-order wetting transition takes place at wetting tem-
perature kBTw = 0.621ε, well below the critical temperature
of the bulk fluid kBTc = 1.006ε for our model. The prewetting
line connects the saturation line at the wetting temperature
Tw and terminates at the prewetting critical point, kBTpwc =
0.724ε. The slope of the prewetting line is governed by a

-0.02
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 0.06

 0.62  0.64  0.66  0.68  0.7  0.72
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 0.01  0.1  1
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FIG. 2. (a) Deviation of the chemical potential from its saturation
value at prewetting (crosses), and at the left (open squares) and
right (filled squares) saddle nodes of bifurcation as a function of
temperature. The dashed line marks the locus of the chemical potential
at saturation for the given temperature, �μ = 0. The solid line is a
fit to −�μpw(T )/(kBTw) = C[(T − Tw)/Tw]3/2, where the wetting
temperature is kBTw = 0.621ε and the prewetting critical temper-
ature is kBTpwc = 0.724ε. The resulting coefficient is C = 0.77.
(b) Scaled prewetting phase diagrams for different systems. The
circles are DFT calculations for an attractive wall with σw =
1.25σ and ρwεw = 0.8ε/σ 3 (open circles) and ρwεw = 0.75ε/σ 3

(filled circles). Experimental data [21]: filled squares, methanol
on cyclohexane [22]; open triangles, H2 on rubidium [23]; filled
triangles, He on caesium [24]; and open squares, H2 on caesium [25].
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Clapeyron-type equation [19], which, in particular, states that
the prewetting line approaches the saturation line tangentially
at Tw with

d(�μpw)

dT

∣∣∣∣
T =Tw

= 0, (17)

in line with our numerical computations. Schick and Taborek
[20] later showed that the prewetting line scales as −�μ ∼
(T − Tw)3/2. In Ref. [21], this power law was confirmed
experimentally, such that

−�μpw(T )

kBTw

= C

(
T − Tw

Tw

)3/2

, (18)

with C ≈ 1
2 . A fit of our DFT results with Eq. (18) leads

to a coefficient C = 0.77, in reasonable agreement with the
experimental data (see Fig. 2).

Figure 3 depicts the adsorption isotherm in terms of the
thickness of the adsorbed liquid film � as a function of �μ

for the temperature kBT = 0.7ε in the interval between the
wetting temperature Tw and the prewetting critical temperature
Tpwc. � can be associated with the Gibbs adsorption through

� = �R[ρ]

�ρ
, (19)

for both finite and infinite R, where �ρ = ρsat
l − ρsat

g is the
difference between the liquid and gas densities at saturation.

The isotherm exhibits a van der Waals loop with two turning
points depicted as B and C demarcating the unstable branch.
Points A and D indicate the equilibrium between thin and
thick layers, corresponding to a point on the prewetting line in
Fig. 2. The location of the equilibrium points can be obtained
from a Maxwell construction. Details of the numerical scheme
we developed for tracing the adsorption isotherms are given in
Appendix A.

B. SKA for a planar wall

For the sake of clarity and completeness we briefly review
the main features of SKA for a planar geometry (details are
given in Ref. [1]).

Let us consider a liquid film of thickness � adsorbed on
a planar wall. According to SKA the density distribution is
approximated by a piecewise constant function

ρSKA
� (z) =

⎧⎨
⎩

0, z < δ

ρ+
l , δ < z < �

ρg, z > � ,

(20)

where ρg is the density of the gas reservoir and ρ+
l is the density

of the metastable liquid at the same thermodynamic conditions
stabilized by the presence of the planar wall, Eq. (10) and
δ ≈ 1

2 (σ + σw). The off coexistence of the two phases induces
the pressure difference

p+(μ) − p(μ) ≈ �ρ�μ, (21)

where p+ is the pressure of the metastable liquid and p is
the pressure of the gas reservoir, and where we assume that
�μ = μ − μsat < 0 is small.
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FIG. 3. (a) �-�μ bifurcation diagram for kBT = 0.7ε for a wall
with ρwεw = 0.8ε/σ 3 and σw = 1.25σ . �μ is the deviation of the
chemical potential from its saturation value, μsat. The prewetting
transition, marked by the dashed line, occurs at chemical potential
�μpw = −0.022ε. The inset subplots show the density ρσ 3 as a
function of the distance z/σ from the wall. (b) Excess grand potential
�ex/ε as a function of �μ/ε in the vicinity of the prewetting
transition.

The excess grand potential per unit area A of the system
then can be expressed in terms of macroscopic quantities as a
function of �

�ex(�; μ)

A = −�μ�ρ(�− δ) + γ SKA
wl (μ)

+ γ SKA
lg + wSKA(�; μ), (22)

where γ SKA
wl and γ SKA

lg are the SKAs to the wall-liquid and
the liquid-gas surface tensions, respectively, and wSKA(�) is
the effective potential between the two interfaces (binding
potential). In the following, we will suppress the explicit μ

dependence of these quantities.
The link with the microscopic theory can be made if the

contributions in the right-hand side of Eq. (22) are expressed
in terms of our molecular model, which, when summed up,
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give the excess grand potential (7), where we have substituted
the ansatz (20):

γ SKA
wl = −ρ+2

l

2

∫ 0

−∞

∫ ∞

0
�Pla(|z − z′|) dz′ dz (23)

+ ρ+
l

∫ ∞

δ

V∞(z) dz

= 3

4
πεσ 4ρ+2

l + π

90δ8

(
σ 6

w − 30δ6
)
σ 6

wρwεwρ+
l ,

γ SKA
lg = −�ρ2

2

∫ 0

−∞

∫ ∞

0
�Pla(|z − z′|) dz′ dz

= 3

4
πεσ 4�ρ2, (24)

wSKA(�) = �ρ

(
ρ+

l

∫ ∞

�−δ

∫ ∞

z

�Pla(z′) dz′ dz

−
∫ ∞

�

V∞(z) dz

)
(25)

= − A

12π�2

⎛
⎝1 + 2 + 3 δ

�

1 − ρwεwσ 6
w

ρ+
l εσ 6

δ

�
+ O

(
(δ/�)3

)⎞
⎠ ,

where we considered the distinguished limit δ � �. A is the
Hamaker constant given by:

A = 4π2�ρ
(
ρ+

l εσ 6 − ρwεwσ 6
w

)
. (26)

We note that the Hamaker constant is implicitly temperature
dependent and that the attractive contribution of the potential
of the wall enables the Hamaker constant to change its sign.
Hence, in contrast with adsorption on a hard wall, where
the Hamaker constant is always negative, there may be a
temperature below which its sign is positive (large ρl) and
negative above. Clearly, complete wetting is only possible for
A < 0.

Making use of only the leading-order term in Eq. (25), the
minimization of Eq. (22) with respect to � gives

�ρ�μ − A

6π�3
≈ 0. (27)

Hence, at this level of approximation the equilibrium thickness
of the liquid film is

�eq ≈
(

A

6π�ρ�μ

)1/3

. (28)

When substituted into Eq. (22), the wall-gas surface tension to
leading order reads

γ SKA
wg = γ SKA

wl + γ SKA
lg +

(
− 9A

16π

)1/3

|�ρ�μ|2/3. (29)

Equation (28) can be confirmed by a comparison against
numerical DFT (see Fig. 4). We observe that the prediction
of SKA becomes reliable for |�μ| < 0.01ε, corresponding
to a somewhat surprisingly small value of the liquid film,
� ≈ 5σ . Beyond this value, the coarse-grained approach loses
its validity, and also, the prewetting transition is approached,
both of which cause the curve in Fig. 4 to bend (see also Fig. 3).

 5

 10

 20

 40

10-4 10-3 10-2

FIG. 4. Ln-ln plot of the film thickness as a function of deviation
of the chemical potential from saturation, �μ, for kBT = 0.7ε and
wall parameters ρwεw = 0.8ε/σ 3 and σw = 1.25σ . The crosses are
results from DFT computations. The solid line is the analytical
prediction in Eq. (27) obtained from SKA.

It is worth noting that the only term in Eq. (22) having an �

dependence and thus governing the wetting behavior, is the
term related to the undersaturation pressure and the binding
potential, wSKA(�). Clearly, γlg does not come into play in
the planar case since the translation of the liquid-gas interface
along the z axis does not change the free energy of the system.
The situation becomes qualitatively different if the substrate
is curved. Nevertheless, at this stage we conclude in line with
earlier studies, that SKA provides a fully satisfactory approach
to the first-order wetting transition on a planar wall.

IV. WETTING ON A CURVED SUBSTRATE

A. SKA for the spherical wall

For the spherical geometry, SKA adopts the following form:

ρSKA
R,� (r) =

⎧⎨
⎩

0, r < R + δ

ρ+
l , R + δ < r < R + �

ρg, R + � < r < ∞ .

(30)

The corresponding excess grand potential now reads

�ex(μ,R,�)

4πR2
= −�μ�ρ

(R + �)3 − R̃3

3R2
+ γ SKA

wl (R)

+ γ SKA
lg (R + �)

(
1 + �

R

)2

+ wSKA(�; R),

(31)

where R̃ = R + δ. Within this approximation, the liquid-vapor
surface tension becomes (see also Appendix B)

γ SKA
lg (R) = γ SKA

lg (∞)

{
1 − 2

9

ln(R/σ )

(R/σ )2
+ O

(
(σ/R)2

)}
(32)

and an analogous expansion holds for γ SKA
wl (R). The ln(R/σ )

(R/σ )2

correction to γ SKA
lg (∞) is due to the r−6 decay of our model.

We note that short-range potentials lead to different curvature
dependence of the surface tension, a point that has been
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discussed in detail in Refs. [7,8,26]. Interestingly, the O(σ/R)
correction to the surface tension, as one would expect from the
Tolman theory [27], is missing. It corresponds to a vanishing
Tolman length within SKA, as we will explicitly show in the
following section. Although the value of the Tolman length is
still a subject of some controversy, it is most likely that its value
is nonzero, unless the system is symmetric under interchange
between the two coexisting phases [28]. This observation has
been confirmed numerically in Ref. [8] from a fit of DFT
results for the wall-gas surface tension in a nondrying regime
for the hard-wall substrate. Thus, the linear term was included
by hand into the expansion (32) [8].

Finally, the binding potential within SKA for the spherical
wall yields

wSKA (�; R) = wSKA(�; ∞)

(
1 + �

R

)
, (33)

where terms O
(
(δ/�)3,δ/R,

ln(�/R)
(R/�)2

)
have been neglected.

B. SIA for the spherical wall

As an alternative to SKA, Napiórkowski and Dietrich [10]
proposed a modified version of the effective Hamiltonian, in
which the liquid-gas interface was approximated in a less crude
way by a continuous monotonic function, the SIA. Applied
for the second-order wetting transition on a planar wall, SIA
merely confirmed that SKA provides a reliable prediction for
such a system. Formulated now for the spherical case, the
density profile of the fluid takes the form

ρSIA
R,� (r)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, r < R + δ

ρ+
l , R + δ < r < R + � − χ

2

ρlg(r − R − �), R + � − χ

2 < r < R + � + χ

2

ρg R + � + χ

2 < r < ∞.

(34)

Thus, a nonzero width of the liquid-vapor interface, χ , is
introduced as an additional parameter. The density profile
ρlg(·) in this region is not specified, but the following
constraints are imposed:

ρlg

(
− χ

2

)
= ρ+

l and ρlg

(
χ

2

)
= ρg, (35)

with an additional assumption of a monotonic behavior of the
function ρlg(r). An illustrative example of ρSIA

R,� (r) is given
in Fig. 5. The corresponding excess grand potential takes the
form

�ex

4πR2
= −�μ�ρ

(R + �)3 − R̃3

3R2
+ γ SIA

wl (R)

+
(

1 + �

R

)2

γ SIA
lg (R + �) + wSIA (R,�) , (36)

taking R + � as the Gibbs dividing surface (so that � is a
measure of the number of particles adsorbed at the wall).

gas

liq

χ χ

FIG. 5. Sketch of the density profile according to SIA for a certain
film thickness �. A piecewise function approximation is employed so
that except for the interval (R + � − χ/2,R + � + χ/2) the density
is assumed to be piecewise constant.

The binding potential (see also Appendix C 3) is obtained
from

wSIA (R,�)

= ρ+
l

∫ ∞

R+�−χ/2

[
ρ+

l − ρSIA
R,� (r)

]
�R+δ (r)

(
r

R

)2

dr

−
∫ ∞

R+�−χ/2

[
ρ+

l − ρSIA
R,� (r)

]
VR(r)

(
r

R

)2

dr, (37)

where �R(r) = ∫ R

0 �Sph(r,r ′)dr ′—see Appendix B 1 for the
explicit form of the last expression.

The wall-liquid surface tension remains unchanged com-
pared to that obtained from SKA, Eq. (24). However, the
liquid-gas surface tension now reads (see Appendix C 1)

γ SIA
lg (R) = −

∫ R+χ/2

R−χ/2
{p[ρlg,R(r)] − pref}

(
r

R

)2

dr

+ 1

2

∫ ∞

0

∫ ∞

0
ρlg,R(r)[ρlg,R(r ′) − ρlg,R(r)]

×�Sph(r,r ′)
(

r

R

)2

dr ′ dr, (38)

where pref is the pressure at saturation.
From now on, we neglect the curvature dependence of χ and

ρlg,R (·), as they would introduce higher-order corrections not
affecting the asymptotic results at our level of approximation.
This is also in line with previous studies which show that the
Tolman length only depends on the density profile in the planar
limit [28]. Then Eq. (38) can be written as

γ SIA
lg (R) = γ SIA

lg (∞)

[
1 − 2δ∞

R
+ O

(
ln(R/σ )

(R/σ )2

)]
, (39)

where δ∞ is the Tolman length of the liquid-gas surface
tension, as given by (Appendix C 2)

δ∞ = 1

γ SIA
lg (∞)

∫ χ/2

−χ/2
{p[ρlg(z)] − pref}z dz. (40)
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The Tolman length is independent of the choice of the dividing
surface. We also note that an immediate consequence of
Eq. (40) is that within SKA the Tolman length vanishes.

The equilibrium film thickness then follows from setting
the derivative of Eq. (36) with respect to � equal to zero:

1

4πR2

d�ex

d�
= −�μ�ρ

(
1 + �

R

)2

+ 2

R

(
1 + �

R

)

× γ SIA
lg (R + �) +

(
1 + �

R

)2 dγ SIA
lg

d�

∣∣∣∣
R+�

+ρ+
l

∫ R+�+χ/2

R+�−χ/2
ρ ′

lg(r − R − �)�R+δ(r)

×
(

r

R

)2

dr −
∫ R+�+χ/2

R+�−χ/2
ρ ′

lg(r − R − �)

×VR(r)

(
r

R

)2

dr. (41)

The last two terms of Eq. (41) are of the form

∫ χ/2

−χ/2
ρ ′

lg(r)fI,II(R + � + r) dr, (42)

with fI(r) = ρ+
l �R+δ(r)( r

R
)2 and fII(r) = VR(r)( r

R
)2. Since

ρlg(r) is monotonic, i.e., ρ ′
lg does not change sign, the mean

value theorem can be employed such that

∫ χ/2

−χ/2
ρ ′

lg(r)fI,II(R + � + r) dr

= −�ρfI,II(R + � + ξI,II), (43)

for some ξI,II ∈ (−χ/2,χ/2), where we made use of∫
ρ ′

lg(r)dr = −�ρ. Substituting Eq. (43) into Eq. (41) and
setting the resulting expression equal to zero, we obtain

�μ = 1

�ρ

(
2γ SIA

lg (R + �)

R + �
+ dγ SIA

lg

d�

∣∣∣∣∣
R+�

)

− ρ+
l �R+δ(R + � + ξI)

(
1 + ξI

R + �

)2

+VR(R + � + ξII)

(
1 + ξII

R + �

)2

. (44)

So far, there is no approximation within SIA. Equation (44)
can be simplified by appropriately estimating the values of
the auxiliary parameters ξI and ξII. To this end, we employ
a simple linear approximation to the density profile at the
liquid-gas interface, taking −ρ ′

lg(r)/�ρ ≈ 1/χ in Eq. (43).
Furthermore, we expand fI,II in powers of �/R,σ/�,

fI (R + � + r) = − 2πρ+
l εσ 6

3 (� + r − δ)3

[
1 + � + r + 3δ

2R

+O

((
σ

�

)6

,

(
�

R

)2)]
, (45)

fII (R + � + r) = −2πρwεwσ 6
w

3 (� + r)3

[
1 + � + r

2R

+O

((
σ

�

)6

,

(
�

R

)2)]
, (46)

where we assumed the distinguished limits r,δ,σ � � � R.
Inserting Eqs. (45) and (46) into Eq. (43) yields for ξI,II:

ξI,II = −χ2

6�

[
1 + O

(
δ

�
,
�

R
,

(
χ

�

)2)]
. (47)

From Eq. (44), we obtain to leading order,

ρ+
l �R+δ(R + � + ξI)

(
1 + ξI

R + �

)2

= − 2π

3�3
ρ+

l εσ 6

[
1 + O

(
δ

�
,
�

R
,

(
χ

�

)2)]
, (48)

VR(R + � + ξII)

(
1 + ξII

R + �

)2

= − 2π

3�3
ρwεwσ 6

w

[
1 + O

(
�

R
,

(
χ

�

)2)]
. (49)

Finally, substituting Eqs. (48) and (49) into Eq. (44), we have
to leading order

�ρ�μ − 2

R
γ SIA

lg (∞) ≈ A

6π�3
, (50)

and hence, to leading order the equilibrium wetting film
thickness is

�SIA
eq ≈

(
A

6π
(
�ρ�μ − 2γ SIA

lg,∞
/
R

))1/3

. (51)

We note that this asymptotic analysis can be extended beyond
Eq. (51), by including terms O(δ/�), O(�/R), and O((χ/�)2).
The latter occurs due to the “soft” treatment of the liquid-vapor
interface and is thus not present in SKA.

In Fig. 6 we compare two adsorption isotherms (kBT =
0.7ε) corresponding to wetting on a planar and a spherical
wall (R = 100σ ). The two curves are mutually horizontally
shifted by a practically constant value, in accordance with
Eq. (50). This implies that the curve for the spherical wall
crosses the saturation line �μ = 0 at a finite value of �,
and eventually converges to the saturation line as �μ−1

from the right, thus the finite curvature prevents complete
wetting. The horizontal shift corresponds to the Laplace
pressure contribution, �μ = 2γ SIA

lg (∞)/ (�ρR), as verified
by comparison with the numerical DFT (Fig. 7). All these
conclusions are in line with SKA. However, the difference
between SKA and SIA consists in a different treatment of
γlg(∞) [compare Eqs. (B4) and (C2)]. This is quite obvious,
since the softness of the interface influences the free energy
required to increase the film thickness. We will discuss this
point in more detail in the following section.
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FIG. 6. Isotherms and density profiles for a planar wall (dashed
lines) and a sphere with R = 100σ (solid lines) at kBT = 0.7ε and
with wall parameters ρwεw = 0.8ε/σ 3 and σw = 1.25σ . To directly
compare the planar to the spherical case, the film thickness instead
of adsorption is used as a measure. The subplots in the inset depict
the density ρσ 3 as a function of the distance from the wall z/σ

and (r − R)/σ for the planar and the spherical cases, respectively.
The points A and A′ are at the prewetting transitions. Points B,B ′

and C,C ′ correspond to the same film thickness. B is at saturation,
whereas C is chosen such that the film thickness � is 20σ .

C. Comparison of SKA and SIA

We now examine the repercussions of the way the liquid-gas
interface is treated on the prediction of wetting behavior on a
spherical surface. As already mentioned in Sec. IV B, the linear
correction in the curvature to the planar liquid-gas surface
tension, ignored within SKA, is properly captured by SIA.
Furthermore, the presence of the Laplace pressure suggests
that the liquid-gas surface tension plays a strong part in the
determination of the equilibrium film thickness. This contrasts
to the case of a planar geometry, where the term associated with

10-5

10-4

10-3

10-2

10-1

101 102 103 104 105

FIG. 7. Numerical verification of Eq. (50). The film thickness �

is fixed and corresponds to the adsorption �R = 3.905/σ 2. The solid
line corresponds to the analytical result, �μ − 2γ SIA

lg (∞)/ (�ρR) =
Cε, where γ SIA

lg (∞) = 0.524ε/σ 2 (see Table I). The symbols denote
the numerical DFT results.

TABLE I. Planar surface tensions (Eq. (C2)), Tolman lengths
(Eq. (40)), and the corresponding parameters for temperature kBT =
0.7ε according to a given auxiliary function approximating the
density distribution of the vapor-liquid interface. The parameters
are from auxiliary function minimization. The surface tension given
by numerical DFT computations is γlg = 0.517ε/σ 2 and ρ̄ = (ρl +
ρg)/2. Note that in the tanh case, the interface width is implicitly
determined by the steepness parameter α.

Auxiliary function ρlg(z) γ SIA
lg (∞) Argument δ∞

ρ̄ − �ρ z

χ
0.544ε/σ 2 χ = 4.0σ −0.07σ

ρ̄ − 3
2 �ρ z

χ
+ 2�ρ( z

χ
)3 0.532ε/σ 2 χ = 5.4σ −0.09σ

ρ̄ − �ρ

2 tanh (αz/σ ) 0.524ε/σ 2 α = 0.66 −0.11σ

the liquid-gas surface tension has no impact on the equilibrium
configuration.

To investigate this point in detail, we will first compare the
approximations of γlg as obtained by the two approaches. For
this purpose, we start with SIA for a given parametrization
of the liquid-gas interface. As shown in Table I, we employ
linear, cubic, and hyperbolic tangent auxiliary functions, where
the latter violates condition (35) negligibly. The particular
parameters are determined by minimization of a given function
with respect to the corresponding parameters. In Table I we
display the planar liquid-gas surface tension associated with
a particular parametrization and the Tolman length resulting
from Eq. (40) for the temperature kBT = 0.7ε. In all three
cases the surface tension is close to the one obtained from
the numerical solution of DFT and also, the predictions of
the Tolman length are in reasonable agreement with the most
recent simulation results [29–31], with thermodynamic results
[32] as well as with results from the van der Waals square
gradient theory [33].

It is reasonable to assume that from the set of considered
auxiliary functions, the tanh approximation is the most realistic
one, although the numerical results as given in Table I suggest
that it is mainly the finite width of the liquid-gas interface,
rather than the approximation of the density profile at this
region, that matters. To illustrate this, we show in Fig. 8 the
dependence of the surface tension on the steepness parameter
α, determining the shape of the tanh function. Note that the
limit α → ∞ corresponds to the surface tension as predicted
by SKA, γ SKA

lg,∞ = 1.060ε/σ 2, for kBT = 0.7ε. Such a value
contrasts with the result of SIA, which corresponds to the
minimum of the function, and yields γ SIA

lg,∞ = 0.524ε/σ 2, in
much better agreement with the numerical solution of DFT,
γ DFT

lg,∞ = 0.517ε/σ 2.
Asymptotic analysis of the film thickness in Eq. (50)

reveals that the film thickness for large but finite R remains
finite even at saturation with � ∼ R1/3 in line with earlier
studies, e.g., Refs. [5,8]. From Eq. (50) one also recognizes
a strong dependence of � on the planar liquid-gas surface
tension. In Fig. 9 we present the SIA and SKA predictions
of the dependence on � as a function of the wall radius. The
comparison with the numerical DFT results reveals that for
large R, SIA is clearly superior, reflecting a more realistic
estimation of the liquid-gas surface tension. For small values
of R (and �) we observe a deviation between DFT and the
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FIG. 8. Plot of a dimensionless planar liquid-gas surface ten-
sion for the liquid-gas interface approximation ρ(z) = ρl+ρg

2 −
�ρ

2 tanh (αz/σ ) for kBT = 0.7ε as a function of the steepness
parameter α. The upper dashed line is the surface tension obtained
from SKA, whereas the lower dashed line displays the surface tension
obtained from numerical DFT.

SIA results. This indicates a limit of validity of our first-order
analysis and the assumption of large film thicknesses.

The occurrence of the undersaturation pressure and the
Laplace pressure on the left-hand side of Eq. (50) suggests a
certain equivalence between the two systems of a planar and a
spherical symmetry once the sum of the two pressures is fixed.
In Fig. 10 we test this equivalence on the level of a density
profile, where DFT results corresponding to the planar and the
spherical case are compared, such that �ρ|�μ| = 2γ

j

lg(∞)/R,
with j = {SIA,SKA}. A high value of γlg(∞) as given by SKA
must now be compensated by a fairly large R. As we have seen
in Fig. 6, the high value of R means that the saturation line

 10

 20

 40

102 103 104 105

FIG. 9. Film thickness at saturation (�μ = 0) as a function of
the wall radius. The symbols correspond to the numerical DFT
results. The dashed line shows the prediction according to Eq. (51),
where γ SIA

lg (∞) = 0.524ε/σ 2 (see Table I). The dashed-dotted line
corresponds to Eq. (51) where γ SKA

lg (∞) = 1.060ε/σ 2 is used instead
of γ SIA

lg (∞). The wall parameters are ρwεw = 0.8ε/σ 3 and σw =
1.25σ at kBT = 0.7ε.
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FIG. 10. Density profiles of the fluid adsorbed at the spherical
walls of radii R = 104.1σ (dashed) and R = 210.6σ (dashed-dotted)
in a saturated state and at the planar wall (solid line) in an
undersaturated state, �μ = −0.015ε. The wall radii correspond to the
equality 2γ

j

lg,∞/R = �ρ|�μ| for j = SIA (dashed) and j = SKA
(dashed-dotted). kBT = 0.7ε and the wall parameters are ρwεw =
0.8ε/σ 3 and σw = 1.25σ .

�μ = 0 is crossed by the adsorption isotherm at large �, in
agreement with the result depicted in Fig. 9. However, for
a given R, � as obtained by SKA is underestimated, which
follows from Eq. (51) with γlg(∞) = γ SKA

lg (∞), which is
also consistent with the physical observation that high surface
tension inhibits growth of the liquid film.

Note that these results are not in conflict with the previous
study in Ref. [8], where the SKA has been applied for drying
on a spherical hard wall and very good agreement was obtained
with DFT computations. This is because in Ref. [8] the “exact”
(i.e., obtained from DFT computations) liquid-vapor surface
tension was implemented into SKA with a view to verify the
correctness of its functional form. Here, we show that the
coarse-grained effective Hamiltonian approach is capable of a
quantitatively reliable prediction of the adsorption phenomena
on a spherical wall (for a sufficiently large R), if the restriction
of the sharp liquid-gas interface is dropped. However, the price
we have to pay is one more parameter (compared to SKA) that
steps into the theory.

V. SUMMARY AND CONCLUSIONS

We have reexamined the properties of a well known coarse-
grained interfacial Hamiltonian approach, originally proposed
by Dietrich [1] for the study of wetting phenomena on a planar
substrate and based on SKA. SKA relies on approximating the
density profile by a piecewise constant function and has proved
to provide significant insight into interfacial phenomena as it is
mathematically tractable and gives reliable results for a wide
spectrum of problems. This theory is phenomenological in
its origin, but a link with a microscopic DFT can be made,
which allows one to express all the necessary quantities in
terms of fluid-fluid and fluid-substrate interaction parameters.
Comparison with numerical DFT reveals that SKA provides a
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fully satisfactory approach to the theory of complete wetting
on a planar surface.

One of the aims of this study was to demonstrate that for
a spherical geometry the prediction quality of SKA regarding
interfacial properties and wetting characteristics is limited.
More specifically, we demonstrated that SKA satisfactorily
determines the functional form of the asymptotic behavior of
the film thickness for large radii of the substrate but leads
to a significant quantitative disagreement in the prediction of
the adsorbed film thickness when compared against numerical
DFT. The source of the deviation is the presence of the
Laplace pressure that is not quantitatively captured within
the framework of SKA. This contribution originates in the
dependence of the free energy of the liquid-gas interface on a
position of a dividing surface, a property that is absent in the
planar case.

We then showed that the properties of the effective inter-
facial Hamiltonian approach can be substantially improved
if SKA is replaced by SIA, where the assumption of the
sharp liquid-gas interface is replaced by a less restrictive
approximation in which the interface is treated as a continuous
function of the density distribution. We demonstrated that
SIA allows for mathematical scrutiny as it is still analytically
tractable, e.g., it provides the curvature expansion of the
surface tensions (nonanalytic in the wall curvature) with the
leading-order term proportional to σ/R. Moreover, it allows
one to express the corresponding coefficient, the Tolman
length, in a fairly simple manner and the values it predicts
for the Tolman length are in reasonable agreement with the
latest simulation results.

This is in contrast with SKA, where the linear term in
the surface tension expansion is missing, i.e., the Tolman
length vanishes. This observation is in full agreement with
the conclusion of Fisher and Wortis [28], since SKA treats
the fluid in a “symmetric” way, and thus the Tolman length
must disappear as for the Ising-like models. In other words,
according to SKA, the surface tension of a large drop is
equivalent to the one of a bubble, provided the density profiles
of the two systems are perfectly antisymmetric in the planar
limit. This is no more true for SIA, due to the asymmetry of
the “local” contributions to the surface tension, i.e., the first
term on the right-hand side of Eq. (38).

Furthermore, comparison with our numerical DFT revealed
that the SIA results of the film thickness as a function of
the wall radius offer a significant improvement to the ones
obtained from SKA. This follows from the fact that the surface
tension of the planar liquid-gas interface according to SKA
is overestimated, which in turn underestimates the interface
growth.

It should be emphasized that all the theoretical approaches
we have considered in this work are of a mean-field character,
i.e., they do not properly take into account the interfacial
fluctuations (capillary waves) at the liquid-gas interface.
However, for our fluid model of a power-law interaction, these
fluctuations are not expected to play any significant role, since
the upper critical dimension associated with the considered
system is d∗

c = 2 [34]. Nevertheless, what one has to take into
account in order to obtain the correct critical behavior, is the
broadening of the interface at the critical region. Evidently,
this feature is not provided by SKA. Consequently, within
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FIG. 11. Plot of liquid-gas surface tension vs t = 1 − T/Tc. The
squares are the result of SIA, where a simple linear interpolant has
been used to model the interface density profile. The surface tension
has been obtained by minimizing the grand potential with respect to
the interface width χ . The solid line is a fit to γlg(∞)σ 2/ε = Ct3/2,
where the resulting coefficient is C = 3.4. The inset shows a plot of
the interface width χ/σ over t . The solid line is a fit to χ = Cχ t−α ,
where Cχ = 2.0 and α = 0.57.

SKA the liquid-gas surface tension vanishes as t = 1 − T
Tc

[5].
In contrast, SIA provides the expected mean-field behavior
γlg(∞) ∼ t3/2, as it is able to capture the interface broadening
near the critical point (see Fig. 11).

The SIA developed here can be naturally extended by
“softening” the wall-liquid interface in an analogous way
as done for the liquid-vapor interface. However, such a
modification would have presumably only negligible impact
on the prediction of the thickness of the adsorbed liquid
film, since the contribution to the excess free energy from
the wall-liquid surface tension has no � dependence and the
change of the binding potential is expected to be small. On
the other hand, it may be interesting to find the influence of
this refinement on quantities such as the density profile at
contact with the wall. Howerver, for this purpose a nonlocal
DFT (e.g., Rosenfeld’s fundamental measure theory) would be
needed [8,35,36].

We also note that despite our restriction to a model
of spherical symmetry, our conclusions should be relevant
for general curved geometries and should capture some
of the qualitative aspects of wetting on nonplanar sub-
strates. Of particular interest would be the extension of
this study to spatially heterogeneous, chemical, or topo-
graphical substrates. Such substrates have a significant ef-
fect on the wetting characteristics of the solid-liquid pair
(e.g., Refs. [37–42]).
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APPENDIX A: NUMERICAL METHODS

For our computations we employ dimensionless values. We
use σ and ε as the characteristic length and energy scales,
respectively.

1. Density profile

To obtain the equilibrium density profiles, the extremal
conditions (9) and (13) for the planar and the spherical case,
respectively, must be solved numerically. As both cases are of
dimension one, the same numerical method can be applied and
we restrict ourselves to presenting the numerical method for
the planar wall, W = R2 × R−.

The domain R normal to the wall is restricted to an interval
of interest [z0,zN ] with boundary conditions ρ(z) = 0 for z <

z0 and ρ(z) = ρg for z > zN . z0 ∈ (0,1) is typically chosen
to be 0.6. This can be done due to the repulsive character of
the wall. The interval [z0,zN ] is then divided in a uniform
mesh, zi = z0 + i�z with i = 0, . . . ,N , where �z = (zN −
z0)/N is the grid size. Subsequently, the integral in Eq. (9) is
discretized using a trapezoidal rule inside the domain [z0,zN ],
whereas the analytical expression

�Pla (z) =
∫ ∞

z

�Pla(z′) dz′

=
{(− 16

9 π + 6
5π z

σ

)
εσ 3, if z < σ

4πεσ 3
[

1
45

(
σ
z

)9 − 1
6

(
σ
z

)3
]
, if z � σ

is used for the integral outside that interval. Hence, we obtain a
system of N + 1 nonlinear equations with {ρi, i = 0, . . . ,N}
as unknowns, namely,

gi(ρ0, . . . ,ρN ) := μHS (ρi) +V∞(zi) − μ+ρg�Pla (zN − zi)

+�z

2

N−1∑
j=1

(2 − δj0 − δjN )ρj�Pla(|zj − zi |) = 0, (A1)

where δij denotes the Kroenecker delta, which we have used
in order to take into account the grid size at the boundaries.

This system of equations is solved using a modified Newton
method, where each step �ρ is rescaled with a parameter λ

such that ρn+1 = ρn + λ�ρ is bounded in (0,6/π ) in order to
avoid the singularity of Eq. (8). Note that we have made use
of the vector notation ρ := (ρ0, . . . ,ρn)T . In each Newton step
n, the linear system of equations

J · �ρ = g(ρn) (A2)

has to be solved, where the elements of the Jacobian matrix J
are given by

Jij = ∂gi

∂ρj

= δijμ
′
HS(ρi) + �z

2
(2 − δj0 − δjN )�Pla(|zj − zi |).

(A3)

2. Adsorption isotherms

Solving Eq. (A1) will only give one density profile ρ

for each chemical potential μ. However, in the case of a
prewetting transition, there can be multiple solutions for
the same chemical potential. From these solutions, only
one is stable, whereas the other solutions are meta- or
unstable (see also Sec. III A). In order to compute the full
bifurcation diagram of the set of density profiles over the
chemical potential, a pseudo arc-length continuation scheme
is developed similar to the one employed by Salinger and
Frink [43].

More specifically, we introduce an arc-length parametriza-
tion such that (μ(s),ρ(s)) with s ∈ R is a connected set of
solutions of condition (A1), and where we have included the
chemical potential μ as an additional variable:

g(μ,ρ)
!= 0. (A4)

The main idea of the continuation scheme is to trace the set of
solutions along the curve parametrized by s.

Assume that a point (μn,ρn) at position sn on the curve is
given, where n is the step of the continuation scheme being
solved for. First, the tangent vector ( dμ

ds
,
dρ

ds
) at position sn is

computed. This is done by differentiating g(s) := g(μ(s),ρ(s))
with respect to s. From Eq. (A4), it is known that g is a constant
equal to zero on the curve of solutions [μ(s),ρ(s)]. Hence, the
differential d g

ds
vanishes:

d g
ds

=
(

∂ g
∂μ

J
)

·
(

dμ

ds
dρ

ds

)
= 0, (A5)

where J is the Jacobian as defined in Eq. (A3) and

∂gi

∂μ
= −1 + dρg

dμ
�Pla(zN − zi). (A6)

The second term takes into account that ρg for the density at
z > zN depends on the chemical potential. In our computa-
tions, we have approximated ∂gi

∂μ
by −1. Equation (A5) is the

defining equation for the tangent vector (μn
T ,ρn

T ) = ( dμ

ds
,
dρ

ds
).

We remark that this homogeneous system of linear equa-
tions leaves one degree of freedom, as we only have N + 1
equations, but N + 2 variables, (μT ,ρT ). An additional equa-
tion is then used to maintain the direction of the tangent vector
on the curve of solutions:

(
μn−1

T

(
ρn−1

T

)T ) ·
(

μn
T

ρn
T

)
= 1,

where (μn−1
T (ρn−1

T )T ) is the tangent vector of the previous
iteration.

In a second step, an additional equation for a point at the
step size θ away from (μn,ρn) and in the direction of the
tangent vector (μn−1

T (ρn−1
T )T ) is set up. For this purpose

we introduce a scalar product, which takes into account
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the discretization of the density profile into N intervals of
length �z:

〈(μ1,ρ1)|(μ2,ρ2)〉

:= μ1μ2 + · · · + �z

2

N∑
j=0

(2 − δj0 − δjN )ρ1j ρ2j . (A7)

The norm with respect to this scalar product is defined as

‖(μ,ρ)‖ := 〈(μ,ρ) | (μ,ρ)〉1/2. (A8)

The curve of solutions (μ(s),ρ(s)) is now parametrized by the
arc length with respect to the norm given above, such that,∫ sn+θ

sn

∥∥∥∥
(

dμ

ds
,
dρ

ds

)∥∥∥∥ ds = θ. (A9)

Linearizing the norm around sn and making use of the
approximate tangent vector (μT ,ρT ) at sn, one obtains〈(

μn
T ,ρn

T

)∣∣(μ(sn + θ ) − μ(sn),ρ(sn + θ ) − ρ(sn))
〉 = θ,

(A10)

where we have made use of the normalized tangent vector such
that

‖(μn
T ,ρn

T )‖ = 1. (A11)

Inserting (μn+1,ρn+1) for (μ(sn + θ ),ρ(sn + θ )) into
Eq. (A10) leads to the additional equation for the next point
on the curve of solutions:

Kn(μn+1,ρn+1)

:= 〈(
μn

T ,ρn
T

)∣∣(μn+1 − μn,ρn+1 − ρn
)〉 − θ

!= 0. (A12)

For a geometric interpretation of Eq. (A12), see Fig. 12.
To obtain (μn+1,ρn+1), Eq. (A12) is solved together with

Eq. (A4). This is done using a Newton scheme. In each Newton
step, the following system of linear equations is solved:(

μn
T (ρ̄n

T )T

∂g
∂μ

J

)
·
(

�μm

�ρm

)
=

(
Kn (μn,m,ρn,m)

g(μn,m,ρn,m)

)
, (A13)

where we are considering the nth step of the continuation
scheme and the mth step of the Newton method, such that

θ

FIG. 12. Sketch of one iteration step of the continuation scheme.
xn and xn+1 are consecutive points of the iteration, where x = (μ,ρ).
xT is the tangent vector at xn. By following the curve of solutions in
the direction of the tangent vector, the pseudo arc-length continuation
scheme is able to trace the curve of solutions through turning points
with respect to the parameter μ.

�μm:=μn,m+1 − μn,m and �ρm:=ρn,m+1 − ρn,m. Further-
more, we have made use of

ρ̄n
T ,j := �z

2
(2 − δj0 − δjN )ρn

T,j .

Finally, Eq. (A13) is solved using a conjugate gradient method,
where the Jacobian (A3) of the system is approximated
by introducing a cutoff of five molecular diameters for the
intermolecular potential �Pla.

APPENDIX B: SURFACE TENSION AND BINDING
POTENTIAL IN SKA

1. Surface tension

According to Gibbsian thermodynamics, the surface ten-
sion is the free-energy cost to increase an interface by unit
area, i.e., the excess free energy (excess grand potential for an
open system) per unit area with respect to the corresponding
uniform phases. Within SKA, the liquid-vapor surface tension
can be obtained from Eq. (7), with

ρ(r) =
{
ρA, r ∈ VA

ρB, r ∈ VB,
(B1)

where VA ∩ VB = 0 and VA ∪ VB = R3. The convenience of
the expression for the excess grand potential as given by Eq. (7)
becomes evident now, as for ρA = ρl , ρB = ρg , and no external
field, only the second term in Eq. (7) matters. One then gets
an immediate result for the liquid-gas surface tension,

γ SKA
lg = �ex

A = − (ρl − ρg)2

A I (VA,VB), (B2)

where

I (VA,VB) ≡ 1

2

∫
VA

∫
VB

φ(|r1 − r2|) dr1 dr2. (B3)

For the surface tension of a planar interface we have VA =
Vz<0 and VB = Vz�0 such that

I (Vz<0,Vz�0)

A = 1

2

∫ 0

−∞

∫ ∞

0
�Pla(|z − z′|) dz′ dz,

with �Pla defined by Eq. (11). Thus, for the liquid-gas surface
tension we obtain

γ SKA
lg (∞) = −�ρ2

2

∫ 0

−∞

∫ ∞

0
�Pla(|z − z′|) dz′ dz

= 3

4
π�ρ2εσ 4. (B4)

In the case of a spherical symmetry, i.e., a drop of liquid of
radius R, VA = {r ∈ R3 : |r| < R} and VB = {r ∈ R3 : |r| �
R}, the surface tension becomes

γ SKA
lg (R) = −�ρ2 I (Vr<R,Vr�R)

4πR2

= −�ρ2

2

∫ ∞

R

∫ R

0

(
r

R

)2

�Sph(r,r ′) dr ′ dr

= −�ρ2

2

∫ ∞

R

(
r

R

)2

�R (r) dr

= γlg(∞)

(
1 − 2

9

ln(R/σ )

(R/σ )2
+ O

(
(σ/R)2

))
, (B5)
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where �ρ = ρl − ρg and �Sph(r,r ′) ≡ ∫
∂Br′

φ(|r − r′|)dr′ can
be advantageously expressed in terms of �Pla:

�Sph(r,r ′)

=
∫ 2π

0

∫ π

0
φ(|r − r′|)r ′2 sin ϑ ′ dϑ ′ dϕ′

= 2πr ′2
∫ π

0
φ(

√
r2 − 2rr ′ cos ϑ ′ + r ′2) sin ϑ ′ dϑ ′

= π
r ′

r

∫ (r+r ′)2

(r−r ′)2
φ(

√
t) dt

= π
r ′

r

[∫ ∞

(r−r ′)2
φ(

√
t) dt −

∫ ∞

(r+r ′)2
φ(

√
t) dt

]

= 2π
r ′

r

[∫ ∞

0
φ(

√
(r − r ′)2 + u2)u du

−
∫ ∞

0
φ(

√
(r + r ′)2 + u2)u du

]

= r ′

r
[�Pla(|r − r ′|) − �Pla(|r + r ′|)], (B6)

and for r > R,

�R(r) ≡
∫ R

0
�Sph(r,r ′) dr ′ = πεσ 4

3r

⎧⎪⎨
⎪⎩

σ 8

30

[
r+9R

(r+R)9 − r−9R
(r−R)9

] + σ 2
[

r−3R
(r−R)3 − r+3R

(r+R)3

]
, R + σ < r

− 26
15

r
σ

− 9
5σ 2 [R2 − (r − σ )2] + 27

10 + σ 8

30
r+9 R

(r+R)9 − σ 2 r+3 R

(r+R)3 , r < R + σ.

(B7)

Note that expression (B5) gives a vanishing Tolman’s length.

2. Binding potential

The binding potential of a system possessing two interfaces
is the surface free energy per unit area of the system minus the
contribution due to the surface tensions of the two interfaces.
It expresses an effective interaction between the interfaces
induced by the attractive forces. If, analogously to the analysis
above, we define three disjoint subspaces VW , VA, and VB ,
such that VW ∪ VA ∪ VB = R3, the density distribution of the
wall-liquid-gas system within SKA is

ρ(r) =
⎧⎨
⎩

0, r ∈ VW

ρl, r ∈ VA

ρg, r ∈ VB,

(B8)

which when substituted into Eq. (7) gives for the excess grand
potential:

�ex = −�μ�ρVA − ρl
2I (VW,VA) − ρ2

gI (VW,VB)

− (�ρ)2I (VA,VB) +
∫
VA∪VB

V (r)ρ(r)dr. (B9)

We now rearrange the terms in Eq. (B9), such that

�ex(�)

A = −�μ�ρ
VA

A + γ SKA
wl + A′

A γ SKA
lg + wSKA(�),

(B10)

where A = ∫
∂VW

dS is the surface of the wall and A′ =∫
∂(VW ∪VA) dS is the surface of the liquid-gas interface. We

obtain

γ SKA
wl = 1

A

(
−ρl

2I (VW,VA ∪ VB) + ρl

∫
VA∪VB

V (r) dr
)

,

(B11)

γ SKA
lg = − 1

A′ (�ρ)2I (VW ∪ VA,VB), (B12)

and the binding potential wSKA involving the remaining
contribution

wSKA(�) = 1

A

(
2ρl�ρI (VW,VB) − �ρ

∫
VB

V (r) dr
)

.

(B13)

Having obtained the expressions of I (X,Y ) for systems pos-
sessing translational or spherical symmetry, we can evaluate
the binding potential in the planar case by making use of Vw =
R2 × (−∞,δ], VA = R2 × (δ,�) and VB = R2 × [�,∞):

wSKA(�)

plane= �ρ

(
ρl

∫ ∞

�−δ

∫ ∞

z

�Pla(z′) dz′ dz −
∫ ∞

�

V∞(z) dz

)

= − A

12π�2

⎛
⎝1 + 2 + 3 δ

�

1 − ρwεwσ 6
w

ρ+
l εσ 6

δ

�
+ O

(
(δ/�)3

)⎞
⎠ . (B14)

In the spherical case we make use of Vw = {r ∈ R3 : |r| �
R + δ}, VA = {r ∈ R3 : R + δ < |r| < R + �}, and VB =
{r ∈ R3 : |r| � R + �} to obtain

wSKA (�; R)
sphere= wSKA (�; ∞)

(
1 + �

R

)
, (B15)

where we have neglected terms O
(
(δ/�)3,δ/R,

ln(�/R)
(R/�)2

)
.

APPENDIX C: SURFACE TENSION, BINDING POTENTIAL,
AND THE TOLMAN LENGTH IN SIA

1. Surface tension

The surface tension of a planar liquid-gas interface in SIA

ρlg,∞(z) =
⎧⎨
⎩

ρl, z � −χ/2
ρlg(z), |z| < χ/2
ρg, z � χ/2,

(C1)
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is obtained by substituting Eq. (C1) into Eq. (7) with V (r) = 0,

γ SIA
lg (∞) = �ex[ρlg,∞]

A

= −
∫ χ/2

−χ/2
{p[ρlg,∞(z)] − p[ρref(z)]}dz

+ 1

2

∫ ∞

−∞

∫ ∞

−∞
ρlg,∞(z)[ρlg,∞(z′) − ρlg,∞(z)]

×�Pla(z,z′)dz′ dz, (C2)

where ρref(z) denotes the density of a given bulk phase,
i.e., ρref(z) = ρl�(−z) + ρg�(z) such that at saturation
p[ρref(z)] ≡ pref = const. We note that in the above approx-
imation the contribution due to the excess local pressure is
generally nonzero (in contrast to SKA).

In the spherical case, the density profile is

ρlg,R(r) =
⎧⎨
⎩

ρl, r � R − χ/2
ρlg(r − R), |r − R| < χ/2
ρg, r � R + χ/2,

(C3)

and the surface tension of a liquid drop of radius R is

γ SIA
lg (R) = �ex[ρlg,R]

4πR2

= −
∫ R+χ/2

R−χ/2
{p[ρlg,R(r)] − pref}

(
r

R

)2

dr

+ 1

2

∫ ∞

0

∫ ∞

0
ρlg,R(r)[ρlg,R(r ′) − ρlg,R(r)]

×�Sph(r,r ′)
(

r

R

)2

dr ′ dr. (C4)

2. Tolman length

Here we calculate the Tolman length as given by SIA by
a direct comparison of Eqs. (C2) and (C4). We first compare
the second terms of Eqs. (C2) and (C4). For this purpose we
define

hR(r,r ′) ≡ ρlg,R(r)[ρlg,R(r ′) − ρlg,R(r)]
(C5)

and h(r,r ′) ≡ ρlg,∞(r)[ρlg,∞(r ′) − ρlg,∞(r)],

and making use of Eq. (B6) we can express the double integral
in Eq. (C4) as

σ 2

ε

∫ ∞

0

∫ ∞

0
hR(r,r ′)�Sph(r,r ′)

(
r

R

)2

dr ′ dr

= σ 2

ε

∫ ∞

−R

∫ ∞

−R

h(r,r ′)[�Pla(|r − r ′|)

−�Pla(|2R + r − r ′|)]
(

1 + r ′

R

) (
1 + r

R

)
dr ′ dr

= σ 2

ε

∫ ∞

−R

∫ ∞

−R

h(r,r ′)�Pla(|r − r ′|)

×
(

1 + r ′

R

) (
1 + r

R

)
dr ′ dr + O

(
(σ/R)2

)
= σ 2

ε

∫ ∞

−R

∫ ∞

−R

h(r,r ′)�Pla(|r − r ′|)

×
(

1 + r + r ′

R

)
dr ′ dr + O

(
ln(R/σ )

(R/σ )2

)

= σ 2

ε

∫ ∞

−∞

∫ ∞

−∞
h(r,r ′)�Pla(|r − r ′|)

×
(

1 + r + r ′

R

)
dr ′ dr + O

(
ln(R/σ )

(R/σ )2

)
. (C6)

Comparison with the double integral in Eq. (C2) then yields

σ 2

εR

∫∫ ∞

−∞
h(r,r ′)�Pla(|r − r ′|)(r + r ′) dr ′ dr

+O

(
ln(R/σ )

(R/σ )2

)

= σ 2

εR

∫ ∞

−∞

∫ ∞

−∞
r[h(r,r ′) + h(r ′,r)]�Pla(|r − r ′|) dr ′ dr

+O

(
ln(R/σ )

(R/σ )2

)

= − σ 2

εR

∫ ∞

−∞

∫ ∞

−∞
r[ρlg,∞(r ′) − ρlg,∞(r)]2

×�Pla(|r − r ′|)dr ′ dr + O

(
ln(R/σ )

(R/σ )2

)
.

In the following, we focus on the asymmetry of the model due
to the contribution of the pressure, but for simplicity we assume
that the density profile is symmetric. In this case, the integrand
in the above expression is antisymmetric with respect to the
reflection transformation r → −r and r ′ → −r ′ and the term
O(σ/R) vanishes.

For the difference of the first terms of Eqs. (C4) and (C2)
we obtain

−σ 2

ε

∫ ∞

0
{p[ρlg,R(r)] − pref}

(
r

R

)2

dr

+ σ 2

ε

∫ ∞

−∞
{p[ρlg,∞(z)] − pref} dz

= −2σ 2

εR

∫ χ/2

−χ/2
{p[ρlg,∞(z)] − pref}z dz

+O
(
(σ/R)2)

, (C7)

yielding a Tolman length

δ∞ = 1

γ SIA
lg (∞)

∫ χ/2

−χ/2
{p[ρlg(z)] − pref}z dz. (C8)

Note that in line with [28], the Tolman length does not depend
on the choice of the dividing surface.

3. Binding potential

The extension of the expression for the binding potential,
Eq. (B15), as given by SKA is rather straightforward. We
consider the density distribution as follows:

ρ(r) =

⎧⎪⎨
⎪⎩

0, r ∈ VW

ρl, r ∈ VA

ρlg(r), r ∈ VAB

ρg, r ∈ VB,

(C9)
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for VW a sphere of radius R + δ, for VW ∪ VA a sphere of
radius R + � − χ/2, and for VW ∪ VA ∪ VAB a sphere of
radius R + � + χ/2 and VW ∪ VA ∪ VB ∪ VAB = R3. Such
a model is relevant for the study of wetting on a spherical
(R finite) and on a planar (R → ∞) wall. It should be
noted that in contrast to SKA, this density distribution is
not piecewise constant, due to the position dependent part of
ρ(r) in the region VAB . Furthermore, we define the following
operators:

[XY ] ≡ −1

2

∫
X

∫
Y

[ρ(r) − ρ(r′)]2φ(|r − r′|) dr′ dr,

[XY ]wl ≡ −1

2

∫
X

∫
Y

[ρwl(r) − ρwl(r′)]2φ(|r − r′|) dr′ dr,

[XY ]lg ≡ −1

2

∫
X

∫
Y

[ρlg(r) − ρlg(r′)]2φ(|r − r′|) dr′ dr ,

with ρwl(r) ≡ ρlχR3\VW
(r) and ρlg(r) ≡ ρlχVW ∪VA(r) +

ρlg(r)χVAB
(r) + ρgχVB

(r), where χX(r) is the characteristic
function of a subset X. Using this convention, the wall-
liquid and liquid-gas surface tensions can be respectively
expressed as

γwl = 1

A

(
[VWVA] + [VW (VAB ∪ VB)]wl +

∫
ρwl(r)V (r)dr

)

γlg = 1

A

(
[VABVB] + 1

2
[VABVAB] + [VA(VAB ∪ VB)]

+ [VW (VAB ∪ VB)]lg −
∫
VAB

{p[ρlg(r)] − pref} dr
)

,

where A = 4πR2. When this is subtracted from the surface
grand potential (7), which can be written as

�ex

A = 1

A

(
[VWVA] + [VW (VAB ∪ VB)]

+ [VA(VAB ∪ VB)] + 1

2
[VABVAB] + [VABVB]

−
∫
VAB

{p[ρlg(r)] − p[ρref(r)]} dr +
∫

ρ(r)V (r) dr
)

,

(C10)

one obtains for the binding potential:

wSIA = 1

A

(
[VW (VAB ∪ VB)] − [VW (VAB ∪ VB)]wl

− [VW (VAB ∪ VB)]lg +
∫

V (r)[ρ(r) − ρwl(r) dr]

)
.

In spherical coordinates, the binding potential reads

wSIA =
∫ R+δ

0

∫ ∞

R+�−χ/2

(
r

R

)2

ρl[ρl − ρ(r ′)]

×�Sph(r,r ′)dr ′ dr

+
∫ ∞

R+�−χ/2
[ρ(r) − ρl] VR(r)

(
r

R

)2

dr. (C11)
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