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Domain competition during ballistic deposition: Effect of surface diffusion and surface patterning
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We investigate domain competition occurring during aggregate growth under ballistic deposition on a one-
dimensional substrate by kinetic Monte Carlo simulations. In order to capture adsorbate molecules being deposited
vertically, domains grow tall by extending their branches laterally and suppress the growth of neighboring short
domains. When molecules are deposited on a flat substrate and frozen at the deposition site, the population
density of domains, ρ, decreases by a power law as ρ ∼ h−2/3 at height h. In contrast, if the effect of surface
diffusion is taken into account, the domain density decreases rapidly as ρ ∼ 1/h.

On a substrate patterned with an array of nanopillars, domains growing from pillar tops tend to envelop those
growing from gaps between pillars. To completely suppress the growth of domains in gaps, pillar periodicity λ

should be smaller than a critical value λc. We estimate this value approximately using the slope angle and the
aspect ratio of a single isolated domain.
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I. INTRODUCTION

In heteroepitaxial crystal growth, a lattice mismatch be-
tween the substrate and the epitaxial layer induces several
defects such as threading dislocations or cracks in overlayers.
These defects deteriorate the quality of overgrown epitaxial
layers. In order to reduce such defects, several approaches
have been proposed, such as the fabrication of low-temperature
buffer layers [1,2] and epitaxial lateral overgrowth [3]. The
buffer layer is supposed to consist of thin pillars, on which
further epitaxial layers are grown at a high temperature [4]:
Since the overlayer is not in direct contact with the substrate, it
is expected to be free from misfit strains and possess high crys-
talline quality. Recently, various nanoheteroepitaxial methods
have been proposed for application to microelectronics. It has
been reported that the nanoheteroepitaxy on dense arrays of
substrate nanopillars relaxes elastic strain and reduces various
defects [5]. Another study on growth on nanoporous substrates
also confirmed the reduction in dislocation densities [6,7]. In
these studies on nanoheteroepitaxy, the epitaxial layer grew
mainly on top of the patterned substrate without filling gap
spaces among pillars [5] or in nanopores [7].

Motivated by these studies, in the present work we studied
domain competition during epitaxial growth on a nanopat-
terned substrate surface. We adopted a ballistic deposition
(BD) model because the usual solid-on-solid (SOS) model for
crystal growth is inappropriate in the present case since voids
or overhangs are prohibited in the SOS model. In contrast, the
BD model allows the formation of overhangs, which provide
empty spaces under solidifying molecules.

In the BD model, molecules being deposited solidify at the
highest position when they come in contact with the substrate
or already solidified adsorbate [8,9]. An adsorbed molecule
deposited on the substrate acts as a nucleation center and
defines a domain. Then, an adsorbate overlayer is divided
into several domains, each of which grows by incorporating
molecules being deposited. As domains grow, they extend their
branches laterally to capture many molecules incident from
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above; thus, domains compete with each other for molecules
being deposited. When one of the domains overgrows and
covers a neighboring one, the supply of molecules to the latter
is cut and it ceases growing. Thus, during the growth of the
adsorbate overlayer, domains coarsen and their population
density decreases. In this study, we investigate this domain
coarsening analytically and numerically by performing kinetic
Monte Carlo (KMC) simulations.

In the case that the substrate surface is patterned with an
array of pillars, domains growing from the pillar tops have an
advantage over those growing from the bottom of pillar gaps:
Since the former have less contact with the substrate than the
latter, they are relatively free from misfit strains. Therefore,
it is favorable to stop the growth of domains from the gap
bottoms. For achieving this, the pillars should be high and
densely populated. We determine the maximum periodicity of
the pillar array for this growth termination as a function of
pillar height.

In the BD model, deposited molecules are frozen at the
sites of their first contact with the substrate and/or adsorbed
overlayer, and thus, the formed overlayer contains numerous
vacancies with a ramified growth front. The structure of the
porous aggregate does not correspond to the dense structure
of adsorbate crystals obtained in previous studies [5–7]. We
expect that allowing lateral diffusion of isolated molecules
on the adsorbed overlayer would result in the packing in the
overlayer becoming dense and the growth front becoming
smooth [10]. Therefore, we include lateral diffusion in the
KMC simulations and study its effect on domain competition.
We find that surface diffusion favors domains growing on pillar
tops and enhances the maximum periodicity for suppressing
gap domains.

II. BALLISTIC DEPOSITION ON A FLAT SUBSTRATE

A. Ballistic deposition without diffusion

We consider BD growth in a square lattice and measure the
length in the unit of a lattice constant, a = 1. At the bottom
of the simulation box of size L × H lies a one-dimensional
substrate with a length L. Adsorbate molecules are deposited
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vertically in the −y direction onto a flat substrate, and at the
instant when they touch down on the substrate or adsorbed
overlayer, they freeze at that site. The grown adsorbate
eventually form a porous aggregate with a density less than
unity, but it is compact and not fractal. The interesting feature
of BD aggregation is the self-affine character of its growth
front [8,9]. The growth front is characterized by a set of the
highest aggregate positions y = h(i) at each column x = i.
Then, the average height is defined as h = L−1 ∑L

i=1 h(i) and

the front width is given as W =
√

L−1
∑L

i=1[h(i) − h]2. When

h is low, W increases as W ∼ hβ with the growth exponent β,
whereas for large h, it saturates at W ∼ Lα with the roughness
exponent α. The crossover occurs at a height h ∼ Lz, where
z = α/β is the dynamic exponent. The height dependence of
the front width is summarized by the scaling relation

W = Lαf

(
h1/z

L

)
. (1)

Here, f (x) is a scaling function that is constant for large x � 1
and is proportional to xα at small x [8].

We now study the domain competition during the BD. When
a deposited molecule touches the substrate, it freezes at that
site and acts as a nucleation center for subsequent aggregate
growth. An aggregate initiated by a nucleation center on a
column i has a domain index i. When a molecule being
deposited touches a domain, it is incorporated into that domain.
If a molecule being deposited touches multiple domains, we
prioritize the underlying domain during assignment. Namely,
the molecule belongs to the underlying domain if there exists
one. However, if no underlying domain exists, the molecule
is incorporated into the left or right domain depending on
the ratio of the number of neighboring domain molecules.
As a result of this domain assignment, we get domains in
the form of trees [11]. While domains are growing, they
extend laterally to capture more molecules being deposited
vertically. Thus, even though several domains are initially
formed, they compete with each other for capturing molecules
being deposited and accordingly coarsen as shown in Fig. 1(a).
The population number N of domains decreases as height h

increases. The population density of the domain, ρ = N/L, is
found to decrease by a power law as ρ ∼ h−0.66±0.03, as shown
in Fig. 1(b).

The scaling behavior of the population density ρ can be
elucidated as follows. A domain is bounded by a domain
boundary on each side. When these two boundaries come
in contact, the supply of molecules to the domain is cut

and the domain stops growing. Therefore, domain coarsening
is governed by fluctuation of the domain boundary. The
fluctuation of the boundary, in turn, is related to the lateral
correlation at the growth front. The scaling relation in Eq. (1) of
the growth front width W indicates that the lateral correlation
extends to a distance h1/z at a height h. Since the self-similarity
of the growth front assumes no other characteristic length
than the lateral correlation length, one expects that the domain
boundary fluctuates laterally by the same order h1/z. The size
dependence of domain height h and domain width w was
studied previously by simulations, and the relation w ∼ h1/z

was confirmed [11]. We now apply this result to the process of
domain coarsening.

If the lateral fluctuation of a domain boundary is of the
same order of a domain boundary separation distance, the
two boundaries come in contact and the domain between
them is annihilated. For a system with a domain density ρ,
the average separation distance between domain boundaries is
1/ρ. Then, domain annihilation occurs when the height of the
BD aggregate increases by an annihilation height ha , where
h

1/z
a ∼ 1/ρ or ha ∼ ρ−z. Assume that N (h) domains exist at a

domain height h. Then, in the height interval �h, each domain
boundary touches the other boundaries �h/ha times, and the
number of domains decreases as

N (h + �h) = N (h) − N (h)�h/ha. (2)

In terms of the domain population density ρ(h) = N (h)/L,
the rate equation in the limit �h → 0 is written as

dρ

dh
= −Aρ1+z. (3)

A simple solution

ρ ∼ h−1/z (4)

indicates that the domain population decreases with a power
1/z. As for the dynamical scaling behavior, the BD model in
one dimension is known to belong to the Kardar-Parisi-Zhang
(KPZ) universality class [8,12] with the following scaling
exponents: α = 1/2, β = 1/3, and z = 3/2. The exponent
1/z = 2/3 is in quite good agreement with the value 0.66 ±
0.03 obtained by fitting the data of the KMC simulation shown
in Fig. 1(b). This exponent value is obtained in the asymptotic
region 400 � h � 6400. (In an early stage of 1 � h � 20, the
exponent is equal to 0.5.) The same exponent 1/z = 2/3 was
obtained previously [14] for the Eden model [13], which is
also known to belong to the KPZ universality class.
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FIG. 1. (Color online) (a) Domain coars-
ening during BD without surface diffusion on
a flat substrate. The system size is as small
as L × H = 2002 for the purpose of visualiza-
tion. (b) Domain population density ρ versus
height h.

021601-2



DOMAIN COMPETITION DURING BALLISTIC . . . PHYSICAL REVIEW E 84, 021601 (2011)

FIG. 2. (a) Intralayer diffusion with a diffu-
sion constant D, (b) forbidden jump, and (c)
intralayer transport with an additional Ehrlich-
Schwoebel factor PES.

B. Ballistic deposition with surface diffusion

In several cases, the material deposited on a substrate forms
a compact overlayer with a high packing density, and the
growth front is flat and smooth. In that respect, a ballistically
deposited aggregate with numerous voids and a self-affine
growth front is far from the usual systems under investigations.
To rectify this discrepancy, we incorporate a surface diffusion
process on an adsorbate overlayer. It has been stated that
surface diffusion affects the exponents in a random deposition
model but not in the BD model [15,16]. However, another
study has revealed that as diffusion proceeds, the growth mode
changes from porous aggregate to compact aggregate with a
smooth growth front and high packing density [10]. Then, one
may expect a different type of domain coarsening.

In the present model, diffusion is mimicked such that an
isolated adsorbate molecule diffuses laterally on an adsorbate
layer but not on a substrate surface. Here, an isolated molecule
refers to a molecule that has only one bond with an underlying
adsorbate overlayer without any lateral bonds [Fig. 2(a)].
When two molecules are connected by lateral bonds, they are
frozen to form an aggregate and remain stationary thereafter.
An isolated molecule can jump to the left or right column at
the same height level if there is at least one nearest-neighbor
molecule after the diffusion jump, as shown in Fig. 2(a). If
an isolated molecule is at the edge of a step, as shown in
Fig. 2(b), it cannot jump laterally at the same level, but we
allow it to hop down if possible, as shown in Fig. 2(c). We call
the motion in Fig. 2(a) intralayer diffusion and that in Fig. 2(c)
interlayer transport. Interlayer transport is introduced to make
the adsorbate layer dense and smooth. Further diffusion of an
adsorbate molecule along the aggregate periphery makes the
aggregate more compact and dense; such diffusion is important
in the asymptotic relaxation of the shape to the equilibrium
state. However, in a transient process involving growth of the
adsorbate island, surface smoothing is already induced by the

interlayer diffusion shown in Fig. 2(c). Therefore, we neglect
further shape relaxation; the adsorbate molecule is pinned
to the side domains by the lateral bond after the interlayer
diffusion. We may alternatively suppose that the adsorbate
is anisotropic such that the lateral bond is stronger than the
vertical one.

For simulations it is necessary to define various processes
quantitatively. A molecule being deposited descends on a col-
umn with a deposition flux f per unit time and area. Adsorbed
molecules are frozen on a substrate at their deposition sites. An
isolated adsorbate molecule on an adsorbate overlayer makes a
diffusion jump to the left or right at the same height level with a
diffusion constant D. If an adsorbate molecule is at the edge of
a step, it is usually necessary to consider the additional energy
barrier that should be overcome for a molecule to move around
the corner, the so-called Ehrlich-Schwoebel barrier. Thus, the
rate of this interlayer transport is smaller than the intralayer
diffusion D by a factor PES � 1.

To focus on the effect of diffusion on domain coarsening,
we study an extreme case with a fast intralayer diffusion
2D/f a4 = 104 without any Ehrlich-Schwoebel barrier (i.e.,
PES = 1). After deposition and diffusion on a flat substrate,
the resulting aggregate is densely packed and the growth
front is flat [Figs. 3(a) and 3(b)], though some voids still
exist. In Fig. 3(a), domains are differentiated by different
colors (or grayscales), but since there are so many domains,
two different domains that touch might have the same color
(or grayscales) and are indistinguishable. Therefore, domain
boundaries are depicted in Fig. 3(b) complementarily. Since an
underlying domain is given priority during domain assignment,
the initial domains are straight with vertical boundaries, and
their population density ρ is close to unity when the domains
are short, h < 10, as shown in Fig. 3(c). Then, domains
gradually decrease in number through competition. Because
the growth front is quite flat, most of the domains have the

(b)

0.001

0.01

0.1

1

1 10 100 1000 10000

ρ 
=

 N
/L

h

L = 6400
3200
1600
800
400
200

h−1.03

(c)
(a)

FIG. 3. (Color online) (a) Domain coarsening and (b) domain boundaries during BD with diffusion on a flat substrate. Parameters are
2D/f a4 = 104 and PES = 1. The system size is L × H = 4002. (c) Domain population density ρ versus height h.
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FIG. 4. (Color online) (a) Domain coarsening and (b) domain boundaries of the same BD aggregate as that in Fig. 3 but using a different
procedure for assignment of domains. (c) Domain population density ρ versus height h.

same height. Therefore, when one domain grows taller than
its neighboring domain, it can spread laterally over many
domains. Thus, the population density decreases rapidly for
10 < h < 100, as shown in Fig. 3(c). After this crossover, the
domain density ρ for 400 � h � 6400 seems to decrease by
a power law to the height h as ρ ∼ h−1.01±0.03, as shown in
Fig. 3(c). However, we currently do not have any analytical
theory to elucidate the exponent.

In fact, the scaling behavior of the population density
depends on the definition of the domain. If we alter the domain
assignment such that all the neighboring domains of a molecule
being deposited have equal priority rather than the underlying
domain having topmost priority, domain boundaries fluctuate
widely as shown in Figs. 4(a) and 4(b): The aggregate itself
has the same structure as that in Figs. 3(a) and 3(b), including
the configuration of the growth front, but only the domain
assignment is altered. In this case, the population density
of domains follows the scaling relation ρ ∼ h−0.75±0.05, as
shown in Fig. 4(c). The system with widely fluctuating domain
boundaries in Fig. 4 has a lower population density ρ than that
in Fig. 3 at the same height level, but the exponent of the
former is small as 0.75.

III. BALLISTIC DEPOSITION ON
A PATTERNED SUBSTRATE

We now consider BD on a substrate patterned with an
array of pillars, since our simulation study may be relevant to
recent experimental studies on heteroepitaxial crystal growth
on nanopatterned substrates [1,2,4–7], Let a pillar have a height
hp, width �p, and a periodic arrangement with periodicity λ.

For simplicity, the pillar width is kept at unity in the subsequent
discussion, that is, �p = 1.

A. Ballistic deposition on a patterned substrate
without diffusion

We first study domain competition during BD growth in the
absence of adsorbate diffusion. Then, each domain takes the
form of an irregular dendritic tree. During BD, those domains
that started growing from pillar tops have an advantage over
those that started growing from the bottoms of gaps between
pillars; the former domains remain at a higher level than the
latter, as shown in Figs. 5(a) and 5(b). If a pair of domains that
started growing from neighboring pillar tops envelops those
that started growing in the gap, as shown in Fig. 5(a), the
latter cannot survive: There remain only those domains that
started growing from pillar tops, which are almost separate
from the substrate because they touch the substrate only
at their roots. Therefore, the aggregate on a substrate with
nanopillars is less affected by a misfit strain than that on a flat
substrate.

Nanopillars aid the initial selection of domains growing
from the pillar tops over those growing from gaps. However,
if the pillar periodicity is large as λ = 100 = 5hp as shown
in Fig. 5(b), some domains growing in gaps pass through
the covers extending from neighboring pillar tops. Once
domains growing from gaps pass through the covers, domain
competition as described in Sec. II occurs. Therefore, for
selection of only those domains that grow from pillar tops, the
pillars should be tall and their periodicity should be small. We
aim to determine the maximum periodicity λc of nanopillars
for domain selection at a given pillar height hp.

FIG. 5. (Color online) Domain competition
during BD on a substrate with periodic arrays
of pillars; (a) and (b) without diffusion, and (c)
and (d) with diffusion. Box width is L = 400
and pillar height is hp = 20. Pillar periodicity λ

is (a) 50, (b) and (c) 100, and (d) 400, and box
height is H = 200 for (a) and (b), and H = 150
for (c) and (d).
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FIG. 6. Survival probability Ps of domains growing in the gap.

To quantify the selection process, we introduce a survival
probability Ps . We count the number of gaps from which
growing domains survive at a certain height, and we take
its ratio to the total number of gaps as survival probability
Ps . If all the domains growing from gaps cease to exist, Ps

vanishes. On the contrary, when some of them survive, Ps

takes a finite nonzero value. The probability Ps should be
measured at a height neither too low nor too high: If it is
measured at a very small height, domains growing in gaps
are not yet covered by those growing on pillar tops; if it is
measured at a very large height, the usual domain competition
occurs and domains growing from the gap that have passed
through the narrow channel may be suppressed by competition.
Therefore, we estimated the survival probability Ps at a height
of h = 2λ + hp, where hp is the pillar height and λ is the
periodicity. The resulting Ps is plotted against the inverse
periodicity hp/λ for various pillar heights hp in Fig. 6. As
expected, domains in gaps die out when the pillars are tall
enough (high hp) or arranged close enough (small λ). On the
contrary, when the pillars are far apart, domains in gaps pass
through covers extending from neighboring pillar tops, and
the survival probability Ps remains finite. For short pillars,
the survival probability is strongly affected by a finite-size
fluctuation, but as the pillar height increases, the maximum
value of periodicity required for survival seems to converge to
a critical value, hp/λc, close to 0.2.

In order to understand the change in the survival probability
Ps , we study the initial stage of domain competition shown in
Fig. 5(a) more closely. We notice that a domain growing from
a pillar top expands laterally as a single isolated tree until it

hits domains growing from neighboring pillar tops. In fact,
a single isolated domain takes the form of a tree, as shown
in Fig. 7(a). The lower edge of a single tree makes a slope
angle θ from the x axis; the aspect ratio of the tree is defined
as r = h/w, where h is the height of the tree and w is its
lateral width. By averaging data of many single trees in a
system with a large size L × H = 8002, we obtain a slope
angle θ = 55.6 ◦ and an aspect ratio r = 1.03. With a simple
assumption that an isolated domain grows in the shape of a fan
with a slope angle θ and aspect ratio r , as depicted in Fig. 8, we
can estimate the value of the critical periodicity λc as follows.
When a domain growing on a pillar top extends laterally to
half of the periodicity w/2 = λ/2, a pair of domains growing
from neighboring pillar tops covers the gap between them.
For a pillar with height hp, two domains touch at a height
h = hp + (λ/2) tan θ from the gap bottom. If this position is
higher than the maximum height h = rλ of the domains in
the gap, they cannot pass through the cover formed by the
lateral extension of two domains growing from pillar tops.
Thus, the maximum periodicity λc is expected to satisfy the
relation

hp + λc

2
tan θ = rλc (5)

or
hp

λc

= r − 1

2
tan θ. (6)

With θ = 55.6 ◦ and r = 1.03, the calculated critical ratio
hp/λc = 0.30 is of the order of the simulation result 0.2,
as shown in Fig. 6. The large discrepancy that remains may
be due to the fluctuation, since the domain growing in the
gap can survive if it accidentally passes through the narrow
channel formed by the two domains from the neighboring pillar
tops.

B. Ballistic deposition on a patterned substrate with diffusion

We now consider the effect of diffusion on domain selection
on a patterned substrate. From the argument in the previous
subsection, it can be said that initial domain selection depends
on the shape of a single isolated BD aggregate. It changes
as the diffusion constant D increases, as shown in Fig. 7;
a single isolated domain becomes short and wide with a
small slope angle θ and small aspect ratio r . For example,
at 2D/f a4 = 104 in Fig. 7(d), the average slope angle is about
θ = 7.1 ◦, and the aspect ratio is r = 0.11. This data leads
to the maximum periodicity of pillars λc ≈ 21hp, which is

FIG. 7. Single isolated BD aggregate at various diffusion constants: (a) 2D/f a4 = 0, (b) 10, (c) 102, and (d) 104. The simulation box is of
size L × H = 4002. The average slope angle θ and the aspect ratio r are calculated as (a) 56 ◦ and 1.03, (b) 39 ◦ and 0.61, (c) 21 ◦ and 0.32, and
(d) 7.1 ◦ and 0.11, respectively.
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FIG. 8. Schematics of a single BD domain on a pillar.

larger than the value obtained for the case without diffusion.
Actually, at a large pillar periodicity λ = 100 = 5hp, domains
growing on pillars suppress the growth of those from gaps very
strongly when the diffusion is included, as shown in Fig. 5(c);
this is in contrast to the survival of gap domains when diffusion
is absent [Fig. 5(b)]. After domains growing from pillar tops
completely suppress those growing from gaps, the domain
competition discussed in Sec. II sets in among those surviving
domains.

The case of a very large periodicity is shown in Fig. 5(d).
Here, the periodicity is λ = 400 = 20hp, close to the estimated
limit λc ≈ 21hp of the initial domain selection. A domain
growing from the gap is still suppressed by neighboring ones
growing from pillar tops. Surface diffusion is thus found to
enhance the critical periodicity λc to subsequently suppress
the domain growth from gaps.

IV. SUMMARY AND DISCUSSION

Coarsening of domains during ballistic deposition on a
one-dimensional substrate was studied by kinetic Monte Carlo
simulations. Since adsorbate molecules are supplied from
above, a domain grows taller by extending its branches laterally
and suppresses the growth of neighboring shorter domains.
For a ballistic deposition on a flat substrate without adsorbate
diffusion, the population density of domains, ρ, is found to
decrease with an increase in the aggregate’s height h by a
power law as ρ ∼ h−2/3. When surface diffusion is introduced
on an adsorbate overlayer, the grown aggregate is densely
packed and domain boundaries are straight. The population
density remains constant when the average height is low, but
it decreases rapidly as ρ ∼ 1/h when the height increases.

On a substrate patterned with an array of nanopillars,
domains growing from pillar tops have an advantage over
those growing in gaps between pillars. When pillars are closely
spaced, domains from the tops of neighboring pairs of pillars
envelop those in the gap, and only those domains growing
from pillar tops that are separate from the substrate remain.
As the pillar periodicity λ increases or the pillar height hp

reduces, domains from the gap are able to pass through
the covers and survive. A certain critical periodicity λc is
roughly estimated from the structure of a single isolated BD
domain, characterized by a slope angle θ of its lower edges

and the aspect ratio r of its height to width, as in Eq. (6).
Simulation results of the survival probability Ps indicate that
the theoretical estimation gives the correct order of magnitude,
but a more detailed analysis is necessary to account for the
fluctuation effect.

Diffusion on a patterned substrate enhances the critical
periodicity λc to suppress gap domains. After domains growing
from neighboring pillar tops come in contact, they form a
rather straight boundary, similar to what is observed in the
heteroepitaxial experiment [5]. Since the surviving domains
are located on top of the pillars, they are not very affected
by the substrate and remain free from misfit strains. Thus, an
overlayer on nanopillars is expected to have less defects than
that grown directly on a flat substrate.

Several unresolved features still remain, especially with
regard to domain coarsening with surface diffusion: The
scaling behavior of the population density with an exponent
∼1 is waiting for explanation. Surface diffusion is known to
have various effects on the growth front, such as anomalous
scaling [17,18] or crossover phenomena [19–21]. The change
in the growth front certainly affects the domain structure, but it
is not the only factor controlling the domain growth presented
here. The process of domain assignment also influences the
scaling exponents, as explained in Sec. II. Therefore, further
studies are necessary to investigate this.

Further, a generic method for coarsening has recently been
proposed [22] in the case that the evolution equation of the
front is known and its nonlinear steady state is available. For the
present problem of domain coarsening, we need the evolution
equation of the population density. In the absence of diffusion,
this is Eq. (3). In the presence of diffusion, a proper evolution
equation remains to be determined.

The model considered here is a very simplified one, and
it needs to be modified to be more realistic. Instead of
diffusion of an isolated adsorbate molecule, diffusion should
be a thermally activated process at the cost of breaking
chemical bonds. For adsorbate crystal with several facet faces,
not only is a nearest-neighbor interaction relevant but also
further neighbor interactions have to be taken into account
[23]. Extension to a three-dimensional system with a two-
dimensional substrate is also necessary. Another interesting
case to consider is when nanopillars have some variation in
height. Then, the domains on the highest pillars dominate the
others on lower pillars. When the number of surviving domains
is reduced, the adsorbate overlayer becomes homogenous.
This situation might correspond to experiments on buffer
layers [1,2], and it seems worthy of investigation in the
future.
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