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A postulate that ergodicity and entropy continuously decrease to zero on cooling a liquid to a glassy state was
used to support the view that glass has no residual entropy, and the features of mechanical relaxation spectra
were cited as proof for the decrease. We investigate whether such spectra and the relaxation isochrones can
serve as the proof. We find that an increase in the real component of elastic moduli with an increase in spectral
frequency does not indicate continuous loss of ergodicity and entropy, and the spectra do not confirm isothermal
glass transition or loss of entropy. Variation in ergodicity and entropy with the spectral frequency has untenable
consequences for both thermodynamics and molecular dynamics and implies that, despite a broad distribution
of its relaxation times, an equilibrium liquid can be considered as always ergodic. Perturbation from equilibrium
used to obtain a spectrum does not have the effect of dynamic freezing and unfreezing, and Maxwell-Voigt models
for the mechanical response function have neither the characteristic irreversibility of liquid-glass transition nor
are commutable to ergodicity or entropy.
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I. INTRODUCTION

The density time correlation function plays a central
role in the dynamics of structural fluctuations and glass
transition. It expresses the changes in both the characteristic
relaxation time τ0 of the viscosity-determining α-relaxation
process and the relaxation time distribution parameter β with
changing temperature T. When a liquid is cooled, density
fluctuations in its structure become progressively slower until
they dynamically freeze, and a glass, thus, forms. The freezing
occurs [1] over a narrow material-characteristic temperature
range and depends upon the cooling rate and the property
being measured. When a glass is heated, density fluctuations
also dynamically unfreeze over a narrow temperature range,
and the volume and specific heat Cp, measured on the heating
path differ from those measured on the cooling path [2–5].
Occurrence of such hysteresis loops indicates that the process
is not quasithermodynamic; instead, it involves spontaneous
relaxation. The resulting irreversibility of liquid-glass transi-
tion is found to have little consequence for the entropy values
estimated from the Cpd ln T integral obtained on the cooling
and heating paths [3,5–13].

Ergodenhypothese, a concept attributed to Boltzmann who
described it in his papers on the kinetic theory of gases
[14–18], has been used also for condensed disordered systems,
including spin glasses. It postulates that all microstates in
phase space corresponding to the surface of constant energy
can be, and are, accessed over a sufficiently long period of
time. Accordingly, a system is defined as ergodic if the time
average of its every measurable property gives the same result
as the ensemble average and is defined as nonergodic if it
does not. No time scale is specified nor is any intermediate
system state defined. In thermodynamic terms, a system
is seen as ergodic if its structure fluctuates, with equal
probability, through all possible microstates consistent with
a macrostate. For simulating the behavior of a system in
the energy landscape paradigm, each distinct component of
the partitioned (configurational) phase space is seen as an

enthalpy basin (microstates) for which hypothetical conditions
of internal ergodicity are obeyed. Palmer [19] considered the
case of discontinuously broken ergodicity when there are no
relaxations with characteristic time close to the duration of
the observation time in the context of the potential energy
surface [20], and he regarded a liquid as ergodic and glass
as nonergodic. In discussing its relevance to the concept of
microstates and macrostates, Jäckle [21] stressed that there
are two (alternative) formalisms of statistical mechanics for
describing a nonergodic system. Both Refs. [19,21] discussed
the case of the abnormally high barriers giving rise to the
concept of disjointed components of the phase space, but
Jäckle [21] also considered the possibility of decrease in the
entropy on glass formation and did not find it acceptable.

Kivelson and Reiss argued that entropy may decrease on
glass formation [22], a view that had been considered, and
had been rejected, repeatedly since 1912 [23–26]. To support
it, Mauro and co-workers [27,28] treated glass formation as
a process of a continuous breakdown of ergodicity in the
picture of multidimensional potential energy surface originally
proposed by Goldstein [20] but written in the form of
enthalpy landscape. They postulated [27,28] that the number
of microstates explored by the system depends upon the
observational time tobs. As the temperature is decreased, the
system gradually becomes trapped in a subset of the available
configurational phase space [27]. Thus, by modifying Palmer’s
approach [19] and using some of Jäckle’s [21] discussion,
they [27] simulated the properties of a liquid by assuming
that there is a continuous breakdown of ergodicity on glass
formation, and the configurational entropy Sconf decreases to
zero. They ignored the facts (i) that a glass has multiplicity of
configurations even when it is formed by cooling a liquid at the
same rate to the same temperature, i.e., there is a multiplicity
of glass structures formed by cooling a liquid identically, and
(ii) that Johari-Goldstein (JG) relaxations occur in an otherwise
rigid structure of glass [29]. Their premise [27,28] is taken
from Palmer’s [19] discussion on the role of the observational
time tobs in dynamic freezing, namely, that, as the volume
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of the configurational phase space explored by the system
is reduced, certain sets of transitions among microscopic
configurational states become dynamically frozen over a fixed
tobs. When T is decreased while keeping tobs fixed, increasing
confinement to subsets of the overall phase space decreases
both the ergodicity and Sconf . This occurs for a fixed cooling
rate q = −(dT/dt), for which tobs becomes fixed. Hence, loss
of ergodicity was qualitatively related to loss of Sconf , and a
quantity termed the extent of ergodicity [27], which we denote
as xep, was simulated (Fig. 16 in Ref. [27]). Its plot against T
shows a broad sigmoid-shape decrease from xep = 1 for liquid
to xep → 0 for glass.

A similar increasing confinement to subsets of phase space
was presumed to occur also with increasing perturbation
frequency ν in a relaxation spectra, where ν was taken as
proportional to 1/tobs [28], ergodicity and Sconf were presumed
to decrease with an increase in ν at a fixed T [28], and the
relaxation spectra were taken as proof for the notion that xep

was time dependent in the range 0 < xep < 1. Thus, (i) the
known increase in the real component of shear modulus G′ in
the relaxation spectra, which is illustrated in Fig. 1(a), became
proof of a decrease in xep with a decrease in tobs [27,28],
(ii) the G′ spectra itself became confirmation of isothermal
glass transition behavior observed simply by decreasing tobs

[28], and it was concluded that xep → 0 in the limits of

(a)

(b)

FIG. 1. Illustrations for the dynamic mechanical relaxation:
(a) Relaxation spectra of G′ and G′′ obtained for a distribution
parameter β = 0.50 in the skewed arc distribution. Those who
consider ergodic-nonergodic transition in terms of the parameter
D = τ0/tobs suggest that the transition occurs when D = 1, i.e., at the
frequency at which the G′′ peak appears. (b) Sigmoid-shape decrease
in the ergodicity parameter xep and Sconf to zero values on cooling
through the glass formation range. The path is time dependent, and
the values differ on heating and cooling. The maximum xep value is 1
for the ergodic state. In view of the distribution of relaxation times, a
liquid is always nonergodic because the slower modes do not come to
equilibrium.

G′→ G∞ and tobs → 0 where G∞ is the limiting high-
frequency shear modulus [28]. The notion of continuously
broken ergodicity has been published in several papers since
2007 and has been used for various simulations [27]. Referring
to the change in the real component of the specific heat and
mechanical relaxation spectra, they finally concluded: “This
result serves as experimental and theoretical proof for the
nonexistence of residual entropy at absolute zero temperature”
[28]. This proof was critically examined in a Comment [30] by
pointing out that the specific heat and shear relaxation spectra
refer to dynamic susceptibility not loss of Sconf . Consequences
of the variation in xep with tobs and T and the role of tobs were
not considered in that Comment.

If we accept their interpretation [28] of the G′ spectra
and the notion that xep varies between 1 and zero [27], a
revision of our understanding of the relaxation phenomenon
would be required. Here, we examine if this could be the case
and find that features of the mechanical relaxation spectra
are inconsistent with their proof [28], and the spectra do
not “. . . confirm this isothermal glass transition behavior for
mechanical properties, such as shear modulus” [28]. Moreover,
the postulate [27,28] leads to untenable consequences for the
properties of liquids and glasses.

II. OBSERVATIONAL TIME, GLASS FORMATION, AND
RELAXATION SPECTRA

A liquid appears to be rigid if the observational time tobs

is exceedingly short, just as an object in continuous random
motion appears to be stationary in a short exposure image.
Accordingly, the ratio of the characteristic relaxation time τ0

to tobs has been used for discussing dynamic freezing and loss
of ergodicity. Briefly, dynamic freezing occurs when the ratio
D = τ0/tobs is equal to 1, where τ0 is taken as the internal time,
equal to the time necessary for structural rearrangement, and
tobs is taken as the external time of an experiment [28]. When a
liquid is cooled at a fixed rate q =−(dT/dt), tobs becomes fixed,
and τ0 rapidly increases from τ0 � tobs(D < 1) to τ0 > tobs

(D > 1), and the liquid is said to dynamically be frozen when
D > 1. The temperature at which D = 1, is the fictive
temperature Tf , which is high when q is high and is low
when q is low. If one chooses the temperature at which τ0 =
1 ks (viscosity of ∼1013 Poise) as Tg , and keeps the sample
at Tg, the state is said to behave as glass when tobs < 1 ks
(D > 1) and behave as a liquid when tobs > 1 ks (D < 1).
When kept at a fixed T < Tg , the glass structure spontaneously
relaxes to a lower energy structure and, as tobs increases,
Tf decreases toward the fixed T of glass, and τ0 increases
asymptotically [1,29,31]. Thus, D, which was initially higher
than 1, decreases to a value below 1.

The quantity D was originally suggested for expressing the
deformation of glass by viscous flow over a very long time
period; D, which is initially much greater than 1, decreases to
zero as tobs → ∞. We point out that D is a decreasing function
of tobs also in a step-response experiment as expressed by the
Maxwell-Voigt models [32]: When a sample is kept under a
fixed strain γ0 and the stress σ is measured with tobs,SR, the
time from the beginning of the relaxation response [29,32], one
determines G(tobs,SR) = σ (tobs,SR)/γ0. The plot of G(tobs,SR)
against ln(tobs,SR) shows that G∞ decreases to G0 according to
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an inverted sigmoid-shape curve [32], and D → 0 in the limit
tobs,SR → ∞.

When a spectral frequency ω (rad/s) is taken as equal to
1/tobs, the quantity tobs is taken to correspond to the period
of one sinusoidal cycle. In a relaxation spectrum, therefore,
D = ωmτ0, where ωm is the frequency (in rad/s) at which the
peak in the imaginary or loss component G′′ of the complex
shear modulus G∗ = G′ + iG′′ appears [29,32]. Thus, when
the loss of mechanical energy is maximum, τ0 = 1/ωm, and
D = 1. In the spectra of G′ and G′′ illustrated in Fig. 1(a), the
state is seen as dynamically unfrozen, at internal equilibrium or
ergodic, for time scales of ω < ωm and is seen as dynamically
frozen, out of equilibrium or nonergodic for the time scales of
ω > ωm. Ergodic-nonergodic transition is seen to occur at ωm.
The state is glass for time scales shorter than 1 ks (ωm > 1
mrad/s). When tobs,SR is taken as equal to 1/ω, G′(ω) differs
from G(tobs,SR), and this distinction needs to be maintained.
Both G′(ω) and G(tobs,SR) approach the relaxed value G0 in
the upper limit of tobs,SR = 1/ω and approach the unrelaxed
value G∞ in the lower limit of tobs,SR = 1/ω.

It is known that a relaxation process in ultraviscous liquids
has a broad distribution of relaxation times [29,32], i.e., a
relaxation spectrum may be represented by a superposition of
a multiplicity of spectra, each with a single relaxation time,
formally from near zero to an uppermost value, depending
upon the model used. Accordingly, not all transitions among
microscopic configurational states would occur in a liquid;
some transitions would always remain dynamically frozen
even at high T. In this sense, a liquid should be regarded
as nonergodic, unless, as in Boltzmann’s ergodenhypothese,
ω → 0 or tobs→ ∞. We stress that Palmer (Sec. 2.1, Ref. [19])
recognized its significance when he used Feynman’s words
that, in thermal equilibrium all the fast things have happened
and all the slow things have not, and then suggested that
equilibrium depends crucially on tobs, which itself determines
the meaning of fast and slow. Thus, different values of tobs

give different equilibria. We point out that, as the distribution
of relaxation time increases with decreasing T, the shape of
xep against tobs (=1/ω) for an apparently ergodic liquid would
change.

In a recent monograph on relaxation and diffusion phe-
nomenon [29], Ngai describes how data obtained from various
relaxation spectroscopy techniques are interpreted in the study
of the molecular dynamics of liquids and glasses. (Elements
of relaxation spectroscopy appear in most undergraduate
textbooks.) Briefly, the dynamics of molecular motions that
produce density fluctuations are observed by perturbing a state
from its equilibrium. It is also worth stressing that biasing of
density fluctuations by a perturbation does not have the same
consequences as dynamic freezing of density fluctuations on
the time scale of ω, and therefore, a relaxation process is not
the same as dynamic freezing over a certain tobs for which D
is used. Therefore, the relaxation spectra would not indicate D
nor would they indicate the implied nonergodicity or entropy
loss. For that reason, we maintain that G′ and G′′ spectra
are distinct from the G′-ω, and G′′-ω plots. To elaborate,
(i) G∗ is consistent with the fluctuation-dissipation theorem,
the spectra obey the Kramers-Kronig relations and are ana-
lyzed to obtain τ0, the distribution parameter β, and the relaxed
and unrelaxed values of the shear moduli [29,32] G0 and

G∞. In contrast, the G′-ω and G′′-ω plots do not have these
attributes. (ii) A relaxation spectrum is a Fourier transform
of a step-function response described by the Maxwell-Voigt
elements [29,32], i.e., linear combinations of springs and
dashpots, and the spectra of G′ and G′′ on the positive side
of the ω cycle are identical to those on the negative side. If a
Fourier transform could be obtained for the G′-ω and G′′-ω
plots, the values on the two sides would be different.

Maggi et al. [33] published a detailed study of the G′ spectra
of the α-relaxation process in a variety of liquids covering
a frequency range of 10 mHz–10 kHz. They interpreted it
in terms of dynamic susceptibility in which G′ continuously
increases with increasing ω and G′′ spectra show peaks when
ω = ωm; both features are a consequence of a phase lag
between the oscillating response and the stimulus. Since G′
increases only when G′′ > 0, there is a loss of energy in
perturbing the density fluctuations. They [33] used the data
to investigate the dynamics of the α-relaxation process and
occurrence of the JG relaxation in ultraviscous liquids [29]
and did not interpret the increase in G′ and the concomitant
peak in G′′ as a process of freezing or unfreezing of density
fluctuations or as a process of isothermal glass transition.
Surprisingly, Mauro et al. [28] used the G′ feature of the
spectra in the studies of Maggi et al. [33] (and of such
α-relaxation spectra in general) to assert [28]: “Further
experiments, such as the shear-mechanical spectroscopy work
of Maggi et al. [33] confirm this isothermal glass transition
behavior for mechanical properties, such as shear modulus.”
Because of the difference in the consequences of molecular
relaxation and dynamic freezing, this assertion is unjustifiable.

III. MECHANICAL RELAXATION AND BRILLOUIN
LIGHT SCATTERING

In addition to G, one measures the compressibility modulus
K, the longitudinal modulus M = K + (4/3)G, and the
velocity of propagation of ultrasonic waves u = (M/ρ)1/2

in their respective ω ranges from millihertz to gigahertz by
using techniques of torsional oscillations [29,32–35], linear
vibrations, propagation of ultrasonic waves [36–43], and
Brillouin light scattering (BLS) [43–52]. The majority of such
studies yield isochrones of G, K, M, and u and attenuation
of propagating ultrasound. Alig [41] and Fluodas et al. [43]
discussed the features of BLS, ultrasonic, dielectric, and
specific heat relaxations and showed that they yield the same
information about molecular dynamics of a liquid.

BLS is used to study dynamics of density fluctuations on
a time scale of 10–100 ps at high temperatures. Depending
upon the wave vector propagating in the medium, it probes
relaxation that is associated with the dissipation of the phonon
energy in the structure. Since one determines the propagation
and damping of acoustic modes at gigahertz frequencies, BLS
methods have become specially useful for (a) investigating the
density fluctuations that show up as features of the α relaxation
in the G∗ and M∗ at T far above Tg where Tg is the temperature
at which dynamic freezing occurs on the (laboratory) time
scale of the BLS experiments [42–52], and (b) for detailed
investigations of G∞, M∞, K∞, and u∞. The state remains at
internal equilibrium over a broad temperature range between
the G′′ and the M ′′ peaks and Tg , a range over which ωτ0 � 1,
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G′ → G∞, and M ′ → M∞. We use the available results
from the BLS studies to determine whether the ergodicity and
entropy could continuously decrease as τ0 increases on cooling
toward Tg .

Kieffer and co-workers [44–47] have performed compre-
hensive BLS studies of binary oxide melts and glasses. We
digitized their plots [44–47] to obtain the M ′ and M ′′ data and
constructed the isochrones given here as an example of the
general features in Fig. 2 where Tg is marked for one plot. In
the temperature range T > Tg , the M ′ and M ′′ values (plotted
on the same scale of the ordinate) for several B2O3-K2O
compositions [44] and for TeO2-20 mol % K2O [45] change
reversibly with changes in T, and M ′′ shows the characteristic
α-relaxation peak at a temperature Tpeak where D = 1. The
increase in M ′ observed on cooling to T below Tpeak in Fig. 2,
as generally observed in the studies of Keiffer and co-workers
[41–47], is partly due to an additional relaxation process in

M
' (

G
Pa
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 M

'' 
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)

FIG. 2. Plots of the real and imaginary components of M∗ of
several compositions in their liquid and glassy states measured with
BLS by Masnik et al. [44] and Kieffer et al. [45]. A change in the
slope of the M ′ plot occurs in the liquid-glass transition at temperature
Tg on the time scale of measurements, which is usually defined as
ergodic-nonergodic transition. M ′ and M ′′ (on the same scale of
the ordinate) observed at T > Tg are reversible and are due to the
α-relaxation process and, at T < Tg , are irreversible. M ′′ shows a peak
at a temperature at which τ0 of the melt is equal to the reciprocal of
the frequency (in rad/s) in the gigahertz range, i.e., D = 1 at this peak.
The sigmoid-shape plot of M ′ is compromised beyond recognition
by the broadness of the M ′′ plot for the borate compositions. It is
barely evident for the TeO2-20 mol % K2O [45]. Tann is the annealing
temperature at which the state relaxes and M ′ of glass increases to
M∞ of the liquid.

the liquid state [46] and is partly due to an increase in the
distribution of the relaxation time (broadening of the relaxation
spectra), which seems more for the B2O3-K2O compositions
than for the TeO2-20 mol % K2O. (It has been found that M ′
for several liquids [45–47] does approach a plateaulike value
on cooling to T below Tpeak, but the data for their glasses do
not extend low enough below Tg , and, therefore, are not shown
here.) M ′ is close to M∞ for ωτ0 � 1 and is close to M0 for
ωτ0 � 1. In general, the slope for the M∞ isochrone, as in
Fig. 2, is greater than that for the M0 isochrone, including
polymers, such as poly(phenyl-methyl siloxane) studied at
1-MHz frequency [41], and M∞ at T >Tg does not change with
time as for molecular liquids and polymers [43,48–53]. On
further cooling, the α-relaxation process becomes dynamically
frozen at Tg to the glassy state, and the slope of the M ′ (or
M∞) plot against T decreases (Fig. 2) as the glass forms. The
G′′ and M ′′ values for both glass and ultraviscous liquid at the
same temperatures are close to zero. In Fig. 2, the decrease
in the slope at Tg is analogous to the decrease observed in
the slopes of the density and the refractive index plots against
T. It shows that dM∞/dT contains the effects of changes in
both the density and the number of available configurations,
but dM ′/dT of glass contains only the effect of the changes
in the density, i.e., the part due to configurational changes
becomes dynamically frozen at T < Tg . In general, the M ′ and
G′ of glass increase with time toward the M∞ and G∞ of the
liquid extrapolated to T < Tg [36,40,42] as indicated for M ′ in
Fig. 2. Atomic and other types of glasses have shown a similar
decrease in the slope at their Tg’s and a similar increase in M ′
and G′ values with time on annealing [54–58].

IV. NOTIONS OF ERGODICITY AND ENTROPY AND
RELAXATION SPECTRA

In simulations, the parameter xep [27] and Sconf [59] were
shown to decrease to zero when a liquid, on cooling, formed
a glass. The decrease occurred in a sigmoid-shape manner
over an exceptionally broad temperature range, as illustrated
in Fig. 1(b). A similar sigmoid shape, but an increase, in G′
occurs with an increase in the spectral frequency [Fig. 1(a)]
or with a decrease in tobs (=1/ω). Both the decrease in
xep [27] and Sconf [59], on cooling, and an increase in G′
with a decrease in 1/ω were interpreted as a consequence of
increasing confinement to subsets of phase space and were
used, thus, to support the view that entropy is lost on the time
scale of spectral frequency and G′ serves as the confirmation
of isothermal glass transition [28].

To investigate it, first, we recall that, for each dispersion
spectrum, there is a unique loss and tan δ spectra,

M ′ − M0

M∞ − M0
= ω

∫ ∞

0
sin ωtg(t)dt, (1)

and

M ′′

M∞ − M0
= ω

∫ ∞

0
cos ωtg(t)dt, (2)

In general, g(t) ≡ C(t)/〈|ρq(0)|2〉 where 〈|ρq(0)|2〉 denotes
the mean square density fluctuations, C(q,t) is the density
time autocorrelation function at wave number q, and g(t) =
exp[−(t/τ )β ] [29,43]. Were the spectra to indicate dynamic
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freezing of density fluctuations on the time scale of ω and if
both xep → 0 and Sconf → 0 in the limit ω → ∞ (tobs → 0),
the relaxation functions would be unusable for obtaining the
dynamics of molecular relaxation in terms of τ0 and β.

Second, if xep and Sconf were to decrease on decreasing tobs

(increasing ω) [28], the configurational part of free energy
Gconf (=Hconf − T Sconf) would increase, and the net free
energy (=Gconf + Gvib where Gvib refers to the vibrational
part) would reach its maximum value as S → 0 in the limit
tobs → 0. Therefore, Gconf would reversibly change between
its values of (Hconf −T Sconf) at the lowest ω and of Hconf at
the highest ω according to the shape of the plots of xep and
Sconf against ω. Since the increase in solubility, vapor pressure,
and chemical reactivity of a glass over the crystal phase are
proportional to the exponential of free energy divided by RT,
an ω-dependent Gconf would mean that the magnitude of these
properties at a fixed T would depend upon tobs. A material
would be expected to be greatly more soluble, vaporizable,
and reactive when observed for a short time and less so when
observed for a long time, reaching its highest value in the
limit tobs → 0 or ω → ∞. We found no studies indicating
that these properties increase with decreasing tobs. Therefore,
modification of the Gibbs entropy formula to accommodate
the notion that entropy depends upon spectral ω (or tobs) is
unnecessary.

Third, ω-dependent Sconf in a spectrum is not the same
as tobs-dependent Sconf, because there is loss of energy at a
spectral frequency, which is given by �W = πγ 2

0G
′′ per cycle

of frequency where γ 0 is the perturbation strain amplitude [32]
and there is no such loss in determining Sconf as a function of
tobs in simulation. Moreover, xep and Sconf are not treatable as
dynamic susceptibilities with real and imaginary components.
If xep, Sconf , and Gconf were to have their unique values
corresponding to G′, the plots of xep, Sconf , and Gconf against
ω would show time-temperature superposition similar to that
observed for the normalized spectra of G′ [29,32,35,39].
But such a superposition is not known for thermodynamic
functions.

Last, the notion of ω-dependent xep and Sconf is inconsistent
with the Adam-Gibbs relation of viscosity to Sconf , η = η0

exp(C/T Sconf) [60] where η0 and C are constants and η is
directly proportional to τ0. The reason is that any decrease in
Sconf with increasing ω would imply that equilibrium values
of η and τ0 vary with ω. A state does not switch between
more ergodic and less ergodic by changing ω. That one
observes less and less, and ultimately nothing of an occurrence
as tobs → 0 or τ0 → ∞, is obvious without resorting to
a postulate of continuous reduction in the configurational
phase space explored by the system or ergodicity. Dyre [61]
pointed out that glass formation has little in common with
ergodic-nonergodic transitions of various lattice models, the
ideal mode-coupling theory, or with the jamming transitions
of granular media; Schmelzer and Gutzow [62] and Gujrati
[63] provided arguments against it for glass transition, and
Goldstein [11,12,64] argued that the time period required
to explore all configurations is astronomically long, and he
further showed that the notion of loss of Sconf on glass
formation violates the second law of thermodynamics and
allows the possibility of a perpetual motion machine of the
second kind.

There is a difference between the relaxation phenomenon
[29,32] and the postulate that increasing confinement to sub-
sets of the overall phase space would increase G′ or M ′ because
of continuous decreases in ergodicity and Sconf [27,28]. As
discussed earlier here, the α-relaxation process is consistent
with the fluctuation-dissipation theorem, and its spectra obey
the Kramers-Kronig relation. Although perturbations in the
spectral condition ωτ0 � 1 do probe the out-of-phase response
of the already occurring density fluctuation modes and some
of the energy used in perturbation is absorbed by the liquid
whose temperature rises, it does not mean that some density
fluctuation modes do not occur when ω is high. From the
standpoint of thermodynamics, all these modes contribute to
Sconf at all frequencies.

The G′ and M ′ isochrones show the α-relaxation process
and not a reversible loss and regain of ergodicity or Sconf .
As the G∞ and M∞ values seen in an isochrone of a liquid
contain a configurational contribution, Sconf of the liquid is
finite. According to the notion of ω-dependent ergodicity [28],
dynamics freezing would have already occurred on the scale of
tobs (=1/ω), and both G∞ and M∞ values would correspond
to an almost zero value of xep and of Sconf . At a temperature
significantly above Tg , D (=ωτ0) is about 1010 for gigahertz
frequencies when τ0 of 1 s. (In contrast, D = 1 at the M ′′ peak in
Fig. 2.) In Palmer’s [19] view, ergodicity would be broken at the
temperature at which the slope of the plots in Fig. 2 decreases,
i.e., when density fluctuations freeze on cooling through Tg .

We conclude that the postulate of increasing confinement
to subsets of the overall phase space is not supported
by increasing G′ found either in the relaxation spectra or
in an isochrone. Moreover, if G(tobs,SR) [=σ (tobs,SR)/γ0] is
measured in step-response experiments performed at different
temperatures and the G value for a fixed tobs,SR interpolated
from the data is plotted against T, the plot would have a
negative slope. The slope would be less at T < Tg than at
T > Tg , resembling the change observed in the corresponding
plots of the density and refractive index. The change in slope
would not indicate, as explained here earlier, loss of Sconf .

Since we find no proof of tobs-, or ω-dependent Sconf , nor of
isothermal glass transition, we inquire how these notions [28]
came about. It seems that the increase in G′, the postulated
loss of Sconf , the failure of a system to reach equilibrium, and
the time and temperature dependences of all were regarded as
manifestations of loss of ergodicity. These were then linked,
(i) to the hypothesis that the state of a system was trapped
in a specific description of configurational minimum in the
simple (one-dimensional) enthalpy landscape by using a set of
conditional probabilities, (ii) to an interpretation of ergodicity
out of several already known, and (iii) to the view that tobs =
1/ω in D = τ0/tobs, which was not the original definition of
D. All was performed by ignoring the energy loss indicated
by the G′′ peak. We find that such a framework is too fragile
to either support the Kivelson-Reiss [22] view of zero residual
entropy or to require that theories of the relaxation spectra be
reconsidered.

V. CONCLUSION

Features of the mechanical relaxation spectra of a liquid are
determined by the density relaxation function and not by the

021501-5
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dynamic freezing of configurational degrees of freedom or by
a decrease in the time-dependent fractional ergodicity. Were
there a loss of frequency-dependent entropy due to dynamic
freezing, the solubility, vapor pressure, and chemical reactivity
would be extremely high when observed for a short time and
would be low when observed for a long time, and all would
change by a large amount on annealing a glass. There have
been no such indications.

Relaxation spectra include the imaginary component of
dynamic susceptibility, which yields the ω-dependent loss
of energy, and there is a difference between tobs and 1/ω.
These need to be taken into account in relating the spectra
to the entropy and ergodicity loss. We found no support for
the postulate that an increase in G′ with spectral frequency

is evidence of a decrease in fractional ergodicity and entropy
[28]. The notion that both xep → 0 and Sconf → 0 as G′ →
G∞, in the limit ω → ∞, seems to have no basis.

If we accept the definition of ergodicity based upon
the observational time, liquids would always be nonergodic
because not all molecular degrees of freedom in their struc-
ture come to equilibrium within a finite time. Not only
does this cause doubts about using the ergodic-nonergodic
transition for glass formation, but also puts into question
the use of the second law in the Gibbs free energy re-
lation for liquids. The Maxwell-Voigt models for step re-
sponse used for viscoelastic spectra are uncommutable to
the path-irreversible thermodynamics that characterizes glass
transition.
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