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Dynamical heterogeneity in soft-particle suspensions under shear
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We present experimental measurements of dynamical heterogeneities in a dense system of microgel spheres,
sheared at different rates and at different packing fractions in a microfluidic channel, and visualized with
high-speed digital video microscopy. A four-point dynamic susceptibility is deduced from video correlations,
and is found to exhibit a peak that grows in height and shifts to longer times as the jamming transition is approached
from two different directions. In particular, the time for particle-size root-mean square relative displacements is
found to scale as τ ∗ ∼ (γ̇ �φ4)−1, where γ̇ is the strain rate and �φ = |φ − φc| is the distance from the random
close-packing volume fraction. The typical number of particles in a dynamical heterogeneity is deduced from
the susceptibility peak height and found to scale as n∗ ∼ (γ̇ �φ4)−0.3. Exponent uncertainties are less than ten
percent. We emphasize that the same power-law behavior is found at packing fractions above and below φc. Thus
our results considerably extend a previous observation of n∗ ∼ γ̇ −0.3 for granular heap flow at fixed packing
below φc. Furthermore, the implied result n∗ ∼ (τ ∗)0.3 compares well with the expectation from mode-coupling
theory and with prior observations for driven granular systems.
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I. INTRODUCTION

Disordered materials of all kinds are considered to be
“jammed” if the relaxation time grows longer than the
observation window, so that the constituent particles appear
locked into a fixed configuration of nearest neighbors [1–3].
For example, supercooled liquids can become jammed by
lowering the temperature, hard sphere colloidal particles can
become jammed by increasing the density, and macroscopic
glass beads can become jammed by lowering a driving force
below some threshold. No matter what the material or set of
control parameters, as jamming is approached it has long been
assumed that the growing relaxation time is accompanied by
increasing co-operativity in particle motion [4]. The closer
to jamming, the larger the number of neighbors that must
cooperate in order to rearrange and the less frequently this
happens.

It is now widely accepted that the rearrangement dynamics
are not continuous near jamming, but rather are spatially and
temporally heterogeneous [5,6]. Intermittent string-like swirls
of rearranging particles come and go in a background of
less mobile particles. The four-point dynamical susceptibility
χ4(τ ) is a powerful tool for characterizing such dynamical
heterogeneities [7,8]. This function exhibits a peak at a
characteristic relaxation time, τ ∗, and the peak height χ∗

4
can be related by a counting argument to the number n∗
of particles in the fast rearranging regions [9]. One of the
central questions today, then, is the quantitative relationship
between the respective growth of τ ∗ and of χ∗

4 on approach
to jamming. Expectations for various models are reviewed in
Ref. [8]. For example, a logarithmic connection is expected
for “collectively-rearranging region” scenarios. A power-law
connection χ∗

4 ∝ (τ ∗)λ is predicted by the mode-coupling
theory, where λ is the reciprocal of the mode-coupling
exponent γ ; Ref. [8] particularly notes the values λ = 0.37 [10]
and λ = 0.40 [11]. A power-law connection with λ = 1 is
expected for freely diffusing defects and more recently a value
λ = 1/2 was reported for a kinetically constrained jamming
model [12].

For colloidal hard spheres, this issue was recently explored
in Ref. [13], which improves upon pioneering observations
[14–17] by covering an unprecedented density range near
jamming such that the structural relaxation time is increased
by seven orders of magnitude. The data show that τ ∗ grows
faster than a power law, and n∗ grows slower than a power
law, in 1/(φc − φ) as φ approaches φc from below. The
critical packing fraction φc is close to, but possibly distinct
from, random close packing. Irrespective of the value, the
conclusion is that n∗ grows logarithmically with τ ∗. For other
colloidal systems, it is not yet known whether this relationship
depends on the nature of the particle interactions or whether
it changes when the control parameter is temperature or
driving rather than just density. In this paper, we report
on dynamical heterogeneities for dense suspensions of soft
Hertzian colloidal particles. In particular, we measure the time
and size scales and determine how they grow as jamming
is approached both by bringing the density toward φc from
either side and also by lowering the strain rate. In addition to
establishing the dependence of n∗ and τ ∗ on these two control
parameters, we also show that the size and time scales are
related by a power law. This result contrasts with Ref. [13],
but compares well with observations for macroscopic hard
spherical grains, where the control parameters are density and
fluidizing air speed [18] or strain rate and depth into a flowing
heap [19]. Here, as in Refs. [13] and [19], the dynamic range
in relaxation time is more than seven orders of magnitude.

II. EXPERIMENTAL DETAILS

The system we study is a dense aqueous suspension of ther-
moresponsive N-isopropylacrylamide (NIPA) microgel beads
[21,22], synthesized with the Yodh group at Penn [23–27].
Dynamical heterogeneities for unsheared suspensions of such
particles have been reported previously in Refs. [25,28], and
[29] both below random close packing as well as above where
aging effects are important. Here, experiments are performed
on ≈10% polydisperse suspensions of two different size
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FIG. 1. (Color online) Properties of NIPA microgels as a function
of packing fraction as controlled by temperature: (left) the elastic
modulus measured by centrifugal compression and (right) the particle
diameter measured by dynamic light scattering [20].

particles, primarily about 1 μm but also of about 0.6 μm in
diameter. For the former, the number density is 0.455/μm3 and
the viscosity of the suspending water is η0 = 0.01 g/(cm s) =
0.001 Pa s. Figure 1 shows the diameter D and Young elastic
modulus E for the larger particles, obtained previously from
dynamic light scattering and centrifugal compression [20],
respectively, as a function of the volume fraction φ. For
decreasing temperature, the particles swell with water and
soften, so D increases while E decreases. Since the applied
pressure needed to squeeze water from the gel is very large
compared to the elastic modulus [20], the particles deform
without deswelling and can be compressed to a known volume
fraction φ above random close packing φc = 0.635 simply
by lowering the temperature. For the chosen fixed number
density of the D ≈ 1 μm sample, the relationship between
volume fraction and temperature is accurately described
by φ(T ) = 1.34 − T/(29.4 ◦C) over the temperature range
19 ◦C � T � 25 ◦C used here (see Fig. 2 of Ref. [20]).

Previously we studied the shear rheology of these suspen-
sions by a custom microfluidic technique in which the velocity
profile is measured at the midheight of a tall channel for
various packing fractions and for various pressure-controlled
flows [30]. The experimental channel is 25 μm wide, 100 μm
tall, and L = 2 cm long, fabricated of polydimethylsiloxane by
soft lithography and bonded to a glass microscope slide. The
video imaging system consists of a Phantom CMOS camera
(1–10,000 fps) connected to a Zeiss Axiovert 200 microscope
with 100× objective. An objective-cooling collar (Bioptechs)
and cooling plate above the sample are controlled to about
±0.01 ◦C (misquoted as 0.1 ◦C in [30]). This corresponds
to a volume fraction control of ±0.0003. The suspension
is forced through the channel using pressurized air and
inlet /outlet tubing of sufficient diameter that the imposed
pressure drop �P occurs only along the length L of the
channel and can be related to the local shear stress in the
suspension as σ (y) = �Py/L. The local strain rate is found
by numerical differentiation of the velocity profile, γ̇ (y) =
∂vx(y)/∂y. These two local measures are then combined to
give the stress versus strain rate shear rheology. For packing
fractions varied discretely between 0.5 and 0.7, and for strain
rates varied continuously from nearly 10−4 to 100 s−1, we
found that the shear rheology data could be collapsed onto
two branches by Olsson-Teitel [31] scaling with powers of the

FIG. 2. (Color online) (a) An image taken from video data of
particles. (b) The velocity and (c) the strain rate versus position across
the channel, averaged over time for a T = 60 s run with a PIV delay
time of τp = 50 ms. In (c) the height of the points is the statistical
uncertainty based on the difference between the velocity data and the
local cubic polynomial fits used for differentiation.

distance �φ = |φ − φc| to jamming; the resulting exponents
can be understood in terms of particle interactions [32]. In the
following sections, we analyze the same data for dynamical
heterogeneities.

Since the strain rate is a crucial parameter, we provide
further experimental details. An example video frame is
displayed in Fig. 2(a). The bead-scale intensity variations
are insufficient to permit particle tracking, but are ideal for
particle image velocimetry (PIV) measurement of the average
velocity profile, vx(y) versus y, where y is measured across the
channel and x is in the flow direction. With custom LABVIEW

code, the images are broken into fifty strips, 0.5 μm wide,
which is about 7 times the pixel width of l = 0.07 μm and
F = 175 μm = 2450 l pixels long. The speed of each strip is
then found by maximizing its spatial cross correlation with an
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image strip taken at a later time, chosen so that the particle
displacement is at least one diameter. Final velocity profiles
are obtained by averaging over all video data. Final strain
rate profiles are obtained by fitting each profile point and
its six neighbors to a cubic polynomial (see supplemental
material of Ref. [30]). Note that the the distance over which
the differentiation is performed is thus δy = 3 μm.

Example velocity and strain rate profiles are shown in
Figs. 2(b)–2(c). Here the packing fraction is φ = 0.643, which
is above random close packing φc = 0.635. Therefore, the flow
is somewhat plug-like and exhibits wall slip. Considering all
packing fractions and driving pressures, the range of speeds
is 0.04–200 μm/s and the range of strain rates is 3 × 10−4 −
103 s−1. If the speeds are measured with an uncertainty of one
tenth of the percent, for example, then the strain rate uncer-
tainty would be �γ̇ ≈ 0.001 v/δy, which can be as small as
10−5 s−1.

An order-of-magnitude estimate of the uncertainty in the
strain rate may be made as follows. The PIV delay time τp is
an important input; it ought to be chosen as τp > D/v, where
D is the particle size and v is the average speed. The speed
uncertainty is �x/τp, where �x is the uncertainty in locating
the maximum spatial cross correlation for time-delayed images
of one particle-scale blob. If located by fit to a peaked function,
then �x = l/

√
n, where l is the pixel size and n = D/l is the

number of pixels per blob. For a video data set of duration T ,
the speed uncertainty is reduced by a factor of 1/

√
N , where

N = vT /D is the total number of blobs examined. Dividing
the speed uncertainty by the transverse distance over which
the differentiation is performed, δy, gives the expected scaling
of the strain rate uncertainty as

�γ̇ ∝ 1

τpδy

√
l3

vT
, (1)

<
v

δy

√
l3

vT D2
. (2)

For our experiments, the pixel size is l = 0.07 μm and
the differentiation length is δy = 3 μm. In the example of
Fig. 2(c), the plotted error bars agree with the right-hand side
of Eq. (1) times a factor of about seven. For the smallest
strain rates, γ̇ ≈ 10−4 s−1, the speeds are slower and the run
durations are longer: v ≈ 0.04 μm/s and T = 2 hours. For
these numbers, the right-hand side of Eq. (2) is 10−5 s−1,
showing that the measurement is feasible if the PIV delay time
is properly chosen.

Lastly, before analyzing for dynamical heterogeneities, we
discuss the possibility of a nonuniform volume fraction that
could be induced by the variation of strain rate across the
width of sample. For hard sphere colloids, even very small
concentration gradients can be amplified by shear [33]. How-
ever, our system of soft spheres would probably correspond
better to an emulsion, where no significant concentration
gradient is seen under shear [34]. Indeed, we find no sign
of a concentration gradient across the channel either directly
or indirectly. Unfortunately, video images could reveal only a
gross variation, greater than at least several percent. However,
shear rheology data of Ref. [30] indicate that one volume
fraction value collapses multiple strain rates (corresponding to
multiple positions across the channel) onto a single master

curve with two branches. If the volume fractions were
significantly nonuniform, this collapse would fail. Judging
from the insets of Fig. 4 in Ref. [30], an inhomogeneity in
φ of 0.005 would be detectable but probably not a change of
0.001.

III. HETEROGENEITY ANALYSIS

While the presence of dynamical heterogeneities can be
registered by the correlation of equal-time velocity fluctua-
tions, the use of higher order correlation functions is required
to demonstrate that the dynamics are truly heterogeneous in
space and time. See, for example, Refs. [5–7] for reviews.
As done for quiescent systems, we thus characterize the
spatiotemporally heterogeneous nature of the dynamics using a
four-point dynamic susceptibility χ4(τ ), which exhibits a peak
that grows in proportion to the size of the heterogeneities.
The measurement of χ4(τ ) begins with an ensemble-averaged
self-overlap order parameter Qt (τ ), constructed so that the
contribution from each particle decays from one toward zero
as time increases from t to t + τ and the particle moves
some prescribed distance. If all particles were to experience
the same rearrangement dynamics, then the decay of Qt (τ )
versus τ would be independent of t . But if the dynamics were
heterogeneous, then the decay of Qt (τ ) would be faster or
slower than the time average Q(τ ) ≡ 〈Qt (τ )〉 according to
the number of independent rearranging regions that happen
to exist at a particular instant. This is governed by counting
statistics, so the variance

χ4(τ ) ≡ N
[〈
Q2

t (τ )
〉 − 〈Qt (τ )〉2

]
(3)

is independent of the number N of particles in the field of
view. The average number n∗ of particles in a fast rearranging
region has been explicitly computed in Ref. [9] as

n∗ = χ∗
4

(Q1 − Q0)(Q1 − Q∗)
, (4)

where χ∗
4 = χ4(τ ∗) is the peak height, Q∗ = Q(τ ∗), and Q1

and Q0 are respectively the average values of the overlap
parameter at delay τ ∗ taken separately over beads in slow and
fast rearranging regions. The same results for n∗ were found
for three very different choices for overlap order parameters,
whose associated susceptibilities had different peak heights
and peak times: step function, persistent area, and persistent
bond [9]. Therefore, as long as the prescription of Eq. (4) is
followed, the choice of overlap order parameter is not crucial.

Here, we use this same standard procedure, implemented
in a co-moving frame. Since the video data, as in Fig. 2, have
insufficient resolution to track individual particle positions, we
adopt an overlap order parameter similar to that introduced in
Ref. [19] based on image correlations. In particular, we divide
the video images into 50 narrow strips of constant speed and
strain rate, seven pixels ≈0.5 μm wide containing N ≈ 200
particles. For each of these strips we compute

Qt (τ ) ≡ 〈Ii(t)Ii+di(t + τ )〉 − 〈Ii(t)〉2

〈Ii(t)2〉 − 〈Ii(t)〉2
, (5)

where 〈· · ·〉 is the ensemble average over all pixels i running
along a row with di = vτ/l and l is the pixel size. This is done
for each of the seven rows of pixels in each strip and averaged
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FIG. 3. (Color online) (a) Overlap order parameters and (b)
corresponding dynamic susceptibilities plotted vs delay time for
several strain rates as labeled. The packing fraction is φ = 0.643,
as in Fig. 2, where strain rates are seen to be lower toward the center
of the channel. In (a), the light dashed curves represent Qt (τ ) for a
selection of different start times t and the heavy solid curves represent
the average Q(τ ) = 〈Qt (τ )〉 over all t .

together. Since i + di is not an integer, the value of Ii+di is
taken by interpolation of the intensity at pixels with indices
above and below i + di. Prior to this, the speed v of the strip
was found by varying di at fixed τ and averaging over t to
maximize the cross-correlation as in the usual PIV method.
Note that the length scale probed by the associated four-point
susceptibility is set by the particle-size grayscale variations
in the video images. Therefore, the time τ ∗ at which χ4(τ )
reaches its peak is a characteristic relaxation time needed for
particle-scale relative displacements. For illustration, example
results for Qt (τ ) versus τ are shown in Fig. 3(a) for a strip
corresponding to packing fraction φ = 0.643 and strain rate
γ̇ = 0.0025 s−1. This is close to jamming and, indeed, the
decay is quite variable. Multiplying the variance by N gives
the susceptibility shown in Fig. 3(b). This exhibits a peak at
delay time τ ∗ ≈ 1000 s of height χ∗

4 ≈ 9, when the average
overlap order parameter is Q∗ ≈ 0.5. For a second example
strip with a higher strain rate, γ̇ = 0.078 s−1, the dynamics
are more homogeneous as seen in Fig. 3 by the tighter spread
of Qt (τ ) and the smaller susceptibility. As a final check, Fig. 4
shows a plot of τ ∗ versus channel residence time F/v, where
F is the length of the field of view and v is average particle
speed. All of the data fall below the line of equality, τ ∗ = F/v,
showing that the relaxation time is smaller than the residence
time and hence is not improperly measured.

To deduce the number n∗ of particles in a fast rearranging
region from the peak height χ∗

4 using Eq. (4), we must first
find the three different averages of the overlap order parameter
at delay time τ ∗. These are shown in Fig. 5 as a function of
volume fraction, where each point corresponds to a different
strip and hence to a different strain rate. Since there is no
evident variation with volume fraction or strain rate, we simply

FIG. 4. (Color online) Relaxation time τ ∗ as a function of
residence time F/v, where F = 175 μm is the length of the field
of view and v is the average velocity of a strip of particles. Since
all data are under the black line τ ∗ = F/v, the timescales probed are
less than the channel residence time and hence are not improperly
measured. The symbols are the same as in Fig. 6.

compute a total average over all conditions. The average
overlap order parameter at the time τ ∗ when χ4 peaks is found
to be Q∗ ≡ Q(τ ∗) = 0.49 ± 0.06. The average for beads in the
slow rearranging regions, i.e., for beads with order parameter
greater than Q∗, is Q1 = 0.73 ± 0.08. The average for the
fast rearranging regions, i.e., for beads with order parameter
less than Q∗, is Q0 = 0.26 ± 0.05. These three averages are
indicated by dashed horizontal lines in Fig. 5. Note that the
constancy of Q1, Q0, and Q∗ implies that the factor of N in
the Eq. (3) definition of χ4(τ ) is not significantly affected by
the flow of beads into and out of the field of view.

Since the overlap order parameter is measured in a long
strip, about half a particle wide and 200 particles long, the
field of view may not contain the entirety of any of the
fast rearranging regions. However, if the heterogeneities are

FIG. 5. (Color online) Averages of the overlap order parameter
at time delay τ ∗ plotted vs a volume fraction, where each data point
represents a different strain rate: (a) Q1 and (c) Q0 are the averages for
the slow and fast rearranging regions, respectively, whereas (b) Q∗ =
Q(τ ∗) is the average for the whole sample. None of these quantities is
found to depend on a volume fraction or strain rate; their averages are
indicated by the dashed horizontal lines with accompanying values.
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one-dimensional string-like swirls, as expected for a quiescent
system, then they will cut the field of view a number of times
in proportion to their length. Therefore, the true number of
particles involved would be a constant multiplicative factor
larger than the n∗ value we deduce by the above prescription.
This is borne out by the good comparison of the size of
heterogeneities in a monolayer of air-fluidized beads, analyzed
across the whole sample or in strips [35]. But it could also be
that in channel flow, the heterogenieties are linear chains or
sheets of particles aligned with the velocity, in which the true
number of particles involved would still be proportional to the
n∗ value we deduce.

IV. RESULTS

Data for the relaxation time τ ∗ and the number n∗ of
particles in a fast-rearranging region are plotted vs strain rate
in Figs. 6(a) and 6(b), respectively, for the ∼1 μm diameter
colloidal microgel particles. Here, each data set corresponds
to a given packing fraction as labeled and each data point
corresponds to a different strip and hence to a different strain
rate. As the strain rate decreases and jamming is approached,
both τ ∗ and n∗ grow as powers of the strain rate. For the
time scale, the power law is consistent with τ ∗ ∝ 1/γ̇ as
shown by the solid lines. This is the simplest dimensionally
correct possibility. For the size scale, all power-law fits are
consistent with n∗ ∝ 1/γ̇ 0.30±0.03. This exponent agrees with
recent observations of a value near 1/3 in dry granular
systems, including experiments on heap flow [19], simulations
of uniform shear [36], and simulations of flow down an

FIG. 6. (Color online) (a) Relaxation time and (b) number of
particles in a fast-rearranging heterogeneity plotted vs strain rate for
several volume fractions φ as labeled. The solid lines are fits to a
power of γ̇ , with exponents of −1 in (a) and of −0.3 in (b).

FIG. 7. (Color online) Coefficients of the fits in Fig. 6 to (a)
τ ∗ ∝ 1/γ̇ and (b) n∗ ∝ 1/γ̇ 0.3 vs a volume fraction, shown as closed
symbols for the ∼1 μm diameter particles. The open symbols are for
the smaller ∼0.6 μm diameter particles. The solid curves are fits to
a power of �φ ≡ |φ − φc|, where φc = 0.635 is the random close
packing fraction, with exponents of −4 in (a) and of −1.2 in (b).

incline [37]. In these works, shear occurs at essentially fixed
packing fraction near φc. A value in the range 0.2–0.3 was also
reported for a Lennard-Jones system [38]. So our observations
considerably reinforce and extend all these results, not just
to overdamped systems but also to packing fractions away
from φc both above and below. Nonetheless, the value of
approximately 1/3 has yet to be explained.

The relaxation time and number of particles in a fast-
rearranging region also depend on packing fraction as well
as strain rate. This can be seen already in Figs. 6(a) and
6(b) where the data sets shift up and then down as φ goes
from below to above φc. This is displayed more clearly in
Figs. 7(a) and 7(b) where the coefficients τ ∗γ̇ and n∗γ̇ 0.3 of the
power-law fits in the previous figure are plotted versus φ. The
results grow without apparent bound as φc is approached from
either side. Data for the smaller particles are also included
and display the same behavior. These divergences are well
described by fits to power laws in �φ = |φ − φc|, as shown,
giving τ ∗ ∝ 1/�φ4.0±0.6 and n∗ ∝ 1/�φ1.2±0.4.

Altogether we thus find that the relaxation time and the
size of fast-rearranging heterogeneities grow as the jamming
transition is approached as functions of strain rate and packing
fraction as

τ ∗ ∝ (γ̇ �φ4)−1, (6)

n∗ ∝ (γ̇ �φ4)−0.3. (7)

Notice that the combination (γ̇ �φ4) controls the behavior in
both cases. Hence, there is more sensitivity to variation of �φ

than to variation of strain rate. This is qualitatively consistent
with numerical results for a driven kinetically constrained
jamming model [12]. To emphasize this feature, we plot all
τ ∗ and n∗ results versus (γ̇ �φ4) in Figs. 8(a) and 8(b), where
γ̇ is rendered dimensionless by the intrinsic time scale set
by the ratio η0/E of liquid viscosity to particle modulus. Note

021403-5



K. N. NORDSTROM, J. P. GOLLUB, AND D. J. DURIAN PHYSICAL REVIEW E 84, 021403 (2011)

FIG. 8. (Color online) Scaling collapse of (a) dimensionless
relaxation time and (b) number of particles in a fast-rearranging
heterogeneity versus dimensionless strain rate times �φ ≡ |φ − φc|
to the fourth. Here, η0 is the viscosity of water and E is the Young
elastic modulus of the particulate material. The symbol types are the
same as in Fig. 6. The solid lines are power laws with exponents as
labeled; these fit well except for a noticeable deviation at the largest
strain rates.

that this collapses the data onto power laws with exponents −1
and −0.3, respectively. Thus there are only three exponents to
explain rather than four. As discussed already, the −1 makes
dimensional sense and the −0.3 extends prior observations but
is not understood. The remaining exponent, four, is reminiscent
of the exponent � = 4 in the timescale η0/(E�φ�) used in
Olsson-Teitel scaling plots of the shear rheology [30].

We note that some prior results are inconsistent with
Eqs. (6) and (7). In Ref. [38], a simulated Lennard-Jones
system shows the same size scaling, χ∗

4 ∼ 1/γ̇ 0.3, but a
different relaxation-time scaling, τ ∗ ∼ 1/γ̇ 0.5. In Ref. [39],
simulated harmonically repulsive particles under quasistatic
shear show χ∗

4 ∼ 1/�φ1.8; the system at nonzero strain rates
[40] shows χ∗

4 ∼ 1/γ̇ 0.5−0.7, though the dependence on strain
rate may not be a power law. In Ref. [41], relaxation time
data for a sheared hard sphere glass were found to scale
as τ ∗ ∼ 1/γ̇ 0.8. And in Ref. [42], relaxation time data for
a sheared monolayer of bubbles were found to scale as
τ ∗ ∼ 1/γ̇ 0.66. The cause of these discrepancies with our results
is unclear, but cannot be ascribed to use of a co-moving frame
since τ ∗ ∼ 1/γ̇ was observed in Ref. [19] where the overlap
order parameter was computed in the laboratory frame.

V. DISCUSSION

The observations made here, summarized by Eqs. (6) and
(7), combine to give the size of heterogeneities as a power law
of the relaxation time:

n∗ ∝ (τ ∗)λ. (8)

FIG. 9. (Color online) Number n∗ of particles in a fast-
rearranging heterogeneity vs relaxation time τ ∗ made dimensionless
by the Young modulus E of the particulate material and the viscosity
η0 of the suspending fluid (water). The dashed black line is a
power-law fit with exponent λ = 0.31 ± 0.03 as labeled. The symbol
types are the same as in Fig. 6.

For emphasis, we plot n∗ data versus τ ∗E/η0 in Fig. 9 on
logarithmic axes and observe that indeed the data collapse to
a straight line, except for one data set whose noise blooms at
small τ ∗E/η0. Note that the dynamic range of the data is more
than two decades in size and nearly eight in dimensionless
relaxation time, which is sufficient to rule out the possibilities
of a logarithmic or exponential connection between n∗ and τ ∗.
Fitting to a power law gives the exponent and uncertainty as

λ = 0.31 ± 0.03. (9)

The observed power-law form is consistent with mode-
coupling theory [8] and the observed exponent is only slightly
smaller than the expectation λ = 1/γ , where γ is the mode-
coupling exponent [10,11].

One advantage of plotting n∗ and τ ∗ parametrically versus
one another, rather than versus the control parameters, is that
it allows comparison with other systems where there is no
shear or where the control parameter is something other than
strain rate. For example, λ = 1/2 is reported for the driven
kinetically constrained model mentioned above [12], while
a logarithmic connection better accounts for the simulations
of Brownian harmonically-repulsive particles [43]. In terms of
experiment, comparison is possible for only a few experiments
of which we are aware. For hard spheres, Ref. [13] found that
τ ∗ grows faster than a power law and that χ∗

4 grows slower than
a power law as φ approaches φc from below. It is stated that
n∗ grows logarithmically with τ ∗, which disagrees with our
results. However, the final five decades may be reasonably fit
with λ = 1/3. For soft NIPA microgel particles similar to those
studied here, Ref. [28] found that both τ ∗ and χ∗

4 grow with
increasing packing fraction; no functional form was proposed
or tested. We digitized their data and plot parametrically, rather
than versus packing fraction, and found power-law behavior of
the form (8) with exponent λ = 0.34 ± 0.16. This is consistent
with our findings. For a monolayer of large spherical grains
fluidized by a steady upflow of air, Ref. [18] found that there
is a meaningful effective temperature Teff and that size and
time scales are consistent with n∗ ∼ 1/Teff

0.7±0.2 and τ ∗ ∼
1/Teff

2±0.5, respectively. These combine to give a power-law
relationship, Eq. (8), with exponent λ = 0.35 ± 0.15 that
agrees with the results here in Fig. 9. Further experiments
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on the fluidized grains, where the sample is tilted and where
the analysis is carried out by dividing the sample into a
series of strips each at a different pressure, also appear to
agree [35]. For steady gravity-driven flow of grains down
along a confined heap, and visualized through the sidewalls
as a function of depth z below the free surface, Ref. [19]
found τ ∗ ∝ 1/I and n∗ ∝ (1/I )λ, where I = γ̇ d/

√
gz is the

inertia number, d is the grain diameter, g = 9.8 m/s2, and λ =
0.33 ± 0.02. This system is underdamped, so the time scale is
rendered dimensionless by different microscopic physics, but
the exponent for the power-law connection between n∗ and τ ∗
is the same as found here.

VI. CONCLUSION

In this paper, we presented a study of dynamical hetero-
geneities in a colloidal system that (a) is not hard spheres,
(b) is compressed above as well as below φc, and (c) is
subjected to shear. Our experiments made crucial use of
custom synthesized NIPA microgel particles and of a custom
fabricated microfluidic channel as well as of a video-based
dynamical order parameter. As jamming is approached by
bringing the packing fraction difference �φ = |φ − φc| or the

strain rate γ̇ to zero, we demonstrated that the time and size
scales for dynamical heterogeneities both grow as powers of
the combination (γ̇ �φ4) according to Eqs. (6) and (7). While
there is precedent for the observed strain rate dependence from
experiments on underdamped granular systems, the packing
fraction dependence appears to be a new result. The observed
connection between the size and time scale is a power law, n∗ ∝
(τ ∗)λ, consistent with mode coupling theories but perhaps not
with observations for an unsheared suspension of Brownian
hard sphere colloids. It is intriguing that the exponent we find,
λ ≈ 1/3, agrees with precedents for unsheared soft particles
[28] and for two driven systems of hard grains: one with
shear [19] and one without [18,35]. This suggests universality
with respect to interactions, but perhaps with unsheared hard
sphere colloids in a different universality class.
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